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Abstract: In this study, we build an empirical model to estimate pigments in the South American Lake
Villarrica. We use data from Dirección General de Aguas de Chile during the period of 1989–2024 to
analyze the behavior of limnological parameters and trophic condition in the lake. Four seasonal
linear regression models were developed by us, using a set of water quality variables that explain the
values of phycocyanin pigment in Lake Villarrica. In the first case, we related chlorophyll-a (Chl-a) to
phycocyanin, expecting to find a direct relationship between both variables, but this was not fulfilled
for all seasons of the year. In the second case, in addition to Chl-a, we included water temperature,
since this parameter has a great influence on the algal photosynthesis process, and we obtained
better results. We discovered a typical seasonal variability given by temperature fluctuations in
Lake Villarrica, where in the spring, summer, and autumn seasons, conditions are favorable for algal
blooms, while in winter, the natural seasonal conditions do not allow increases in algal productivity.
For a third case, we included the turbidity variable along with the variables mentioned above and the
statistical performance metrics of the models improved significantly, obtaining R2 values of up to 0.90
in the case of the model for the fall season and a mean squared error (MSE) of 0.04 µg/L. In the last
case used, we added the variable dissolved organic matter (MOD), and the models showed a slight
improvement in their performance. These models may be applicable to other lakes with harmful
algal blooms in order to alert the community to the potential toxicity of these events.

Keywords: phycocyanin; harmful algal bloom; lake; Chile

1. Introduction

Pigments found in algae provide fundamental information on the trophic status of
aquatic ecosystems [1,2]. Key pigments, such as chlorophyll, phycocyanin, fucoxanthin,
and phycobilin, play essential roles in photosynthesis and solar energy absorption in
algae [3,4]. The concentration and variety of these pigments are influenced by factors such
as nutrient levels, light intensity, and the presence of contaminants [5,6]. Consequently, the
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analysis of algal pigments allows the assessment of primary productivity, water quality,
and eutrophication of aquatic environments [7,8]. An increase in chlorophyll levels can
mean an increase in algal biomass due to nutrient enrichment, which can lead to problems
such as harmful algal blooms and hypoxia [9,10]. Therefore, the study of algal pigments
is vital to monitor and understand the health and balance of aquatic ecosystems and to
design effective management strategies for their conservation and restoration [11,12].

Low chlorophyll-a (Chl-a) concentrations in lakes are characteristic of oligotrophic
systems, whereas higher concentrations are typical of mesotrophic and eutrophic sys-
tems [13–15]. This variation is closely related to nutrient availability: oligotrophic lakes
are low in nutrients, whereas mesotrophic and eutrophic lakes have higher nutrient lev-
els [16–18]. However, due to changing climatic conditions and the global increase in land
surface temperatures, the frequency and intensity of algal blooms have increased in lakes
and other aquatic systems [19–21]. This phenomenon is due to several factors, including
increased nutrient runoff from agricultural and urban areas, increased water temperature,
which favors algal growth, and increased thermal stability, which allows algae to bloom
for longer periods [22–24]. As a result, even lakes historically classified as oligotrophic
may now experience more frequent and severe algal blooms, raising concerns about water
quality and the health of aquatic ecosystems [25,26]. It is crucial to closely monitor these
changes and implement effective management measures to mitigate the adverse effects of
algal blooms on human health, aquatic biodiversity, and sustainable resource use [27].

In recent years, much progress has been made in the development of indices for the
detection of aquatic vegetation [28–33]. Numerous indices have been created and evaluated,
ranging from those adapted from agricultural and terrestrial vegetation applications to
combinations of spectral bands specifically designed to detect primary productivity in
aquatic environments [30,34–36]. Despite these advances, significant challenges remain.
Many indices do not perform optimally in aquatic ecosystems other than those for which
they were originally developed and validated [37]. This is because individual lake con-
ditions are influenced by a variety of factors, such as geographic, meteorological, and
physicochemical characteristics [38].

In Chile, several lakes have witnessed numerous episodes of algal blooms, the most
recent being Laguna Grande de San Pedro (bloom all year in 2023), Lake Laja (May 2023),
and Lake Villarrica during the summer months from 1993 to 2023–2024 where the bloom
continues until autumn, with records of species such as Microcystis aeruginosa and Dolichos-
permum sp., and Dolichospermum circinale, all belonging to the cyanophycean group [36,39].
In response to this problem, several studies have been carried out in recent years to detect
and predict water quality parameters and the occurrence of algal blooms in the lakes of
central-southern Chile [25,36,40,41]. In this context, the objective of our work is to create
and validate pigment estimation algorithms to detect the pigment phycocyanin, character-
istic of algal blooms of the cyanobacteria group, in Lake Villarrica. Therefore, it is crucial to
fill these gaps and develop more accurate and robust methods, adaptable to the diverse
conditions present in different aquatic ecosystems, integrating statistical regression tech-
niques with data from various sources, from in situ monitoring of water quality parameters
to data obtained from meteorological stations. Improving these methods will increase the
capacity to monitor and manage aquatic vegetation, contributing to the conservation and
sustainable management of these vital natural resources.

2. Materials and Methods
2.1. Lake Villarrica, Study Area

Lake Villarrica is located at 39◦18′ S south latitude and 72◦05′ west longitude in the
Araucanía Region (see Figure 1). It is one of the most important lakes in Chile, recognized
for its scenic beauty and its economic and tourist importance. However, due to multiple
anthropogenic impacts, the lake’s condition has changed from oligotrophic to mesotrophic,
which has led to the implementation of Decree N◦19/2013 of the Ministry of Environ-
ment, which establishes secondary environmental quality standards for the protection of
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the surface continental waters of Lake Villarrica as well as the Exempt Resolution SMA
N◦671/2016 which proposes and justifies the modification of the water quality monitoring
performed by the DGA in Lake Villarrica. In addition, algal bloom episodes have been
recorded in recent decades, with an increase in severity in recent years, likely exacerbated
by the effects of climate change [36].
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2.2. Collection of Data from Monitoring Campaigns 

Water quality parameters such as water temperature (C°), chlorophyll-a (µg/L); phy-
cocyanin (µg/L), turbidity (NTU), and dissolved oxygen (ppm) were obtained from mon-
itoring campaigns conducted by the Dirección General de Aguas de Chile (DGA) from 
1989 to 2024. The data collected at 7 monitoring stations as described in Rodríguez-López 
et al., 2023, cover the 4 seasons of the year from 1989 to 2009. After this date, probably due 
to limited resources, only the summer and spring seasons are measured until the present. 
The parameters monitored included surface temperature (measured using the standard 
thermometry method 2250 B, as given in the compendium NCh 2313), surface chloro-
phyll-a (Chl-a, measured using the fluorometric method), total phosphorus (determined 

Figure 1. (a) South America continent, (b) Chile in Latin America, (c) Region de la Araucanía and the
location of Lake Villarrica in the black box, (d) Lake Villarrica and seven sampling stations.

2.2. Collection of Data from Monitoring Campaigns

Water quality parameters such as water temperature (C◦), chlorophyll-a (µg/L); phy-
cocyanin (µg/L), turbidity (NTU), and dissolved oxygen (ppm) were obtained from mon-
itoring campaigns conducted by the Dirección General de Aguas de Chile (DGA) from
1989 to 2024. The data collected at 7 monitoring stations as described in Rodríguez-López
et al., 2023, cover the 4 seasons of the year from 1989 to 2009. After this date, probably due
to limited resources, only the summer and spring seasons are measured until the present.
The parameters monitored included surface temperature (measured using the standard
thermometry method 2250 B, as given in the compendium NCh 2313), surface chlorophyll-a
(Chl-a, measured using the fluorometric method), total phosphorus (determined using
the standard method 4500 P B, 22nd edition, EAM), total nitrogen (determined using the
standard method 4500-N C, 22nd edition, EAM), and water transparency (measured using
the Secchi disk depth, SDD). Water samples were collected at five different depths at each
station in the lake using a 5 L Niskin sampling bottle. Samples were stored and transported
to a sample collection center. Samples were stored and transported in thermally insulated
boxes, cooled with ice to maintain a temperature of approximately 5 ◦C, for subsequent
analysis. Chemical analyses were performed at the chemical laboratory of the Dirección
General de Aguas de Chile (DGA), accredited by the Instituto Nacional de Normalización
under Chilean Standard NCh ISO 17,025 of 2005.
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2.3. Data Processing

A methodology previously used in another Chilean aquatic system [36] was em-
ployed, in which rows with more than 80% of features with null values were removed
from the data set. The data treatment process began with the treatment of outliers, data
integrity analysis, and imputation of missing values. Several biogeochemical and phys-
ical variables were considered, such as chlorophyll-a (Chl-a), temperature (Temp), total
nitrogen (N), total phosphorus (P), phycocyanin (PC), dissolved oxygen (O_D), turbidity
(NTU), and dissolved organic matter (MOD). In addition, location variables (latitude and
longitude) and temporal variables (year, month, day and time) were included. Dummy
variables were created to link each measurement to its respective sampling station. In total,
4 covariates (independent variables) were used (Chl-a, Temp, O_D, and NTU) to predict
phycocyanin levels (the dependent variable). To determine the number of variables, we
used two criteria: First, linear correlation between covariates and the dependent variable
and second, results from stepwise regression, a method for selecting optimal predictors
which uses both backward and forward selection to mitigate multicollinearity [42] exam-
ining the entire range of potential models as defined by 2k − 1 (where k is the number of
predictors, in this case, 7 covariates and 126 potential models) using statistical criterion
Akaike Information Criterion (AIC) calculated for every possible model of each size [43].

Data cleaning was performed separately for each sampling station (La Poza and Litoral
Pucón).

The cleaning steps were as follows

1. Drop duplicate rows: Due to the nature of the data capture process, some rows are
duplicated across various years. Thus, we remove these duplicate rows to ensure
data integrity.

2. Elimination of non-numeric values: Non-numeric values of the selected variables
were replaced by null values.

3. Extract temporal data: The year, month, and day of each measurement were extracted
and checked for consistency and completeness.

4. Imputation of null values: A sensitive imputation for null values was applied using the
median, a robust measure of central tendency for each station and season considered.

5. Detection and capping of outliers: We used the Isolation Forest technique to detect
multivariate outliers in the data. This method utilizes recursive partitioning within
a tree structure to isolate samples that deviate from most of the data [44]. To fill the
outliers, we use the kNN imputer, a technique that locates the k nearest neighbors for
a missing datum from complete instances in a data set. It fills in the missing value
with the most frequent neighbor value if the feature is categorical (majority rule) or
with the mean if the feature is numerical [45].

6. Standardizing the numerical variables: The numerical variables (MOD, NTU, O_D,
PC, Temp, and Chl-a) were standardized using the PowerTransformer method [46].
This technique transforms the numerical variables to approximate them to a uniform
or Gaussian probability distribution [47].

2.4. Regression Estimation Models

To develop a set of empirical models, we used in situ measurements of Chl-a, phyco-
cyanin (PC), temperature (Temp), dissolved oxygen (DO), and turbidity (NTU) collected
during monitoring campaigns from 2021 to 2024. We tested a total of 27 − 1 = 127 different
models for the lake based on, first, the stepwise regression results (Section 2.3) and, second,
the best correlation between phycocyanin (F) and the other variables. The best correla-
tions were tested using linear (Lin) and multiparametric regression models defined in
Equations (1) and (2), respectively.

R =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2(Yi − Y
)2

(1)
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where:
n is the number of data points.
Xi and Yi are the individual sample points of variables.
X and Y are the mean values of X and Y.

Y = βo + β1X1 + β2X2 + · · ·+ βpXp + ε (2)

where:
Y is the dependent variable (PC).
βo is the intercept, representing the expected value of Y when there are no effects

from covariates.
βi(i = 1, 2, . . . , p) are the regression coefficients corresponding to the independent

variables Xi.
Xi(i = 1, 2, . . . , p) are the independent variables of predictors (Section 2,3).
ε is the error term.
Additionally, we used the mean squared error (MSE) metric to assess the adequacy of

the models.
For the estimation of coefficients from Equation (2), we used the ordinary least squares

(OLS) method (Equation (3)) which minimizes the sum of squares error (SSE, Equation (4)).

β̂ =
(

XTX
)−1

XTY (3)

where:
β̂ are the estimated coefficients.
X is the design matrix of independent variables including the intercept.
Y is the vector of observed values.

SSE =
n

∑
i=1

(
Yi − Ŷi

)2 (4)

We select this method over others such as partial least squares, weighted least squares,
ridge, and lasso regression for the following reasons:

1. Linear relationship: There is a linear correlation between the dependent variable (PC)
and covariates like Chl-a.

2. Gauss–Markov Theorem: Ordinary least squares (OLS) satisfies the criteria of being
the best linear unbiased estimator (BLUE). It has the smallest variance among all
linear unbiased estimators, being linear in its parameters, and unbiased with expected
values equal to true parameter values.

3. Interpretability: Coefficients from the OLS model are easy to interpret.
4. Simplicity: OLS satisfies the principle of parsimony, which is beneficial for model simplicity.
5. Robustness and sufficient sample size: We have a sufficient sample size of at least

40 samples per station (Table 1) and season across years, meeting the requirements of
the Central Limit Theorem.

6. Non-high dimensionality: With only 7 potential predictors, regularization methods
are unnecessary.

7. Robustness to outliers: We implemented robust techniques such as Isolation Forest
and kNN for outlier detection and outliers’ imputation (see Section 2.3), reducing the
need for methods like Huber regression.

The quality of the model fit was evaluated using the sample Pearson correlation
coefficient (r) and the coefficient of determination (R2). Additionally, we used the Akaike
Information Criteria (AIC, Equation (5)) in the stepwise regression procedure to rank the
best models.

AIC = n ∗ ln
(

SSE
n

)
+ 2K (5)
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where:
n is the number of data points.
SSE is the sum of squares error defined in Equation (4).
K is the number of parameters.

Table 1. Number of samples per each station and season used in this study.

STATION SEASON SAMPLES

LA POZA

Spring 125
Summer 74
Winter 62
Autumn 96

PUCON

Spring 158
Summer 145
Winter 32
Autumn 161

2.5. Sampling of the Algal Community

Phytoplankton monitoring was carried out on the ground at the expense of the General
Directorate of Water, for which quantitative phytoplankton samples (N = 134) were collected
in 500 mL bottles with a “Van Dorn” bottle at different depths and at the surface level in
some effluents and tributaries of the system. Qualitative sampling was carried out, which
consisted of trawling with a 60-micron phytoplankton net at each sampling station of the
lake. Each sample was stored in 500 mL plastic bottles, duly labeled, and kept cool at 4 ◦C,
subsequently preserved with 1% Lugol solution until observed.

To identify the species of microalgae present in the water samples, a qualitative analysis
was carried out, through observation under a Carl Zeiss Axioskop microscope (Carl Zeiss
AG, based in Oberkochen, Germany) with the 40× objective, making an inventory of all
the taxa present. The samples were analyzed by experts in continental water microalgae
from the Phytoplankton and Phytobenthic Laboratory of the EULA Center.

3. Results
3.1. Water Quality Behavior During Period 2021–2024

We carried out a study on the behavior of the parameters Ch-a, turbidity, water
temperature, dissolved oxygen and dissolved organic matter, and phycocyanin during the
period 2021–2024 as shown in Figure 2. We observed that Chl-a values increased in the
autumn season until reaching 13.81 µg/L, while phycocyanin ranged between 0.17 and
4.75 µg/L in the summer, being the highest values reported (for more details, review the
supporting information Tables S1–S4). On the other hand, the temperature in the last period
(4 years) has slightly increased its average; however, the maximum values of 22.27 ◦C are
being reached in the summer months coinciding with the maximums of the pigments Chl-a
and PC specifically in the month of February, allowing the favorable conditions for carrying
out photosynthesis of primary producers to reach a greater temporality in the year.

3.2. Analysis of Correlation Between Quality Parameters

Figure 3 depicts the correlation matrix between the dependent variable, phycocyanin
pigment (PC), and the covariates. The matrix reveals a proportional increase for Chl-a,
NTU, and Temp, with Chl-a showing the highest correlation coefficient (0.43) among
all covariates. Conversely, O_D and MOD display inverse relationships with PC, with
correlation coefficients ranging from −0.16 to −0.21. These associations support the general
variability conditions between these variables as suggested by [48]. The associated p-values
are seen in Figure S1.
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3.3. Estimation Models

With the best correlation found in in situ variables, we develop a seasonal estimation
model for phycocyanin pigment.

Based on these results and the output from the stepwise regression technique, we have
selected the following models as the most suitable for estimating PC, based on the best AIC
values for each season considered.

Case 1: PC ~ f(Chla) (−237 < AIC < 234).
Case 2: PC ~ f(Chla+Temp) (−280 < AIC < 288).
Case 3: PC ~ f(Chla+Temp+NTU) (−544 < AIC < 243).
Case 4: PC ~ f(Chla+Temp+NTU+MOD) (−690 < AIC < 245).
O_D was excluded because including this regressor resulted in an approximately 30%

increase in AIC values across all seasons considered.
The results from the best models detailed in Section 3.2 are described below.

3.3.1. Case 1: PC ~ f(Chl-a) (−237 < AIC < 234)

In this case, the determination coefficients range between 0.51 and 0.83, with autumn
showing the best performance. Additionally, the MSE metrics range from 0.02 µg/L to
1.21 µg/L, with higher values observed in summer (Table 2). The coefficient for the Chl-a
estimator is consistently positive across all seasons. Specifically, similar values are observed
for spring and autumn (0.036 µg/L and 0.031 µg/L, respectively), while approximately ten
times higher values are noted in summer and winter (0.256 and 0.305 µg/L, respectively).
These results indicate a positive linear correlation between PC and Chl-a, consistent with
the correlation coefficient of 0.43 observed in Figure 3.

Table 2. Linear regression models for estimating phycocyanin pigment. Each column displays the
MSE and R2 for each season, along with the model’s equation in each row. Chl-a used as covariable.

SEASON EQUATION MSE (µG/L) R2 p-Value

SPRING Y = 0.036 × Chl-a + 0.037 0.03 0.51 3.18 × 10−24

SUMMER Y = 0.256 × Chl-a − 0.285 1.21 0.63 6.45 × 10−25

AUTUMN Y = 0.031 × Chl-a − 0.0024 0.23 0.83 2.41 × 10−42

WINTER Y = 0.305 × Chl-a − 0.3598 0.02 0.62 7.44 × 10−44

3.3.2. Case 2: PC ~ f(Chl-a+Temp) (−280 < AIC < 288)

In this scenario, including an additional variable alongside Chl-a leads to higher
correlation coefficients and consequently higher determination coefficients, given the
nature of R2 as a monotonic estimator [49]. Comparing the coefficients for Chl-a reveals
similarities to those obtained in Case 1 (Table 3).

Table 3. Linear regression models for estimating phycocyanin pigment. Each column displays the
MSE and R2 for each season, along with the model’s equation in each row. Chl-a and Temp used
as covariables.

SEASON EQUATION MSE (µG/L) R2 p-Value

SPRING y = 0.040 × Chl-a − 0.011 × Temp + 0.165 0.03 0.52 4.29 × 10−24

SUMMER y = 0.240 × Chl-a − 0.150 × Temp + 2.847 1.09 0.67 2.05 × 10−26

AUTUMN y = 0.032 × Chl-a + 0.009 × Temp − 0.155 0.08 0.82 3.64 × 10−41

WINTER y = 0.247 × Chl-a + 0.048 × Temp − 0.783 0.04 0.65 3.72 × 10−52

For temperature (Temp), we observe an inverse relationship with PC during spring and
summer, with the strongest negative correlation observed in summer (−0.150). Conversely,
during autumn and winter, the relationship appears to be positive but with lower intensity
as indicated by smaller magnitude values (<0.048).
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3.3.3. Case 3: PC ~ f(Chl-a+Temp+NTU) (−544 < AIC < 243)

In this case, the coefficients for Chl-a and Temp are similar to those obtained in
Cases 1 and 2, indicating consistency in their relationships. Another significant finding is
that turbidity (NTU) exhibits a positive relationship with PC across all seasons, with higher
values observed in summer and autumn (up to 0.354).

The R2 values are consistently higher compared to the first two cases explored, as
expected, and the MSE is lower for all seasons compared to the previous two cases (Table 4).

Table 4. Linear regression models for estimating phycocyanin pigment. Each column displays the
MSE and R2 for each season, along with the model’s equation in each row. Chl-a, Temp, and NTU
used as covariables.

SEASON EQUATION MSE (µG/L) R2 p-Value

SPRING y = 0.037 × Chl-a − 0.018 × Temp + 0.005 × NTU + 0.250 0.03 0.53 3.99 × 10−29

SUMMER y = 0.201 × Chl-a − 0.143 × Temp + 0.354 × NTU + 2.421 0.74 0.78 3.62 × 10−27

AUTUMN y = 0.020 × Chl-a + 0.007 × Temp + 0.174 × NTU − 0.231 0.04 0.90 3.64 × 10−41

WINTER y = 0.101 × Chl-a − 0.014 × Temp + 0.046 × NTU + 0.037 0.02 0.78 2.04 × 10−107

3.3.4. Case 4: PC~ f(Chla+Temp+NTU+MOD) (−690 < AIC < 245)

In this final case, considering Chl-a, Temp, NTU, and MOD, we observe a proportional
increase between MOD and PC during summer and autumn. In spring and winter, there
appears to be an inverse relationship, albeit less clearly defined with coefficients <|0.1|.
All R2 and MSE metrics show slight improvements compared to those obtained in Case 3.
See Table 5 for more details.

Table 5. Linear regression models for estimating phycocyanin pigment. Each column displays the
MSE and R2 for each season, along with the model’s equation in each row. Chl-a, Temp, NTU, and
MOD used as covariables.

SEASON EQUATION MSE (µg/L) R2 p-Value

SPRING y = 0.032 × Chl-a − 0.035 × Temp + 0.006 × NTU −0.064 × MOD + 0.619 0.02 0.55 4.73 × 10−37

SUMMER y = 0.205 × Chl-a − 0.137 × Temp + 0.364 × NTU + 0.424 × MOD + 1.769 0.63 0.81 1.55 × 10−26

AUTUMN y = 0.020 × Chl-a + 0.007 × Temp + 0.174 × NTU + 0.040 × MOD − 0.244 0.04 0.91 6.55 × 10−49

WINTER y = 0.101 × Chl-a − 0.014 × Temp + 0.046 × NTU − 0.075 × MOD + 0.629 0.02 0.79 5.92 × 10−138

3.4. Metrics Assessment

We used the results from Section 3.3 to create a final assessment between the different
models evaluated (Figure 4). The time series plot (left column) illustrates the predicted
values generated by each model equation, whilst the R2 scores (top right) and mean
squared errors (bottom right) provide a quantitative comparison of model performance.
Notably, Model 4, which incorporates the largest number of regressors, emerges as the
top-performing model. This outcome is consistent with mathematical principles, which
suggest that a model with a greater number of regressors is likely to provide a better fit to
the data.

3.5. Specific Composition and Relative Abundance of the Phytoplankton Community

The phytoplankton community in Lake Villarrica is composed of 7 Phyla, 10 classes,
34 genera, and 53 species, of which 23 spp. They were diatoms of the classes Bacillario-
phyceae (S = 19 spp.), Coscinodiscophyceae (S = 3 spp.), and Mediophyceae (S = 1); 16 spp.
green algae of the classes Chlorophyceae (S = 4), Zygnematophyceae (S = 9 spp.), Treboux-
iophyceae (S = 2 spp.), Klebsormidiophyceae (S = 1), 4 cyanobacteria, 7 spp. dinoflagellates,
and 3 spp. Cryptophyceae (see Figure 5).
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Figure 5. Phytoplankton community present in Lake Villarica and their abundance according to
depth over 2021–2024.

The pennate and centric diatoms (Bacillariophyceae 54% and Coscinodiscophyceae
19%) represented the highest abundance in the community. The most abundant species
were the pennate diatom Fragilaria crotonensis and the centric Aulacoseira granulata. The
cyanobacterium Dolichospermum lemmermannii was also abundant (10%) (see Figure 6).

The dinoflagellate, an invasive species Ceratium, was recorded in 88% of the samples
analyzed, presenting an abundance that varied between 50,266 Cell/L in spring 2021 at the
surface level of the Litoral Pucon sector (see Table 6).
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Table 6. Comparison of the phytoplankton community in Lake Villarrica. Adapted from DGA 2023.

DGA
MONITOR

YEAR

SEA-
SON

NUMBER OF
SAMP-

LES

NUMBER OF
CLASS (%)

NUMBER OF
SPECIES

SPECIES MORE
ABUNDANT

MAX.
ABUNDANT

CYANOPHYCEAN

MAX.
ABUNDANT

OF
CERATIUM

2018–2020 100 Bacillariophy-
ceae (40%) 63

Diatoms: Fragilaria
crotonensis.

Cyanobacteria:
Dolichospermum

planctonicum, Green
algae: Mucidosphaerium

pulchellum.

692.799 Cell/L
Aphanocapsa

incerta
129.495 Cell/L

2020–2021 72 Bacillariophy-
ceae (93%) 101

Diatoms: Fragilaria
crotonensis and

Aulacoseira granulata
Dinoflagellate:

Ceratium hirundinella

219.912
Filaments/L
Dolichosper-

mum
lemmermanii

72.517 Cell/L

2021–2022 120 Bacillariophy-
ceae (54%) 54

Diatoms: Fragilaria
crotonensis and

Aulacoseira granulata
Cyanobacteria:
Dolicospermum

lemmermanii

1.021.020
Cell/L

Dolicospermum
lemmermanii

50.266 Cell/L

4. Discussion

The development and evolution of algal blooms in lakes is determined by a complex
combination of chemical, physical, and biological factors. Chemical factors include the
concentration of nutrients such as nitrogen and phosphorus, which are essential for algal
growth. Physical factors include aspects such as water temperature, available sunlight, and
thermal stratification of the lake. Biological factors include the presence and abundance of
other aquatic species that may compete with algae or, in some cases, favor their proliferation.
Finally, meteorological factors, such as precipitation, winds, and seasonal variations, also
play a crucial role in the dynamics of algal blooms. The interaction of all these elements
determines the frequency, intensity, and duration of these phenomena, which can have
important ecological and public health implications.
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Not all algal blooms are toxic, so the study of algal pigments makes it possible to
identify the species that perform the bloom and determine to which group of algae they
belong. Algal pigments act as specific markers that facilitate this identification. The most
frequent group that forms toxic blooms are cyanobacteria, also known as blue-green algae.
These are characterized by pigments such as chlorophyll-a (Chl-a), common to all algae,
and other characteristic pigments such as phycocyanin, which is unique to this group.
The analysis of these pigments is essential for the management and monitoring of algal
blooms, as it allows predicting and mitigating possible negative impacts on the environment
and human health. In addition, understanding the conditions that favor the growth of
cyanobacteria can help develop more effective prevention and control strategies.

For this reason, in this first preliminary work, we used four seasonal linear regression
models developed by us, using a set of water quality variables that explain the behavior of
phycocyanin pigment in Lake Villarrica. In the first case, we related chlorophyll-a (Chl-a)
to phycocyanin, expecting to find a direct relationship between both variables, but this
was not fulfilled for all seasons of the year. In Case 2, in addition to Chl-a, we included
water temperature, since this parameter has a great influence on the algal photosynthesis
process, and we obtained better results. We discovered a typical seasonal variability given
by temperature fluctuations in Lake Villarrica, where in the spring, summer, and autumn
seasons, conditions are favorable for algal blooms, while in winter, the natural seasonal
conditions do not allow increases in algal productivity. For a third case, we included the
turbidity variable along with the variables mentioned above and the statistical performance
metrics of the models improved significantly, obtaining R2 values up to 0.90 in the case of
the fall model and a mean squared error (MSE) of 0.04 µg/L. In the last case used, we added
the variable MOD, and the models showed a slight improvement in their performance. Our
results are consistent with the work of [48], where through machine learning models they
estimated phycocyanin in a reservoir in Brazil.

This methodological approach allowed us to better identify and quantify the factors
influencing phycocyanin dynamics in the lake, which is crucial for effective management
and monitoring of algal blooms. The results obtained indicate that the incorporation of
multiple environmental variables and their seasonal analysis provide a more accurate
and detailed understanding of the processes affecting cyanobacterial proliferation, thus
allowing us to develop more informed and effective management strategies.

By analyzing the algal community of Lake Villarrica through samples taken in situ in
the field, we were able to verify through the results of the identification of major algal groups
and species that the most abundant group in the lake are the Bacillariophyceae (9 species)
followed by the group of green algae including Charophyta and Cyanophycean. In addition,
we found invasive species such as Ceratium and many bloom-forming cyanobacteria such
as Dolichospermum sp.

In our future work, we plan to incorporate additional variables derived from satellite
sources. This expansion will allow us to improve the interpretation of the temporal evolu-
tion of algae and more effectively analyze spatial differences within the lake. By integrating
these supplemental data sources, we aim to achieve a more complete understanding of
algal population dynamics over time and across regions of the lake. This approach will
allow us to better monitor and manage the ecological health of the lake, providing valuable
insights into the factors influencing algal growth and distribution.

5. Conclusions

The study of algal pigments is useful for understanding algal dynamics in aquatic
systems. We build models for estimating algal pigments (phycocyanin) for different seasons
of the year through a set of in situ data taken in Lake Villarrica in southern Chile for the
period 2021–2024. We tested a total of 27 − 1 = 127 different models for the lake based,
firstly, on the stepwise regression results and, secondly, on the best correlation between
phycocyanin (PC) and the other variables. The best correlations were tested using linear
(Lin) and multiparametric regression models. We separated them into 4 cases according
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to the importance weights of each variable and how, through their relationships with
phycocyanin, the models performed best. We found that the model of Case 3 where the
chlorophyll-a, temperature, and turbidity variables were incorporated presented better met-
rics and precision in the estimation of the study variable (R2 = 0.90 and MSE = 0.04 µg/L).
We will continue in future work to improve the accuracy of our models and understanding
of algal blooms, in addition to incorporating other data sources such as meteorological and
satellite data.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/w16243708/s1, Table S1: Monthly average behavior of limnological
variables for the year 2021, Table S2: Monthly average behavior of limnological variables for the
year 2022, Table S3: Monthly average behavior of limnological variables for the year 2023, and
Table S4: Monthly average behavior of limnological variables for the year 2024. Figure S1: Correlation
matrix between the predictors (NTU, Temp, O_D, Chl-a, MOD) and the dependent variable (PC)
(Sections 2.3 and 2.4) and p-values.
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