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A B S T R A C T

Sorghum genotypes vary in their response to higher sowing density, but the traits explaining these variations are 
unknown. In the present study, a 3D-imaging based approach identified the phenotypic traits responsible for the 
genetic variation in sorghum’s response to high sowing density. Twenty sorghum genotypes, some varying in 
their response to density, were grown and 3D-images were collected weekly between weeks 4–6. From these 
images, 80 phenotypic traits, including 33 architectural and 47 multispectral, were extracted. The within- 
genotype means of these 80 traits, and two indicators of the sowing density response (Biomass ratio (Br) and 
Transpiration ratio (Tr)), measured in a previous study with 13 common genotypes, were used in a Spearman 
correlation analysis. Seventeen and four traits were strongly correlated with Br and Tr, respectively. The majority 
of these traits, predominantly architectural, strongly suggest that, under high sowing density, a fuller light 
interception, having more leaf area in the lower canopy, lead to a larger Br, while more vertically aligned leaves 
favour larger Tr values, which related to higher water use efficiency in another study. Furthermore, a Principal 
Component Analysis (PCA) indicated traits contributing to better photosynthesis could be used to estimate Br. 
Similarly, a combination of traits relating to leaf angle were good indicators of the genetic variation in Tr values. 
These results provide insights about the strategies some sorghum genotypes have developed to thrive under 
higher sowing density and that could be used as biomarkers for the breeding of density-resistant cultivars.

1. Introduction

The unprecedented drastic changes, e.g., frequent extreme weather 
events, rapidly growing population, and consumption needs on both the 
global and local scales, have imposed an enormous strain on food supply 
security in developing countries. To cope with such a challenge, 
increasing yields of staple crops such as sorghum, which feeds 500 
million people in 30 countries (mostly in underdeveloped regions), is 
needed [1,2]. Sorghum is often cultivated in poor soils and at low 
sowing density, a hurdle to be overcome to increase its productivity with 
limited resources. Certain sorghum genotypes respond positively to an 
increase in sowing density, but not all, especially under conditions of 
high evaporative demand [3]. These promising results show that it is 
possible to increase the productivity of sorghum with existing cultivars, 

and that the genotypic variability in its response to density opens the 
possibility to breed novel cultivars more adapted to high density stands.

The genotypic variations in density response could be attributed to 
differences in canopy architecture traits, such as leaf area and leaf angle 
[4–6]. The leaf area of a plant determines the surface availability to 
intercept light and consequently impacts yield [5]. The leaf angle or the 
orientation of leaves across the canopy affects how light is distributed 
across leaves that are positioned at different heights; hence it affects the 
ability of light interception of a plant. For instance, studies have shown 
that vertically aligned leaves allow light to penetrate deeper into the 
canopy, which might theoretically lead to an increase in photosynthetic 
activities and yields [4,7–10]. Furthermore, a recent research in maize 
has revealed that the leaf area distribution along the vertical axis has 
been indirectly selected in the past 65 years and has favoured a deeper 
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light distribution in the canopy, leading to a higher light interception 
[11]. This might also explain that the planting density of maize has 
increased three-fold over the last century. However, the latter studies 
were either theoretical studies and/or simulations of the effect of these 
traits on photosynthetic activity or light interception using virtual can
opies. For example, there was variation in leaf angle among maize ge
notypes, and those with upright leaf angle where better able to intercept 
radiation [9]. While the variation in angles was physically measured, its 
effect on light interception was assessed from a virtual canopy. In 
addition, these studies (except [10]) have not been followed by 
field-based experimentation to test the value of these architectural trait 
differences.

Genotypic variations in the degree of response to an increased 
sowing density have been found in sorghum [3] in a small panel of 
cultivars. Several traits have been suggested in other species that could 
explain the propensity to respond positively to an increase in sowing 
density, on the basis of simulations. A larger screening of potential donor 
parents in sorghum and a better understanding of physiological traits 
responsible for this response is necessary. However, the link between a 
positive response to density in the field and physiological traits 
explaining this response has not been established in sorghum. Indeed, 
earlier work in sorghum [10] only showed evidence of a better light 
interception in virtual canopies and between two genotypes contrasting 
in their leaf inclination angles, and no test on the response to planting 
density has been done. In addition, earlier work in sorghum has only 
focused on leaf angle [10], whereas other traits have been identified in 
other species, like the leaf distribution along the vertical axis in maize 
[11]. Therefore, a systematic and comprehensive search of the pheno
typic features that are tightly correlated to differences in density re
sponses among genotypes is necessary. Part of the reason why this has 
not been done in the past is that traits responsible for a positive response 
to density are traits that deal with light distribution in the canopy. These 
architectural traits, operating in the 3-dimensional (3D) space are hard 
to measure consistently. This is where sensor-based phenotyping, which 
has the advantage of generating a large number of (complex) traits 
within a short period of time, is considered as the suitable tool for such 
task [12–17].

The use of sensor-based approach to extract traits related to plant 
growth, development, yield and tolerance to biotic and abiotic stresses 
has become a promising asset for breeding [14,18–24]. There are 
various types of sensor-based plant phenotyping and the majority of the 
reported methods are quantification of morphological, architecture, 
texture and colour-based traits from 2D images [20,23,24,25–27]. 
2D-imaging has difficulties providing reliable and sufficient information 
of 3D structures of plants, e.g. self-occlusion and curvature of stem and 
leaves, because of parallax and information loss when projecting 3D 
structures onto a 2D plane. For instance, the internode distance of 
curved plants cannot be accurately estimated from sequences of 2D 
images using multiple viewing-angles, because the curvature of the stem 
between two nodes is difficult to be quantified in 2D space [24].

A relatively novel type is based on 3D-imaging, which has the 
advantage of obviating those difficulties and capturing the 3D structures 
of plants, which enables an accurate estimation of traits and thus facil
itates reliable analysis. In this study, a 3D scanner, referred to as Plan
tEye from Phenospex.BV, was used to generate data of plants including 
both multispectral and structural traits. Those traits together gave an 
accurate and comprehensive representative of a plant. Furthermore, 3D 
images have the advantage of allowing realistic estimations of structural 
traits. For instance, leaf area derived from 3D images was calculated 
taking the curvature of leaves into account, which was often overlooked 
in 2D-image based methods due to its 2D nature [25].

However, a missing step here is to have a real-world assessment to 
test if any of these traits could be related to field-based difference in crop 
performance, and this is a big gap in many of the reported studies that 
rely on modelling. In our case, while a first step was to develop the 
capacity to phenotype for a series of diverse traits that represent the 3D 

architecture of a crop canopy, the next step was to test whether any of 
these traits correlates with assessment of the density response in the real 
world. Therefore, the innovation we propose in this work is to take the 
technical advantage of 3D-imaging to help us decipher and identify the 
traits involved in the 3D architecture of plants. Having seen above the 
importance of planting density to boost sorghum productivity, we would 
then like to test the putative link between these 3D traits and the pro
pensity of a genotype to respond to an increase in the sowing density. 
Here, two biological traits of importance for plant productivity under 
high density were targeted: (i) the ratio of the biomass under high 
density to that under low density (i.e. biomass ratio, Br), which mea
sures the capacity to respond positively to an increase planting density 
[3]; (ii) the capacity to increase canopy transpiration under high evap
orative demand [28]. Regarding this second trait, it has been recently 

Table 1 
Description of correlated traits with Br and Tr from Test 3, along with their 
category (canopy or spectral type) and brief descriptions.

Traits names Cate- 
gory

Corre- 
lation

Brief description

voxel_ratio_’n’ canopy Br The percentage of voxel volume of 
the nth section from the top (out of 
ten sections) over the total voxel 
volume. This voxel ratio then 
expresses the distribution of voxels 
(unit elements of the leaf area) in 
the vertical axis

hull_coverage (%) canopy Br The hull being the projected 
contour of the plant on the ground, 
and the hull area the area of that 
shape, the percentage of the hull 
area occupied by the plant’s 2D 
projection represents the 
proportion of the plant’s 
projection that is covered by its 
leaves. A large value indicates less 
overlapped leaves and/or more 
upright leaves along the stem

voxel_kurtosis canopy Br The distribution of the leaves along 
the plant’s stem, which is 
calculated by the kurtosis of voxel 
volume distribution. A large 
kurtosis value indicates voxels are 
not uniformly distributed along the 
vertical axis, for instance a plant 
with a relative large proportion of 
the voxels in the bottom part along 
the vertical axis

lightness_adj canopy Br The depth of light penetration is 
measured as the difference 
between the heights of the top and 
bottom voxels detected by the 
scanner and divided by the plant 
height

average_surface_angle canopy Tr Represents the average angle of the 
triangles relative to the vertical 
axis. It is calculated as the 
weighted average of all angles 
formed by the normals of every 
face in the plant mesh. A high 
value reflects plants with more 
prostrated leaves whereas a small 
value reflects more erected leaves

leaf_inclination canopy Tr The average orientation of a 
plant’s leaves, indicating how 
upright or angled they are. It is 
calculated by dividing the plant’s 
total leaf area by the projected leaf 
area

hull_packed canopy Tr The percentage of hull area within 
its circumference

psri_[-inf:− 1] Spectral Tr The percentage of 3D points in a 
specific PSRI range compared to 
the total number of 3D points
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shown that sorghum genotypes that most increased productivity under 
high density also increased water use efficiency (WUE, i.e. bio
mass/water transpired) [3]. In addition, it was shown that in conditions 
of high evaporative demand, sorghum genotypes with highest WUE 
were those displaying the strongest transpiration response to an increase 
in the evaporative demand [3,28]. Hence, the second biological trait we 
target is also inherently related to the capacity of genotypes to respond 
to high sowing density.

Therefore, the present study aims at 1) identifying traits that can be 
correlated to sorghum’s known responses to sowing density and tran
spiration under high evaporative demand and 2) investigating the 
feasibility of using a combination of these traits to distinguish genotypes 
of various levels of density response. The authors hope to bring more 
biological insights about how some sorghum genotypes thrive under a 
high sowing density environment, via the manipulation of certain 
phenotypic features. These insights can potentially pave a path for 
breeding high density-adapted cultivars.

2. Materials and methods

2.1. Experiment settings and procedure

480 plants from 20 genotypes of sorghum (24 plants per genotype) 
were grown in individual 7 L pots (1 seed per pot). The plants were 
positioned in a 2D-coordinate system with 10 columns and 48 rows, and 
they were labelled using integers from 1 to 480 (the list of genotypes 
used for each plant can be found in the Suppl. Table 1).

Each 2 rows formed a block. The blocks were marked in a number 
sequence from 1 to 24. Every block contained 20 plants (1 per genotype) 
and the locations of these plants within the block were randomized. The 
glasshouse was divided into 4 units based on the geographic layout, i.e. 
all units were separated from each other by existing pathways in the 
greenhouse. Every unit consisted of 6 blocks except unit 4 that contained 
4 blocks. The 18 blocks in the first 3 units were used for data analysis 
and the 4 blocks in unit 4 were designed as backup. The back up plants 
were only used to replace abnormal ones from non-backup blocks (unit 
1—3). The replacement befell within genotype, while a plant from non- 
backup blocks showed visible abnormal signs, e.g., discoloured, or pale 
leaves from possible growth defect. A substitute plant should comply 
with 2 criteria: 1) same genotype as the original plant and 2) comparable 

phenotypic appearance with the original plant, e.g., number of tillers 
and leaves. The arrangement of the plants can be seen in Fig. 1.

The plants grew for 3 weeks, from 13th February to 6th March 2023 
in a glasshouse of the Institute of Research for Development (IRD) in 
Montpellier, France. Afterwards, the 3D scanning and manual mea
surement started, which took place once per week between 13th and 
27th March 2023 in 3 consecutive tests, namely test 1, 2 and 3.

2.2. Manual measurements

Manual measurements included: 1) numbers of visible collars and 2) 
node height. A visible collar was defined as a light-coloured scar on the 
stem where leaves emerged [24]. The distance between soil surface and 
a visible collar was referred to as node height. The numbers of visible 
collars of each plant were manually measured and recorded. The main 
purpose of the manual measurements was to anchor a scanning date to 
temperature-related number of collars and corresponding node height 
rather than to a calendar date.

2.3. 3D image acquisition

3D images of plants were captured using a 3D-scanner, PlantEye 
F500 (Phenospex B.V.), which has a span of 80 × 194 cm. That span 
allowed plants to be scanned in pairs, with high resolution scans and no 
overlap between plants and no leaf falling out of range. Plants were 
scanned following the order based on their labels. For instance, plants 
labelled as 5 and 6 were scanned at the same time.

2.4. Data pre-processing

3D raw images were inspected visually first and then processed to 
generate 63 default quantitative traits, using the in-house software from 
PlantEye F500. Afterwards, 17 additional traits, related to 3D canopy 
architecture, were also designed, coded, and extracted from the raw 
image data. In total, 80 features (33 canopy and 47 multispectral traits) 
were derived from every 3D plant image weekly and their description 
can be found in the supplemental document (Suppl. Table 2).

Features acquired from both manual measurements and 3D data 
were analysed statistically (e.g., statistical description, box and whisker 
plot, histogram) to evaluate genotypic variation and phenotypic ranges 

Fig. 1. Left: Illustration of blocks and units; Right: The arrangement of plants in a block using block 1 as an example.
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for each trait. A plant with 1 or more traits beyond whiskers in the 
boxplots was considered as a potential outlier, which was further eval
uated and removed, if justified from the evaluation. The block scheme of 
data pre-processing is depicted in Fig. 2.

2.5. Description of the indicators of the density response

Biomass Ratio (Br) and Transpiration Ratio (Tr) were acquired from 
a reported study (Chapter 3.1 in Pilloni, 2022) – and these values are 
used here in the correlation analysis (Section 2.6 below) - aiming at 
identifying genotypic variation in the response of sorghum genotypes to 
an increase in planting density. In short, in this earlier work plants were 
cultivated until maturity in an outdoors condition lysimeter platform at 
the Bambey station in Senegal, so that there was no control over the 
temperature, relative humidity and solar radiation. Lysimeters are tubes 
of 25 cm diameter and 1.5 m length, filled with a sandy soil from the 
station. They were set up in trenches to avoid direct solar radiation and 
heating of the tubes, and put next to one another at a density of 8 tubes 
m-2, so that plants grown in these lysimeters would rapidly form a crop 
canopy and mimic a real field environment [29,30]. The trial included 
25 genotypes, 13 in common with the current work. Two density 
treatments were applied, either 8 or 16 plant m-2. This work was set in 
the broader context of attempts to intensify the production of important 
staple grains like sorghum, by increasing its planting density, with very 
promising results [3]. The first of these density treatments correspond to 
the one currently used in experimental trials and the second one was 
hypothesized to boost biomass production. In the high density treat
ment, one replication consisted of four tubes planted each with one plant 
per tube. In the low density treatment, one replication consisted of four 
tubes also, with only two tubes with one plant per tube, the two other 

tubes remaining empty. Each genotype was replicated four times. 
Transpiration was measured in the lysimeters by weekly weighings of 
lysimeters, transpiration being the weight difference between two 
weighings plus water added in between weighings. After harvest, water 
use efficiency (WUE) was calculated as the ratio of the aboveground 
biomass divided by the cumulated transpiration.

In this work, the biomass ratio (Br) was calculated as:
Br = biomass in high density / biomass in low density
This ratio was a proxy to assess the propensity of a given genotype to 

respond to higher sowing density, with high Br ratio values reflecting 
large biomass increases under high density relative to that in low den
sity. Details are available in ([28], Chapter 3.1).

Then, the transpiration response slope (Tr) was defined as the slope 
of the regression line that fitted the response of plant’s transpiration to 
an increase in the evaporative demand. The latter was measured by the 
Penman-Monteith equation (ETref) [31,32] which is a meteorologic 
variable whose main factors are solar radiation, temperature, relative 
humidity (%) and wind. High ETref lead to high transpiration values. 
Transpiration values were obtained from the weighing of the lysimeters 
(see above), and were plotted against the cumulated ETref for each 
corresponding window. Transpiration response slopes (Tr) were then 
obtained from linear models fitting these scatter diagrams. Our interest 
in Tr and its linkage to the density response came from the following two 
major findings in Pilloni’s work [28]: (i) Genotypes with high transpi
ration response slope values had higher water use efficiency (WUE, i.e. 
biomass/water transpired) in sorghum under high evaporative demand 
[28]; (ii) Genotypes showing the largest biomass response to a high 
sowing density were also those showing the largest WUE increase under 
high density, both in pearl millet [33] and sorghum [3], under high 
evaporative demand. So that the Tr trait was a physiological trait that 

Fig. 2. Block scheme of data pre-processing. The boxplot of leaf area [mm2] distribution in test 3 from each genotype is displayed as an example, and potential 
outliers detected, e.g., circled, are further evaluated to determine whether or not they should be removed from data analysis.
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was positively and indirectly related to the response to density, via its 
effect on WUE. Therefore, both Tr and Br were used as indicators to 
reflect the propensity for a positive response to an increased sowing 
density. We used the mean values of the Br ratio and of the Tr slopes 
from Pilloni’s work [28], for those genotypes (13) that were common 
with the present work, in the Spearman correlation described thereafter.

2.6. Identification 3D traits correlated to sowing density response 
indicators

Following data pre-processing, a Spearman correlation test was 
performed to evaluate the monotonic relationship between each trait 
generated from 3D plant images with the two density indicators 
described above.

The within-genotype averages of all traits measured by the F500 
scanner, along with Tr and Br, from selected genotypes (13 in common 
between the current study and the previous from Vadez et al. [28]) were 
used in this Spearman test and the subsequent data analysis. Features 
were screened based on the statistical significance testing of Spearman 
correlation (α = 0.05). The strength of the correlation is determined by 
correlation coefficient and the further away the coefficient value from 0, 
the stronger the correlation is. After the test, the features with strong 
correlations with Br or Tr (Spearman correlation coefficient r > 0.7), as 
well as p values lower than α, were used for the subsequent PCA analysis.

2.7. Genotype discrimination

The features strongly correlated to Tr and Br were further evaluated 
using Principal Component Analysis (PCA), to explore the possibility of 
distinguishing genotypes with low and high Tr or Br responses, by using 
a combination of those selected traits.

The traits that had the most impact on Principal Component 1 (PC1) 
and PC2 were further evaluated via a One-way ANOVA (α = 0.05), using 
genotype as the factor. After the ANOVA, a post-hoc Tukey analysis was 
performed, to confirm that significant genotypic variations exist among 
genotypes for those traits. The Tukey analysis was selected, as it is 
commonly used to evaluate full pair-wise comparison (between geno
types), instead of specific pairs (e.g., Bonferroni test), and each genotype 
has approximately equal number of samples. The normality of the 
selected feature data was evaluated via their probability plots versus 
normal distribution (see Fig. S1 in the supplementary document for 
details). The homogeneity of the variance was investigated by plotting 
residues as functions of fitted values (see Fig. S2 in the supplementary 
document for details).

3. Results and discussions

3.1. Experiment overview

Manual and 3D-image measurements of all 400 non-backup plants 
have been conducted in three consecutive tests, namely Test 1, 2 and 3, 
with 1 week between each other. After Test 1, 46 out of 400 plants were 
replaced using the plants from the backup blocks, due to visible 
discoloration. Thenceforward no plant was substituted, so that plants 
used in Test 2 and 3 were the same.

3.2. Growth stage of plants in each test

The number of visible collars and the heights of nodes of a plant are 
dependent on its development and growth stages. Fig. 3 (left) shows the 
evolution of growth stages in Test 1—3, which is characterised by the 
numbers of visible collars [25], manually measured during each Test. 
For instance, a plant with 5 visible collars is designated to be at growth 
stage vegetative 5 (V5). The medium growth stage of Test 1 (week 1, 
March 13th), 2 (week 2, March 20th) and 3 (week 3, March 27th) was 
V4, V6 and V7, respectively, while the average numbers of visible collars 
collected during each test was 3.8, 5.6 and 6.7, respectively. The right 
plot of Fig. 3 displays the node heights from the top 4 nodes, from all 
plants, in Test 3 to provide an overview of the sizes of plants during 
scanning in this test.

3.3. Data pre-processing

The manual measurement data has been visually inspected first and 
no missing data or extreme values, i.e., values deviating from the rest of 
the data by one order of magnitude, have been observed. Furthermore, 
the raw images showed that the plants were accurately captured with 
little to no occlusion and disruption e.g., turnover pots, broken stems 
and leaves.

The distribution of each trait, within the same genotype, was eval
uated and visualised in boxplots (see the boxplot of leaf areas in Fig. 2
for one example). A plant with 1 or more traits beyond whiskers in the 
boxplots was considered as a potential outlier. The raw images of 
identified potential outlier plants have been visually evaluated and no 
plant was removed after the assessment. Meanwhile, 6 images (4 from 
Test 1 and 2 from Test 3) failed to generate traits and have been 
consequently removed from further analysis. In the end, the number of 
plants remaining after pre-processing was 396, 400 and 398 for Test 1, 2 
and 3, respectively.

Fig. 3. Left: distribution of growth stages at the time of Scanning; Right: Distribution of node heights from top 4 nodes of each plant, measured in test 3.
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3.4. Identification of 3D traits correlated to sowing density indicators

Among the genotypes that were tested, 13 out of 20 genotypes had 
corresponding Tr and Br values from the earlier work (Chapter 3.1 in 
Pilloni [28]), and the monotonic correlation test was conducted using 
data from those 13 genotypes. The correlation between individual traits 
from Test 3 with Br and Tr varied (Fig. 4). This figure summarizes the 
Spearman correlation coefficients of each trait with Br (left graph) and 
Tr (right graph) in the format of heat maps. Traits with darker colour, 
indicating a higher absolute r value, can potentially be those pheno
typical features correlated to sowing density response.

The Spearman correlation analysis was performed on traits gener
ated from all three tests, taking advantage of the non-destructive nature 
of image-based phenotyping, which enables the generation of traits’ 
time series, instead of one-time-measurements. Traits, whose Spearman 
coefficients r had a p-value lower than 5 %, were considered correlated 
to either Br or Tr. In Test 1, there were 4 correlated traits with Br but 
none with Tr, which could be due to the poor phenotypic expression at 
this early growth stage (V4). The more developed the plants were, the 
more traits were identified. For instance, 7 Br-correlated traits were 
detected from Test 2, while 17 such traits were selected from Test 3. 
Similarly, Test 2 and 3 data generated 2 and 4 Tr-correlated traits, 
respectively (the results of Spearman tests from test 1–3 can be found in 
the supplementary file). The Br- and Tr-correlated traits from Test 3, 

which was chosen for further data analysis, are summarized in Fig. 5, 
where their mean Spearman coefficients, as well as their 95 % Confi
dence Interval (CI) are demonstrated. The detailed report of correlation 
between each trait and Br and Tr from each test is available in the 
supplemental document (Suppl. Table 3–8).

From the 17 Br-correlated traits, 5 with the highest absolute values of 
r (r ≥0.7) were selected for further data analysis. These traits, together 
with the 4 Tr-correlated traits, are listed in Table 1 with brief de
scriptions of them that attempt to explain the biological meaning of 
these different traits.

Furthermore, Br as functions of 5 selected traits are plotted in Fig. 6, 
where the monotonic relationship between the traits with Br can be 
clearly seen. Such a relationship is also reflected by the Spearman co
efficients of these pairs, which are all larger than 0.6. Similar observa
tions can be made in Fig. 7, where Tr as functions of the 4 selected traits 
are displayed.

The 5 traits with the strongest correlation with Br were traits that 
corresponded to the morphological structure of plants., e.g., two traits of 
the voxel ratios and voxel_kurtosis, which describes the distribution of 
leaves along the stem, and %_hull_coverage which characterizes the 
positionning of leaves along the stem, for instance how overlapped and/ 
or upright the leaves are. In contrast, the Tr-correlated traits were all 
related to the leaf orientation of the plants, i.e. the average leaf angle, 
leaf inclination, and the depth of light penetration, except one 

Fig. 4. Heatmap of Spearman correlation coefficients r of each pair of individual traits with Br (left) and Tr (right). The colour of each column represents the absolute 
value of r between each individual trait with either Br or Tr.

Fig. 5. Spearman coefficients r and their 95 % confidence intervals (CIs) of correlated traits with Br (left) and Tr (right) from Test 3.
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multispectral one. Take leaf_inclination as an example, it measures the 
average orientation of a plant’s leaves by calculating the ratio of total 
leaf area against projected leaf area. In the case of horizontally aligned 
leaves, the total leaf area and the projected leaf area are the same and 
the ratio is 1. In the case of vertically aligned leaves, the total leaf area is 
higher than the projected area, so that the inclination values are higher 
than 1. These results are new in sorghum and are fully in line with 
similar results obtained earlier in maize [11], where the distribution of 
the leaf area along the vertical axis, and in particular phenotypes pre
senting a higher proportion of the leaf area on the lower part of the 
canopy had been selected over time and allowed a better light 

interception. Here, the added value from this work is that this better 
light interception also contributes to a better response to increasing 
planting density. In another review study, leaf erectness, thanks to 
higher leaf angle, was also associated to higher photosynthetic efficiency 
and yield, although this study did not look at the effect of these traits on 
the response to planting density [4]. Our findings also fully align with 
the theoretical description of a “smart canopy” ideotype in a previous 
theoretical review [8]. This ideotype would have some leaf area on the 
top of the canopy and most of it deep down in the canopy, which would 
ensure that all light is used and that a larger proportion of the leaf area is 
involved in photosynthetic activities. The consistency with earlier 

Fig. 6. Br as functions of correlated phenotypic traits: Voxel_ratio_4 (a), Voxel_ratio_2 (b), hull_coverage (c), voxel_kurtosis (d) and lightness_adj (e). For each pair, 
the spearman correlation coefficient r and its p-value is given.

Fig. 7. Tr as functions of correlated phenotypic traits: average surface angle (a), leaf inclination (b), hue packed (c) and psri (-inf, − 1) (d).
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results in other species is exciting and opens to the possibility to breed 
for these traits. Future work would then be necessary to evaluate care
fully the heritability of these traits, and to develop phenotyping tools 
and protocols to measure them in the field conditions. This will likely be 
a major, challenging but necessary effort, with various critical aspects to 
take into account, including trait interactions and effect of density on 
trait values.

3.5. Genotype discrimination

The selected Tr- and Br-correlated traits were further evaluated by 
PCA to explore the feasibility of separating genotypes of various sowing 
density responses (indicated by Br and Tr values), using the combination 
of selected traits. It should be first noticed that the first principal 
component (PC1) explained about 91 % of the variation in Br, and about 
97 % of the variation for Tr. Future work will need to focus on gener
ating similar data in a wider range of genotypes to allow for a more 
detailed description of contributing variables to the PC’s. Genotypes are 
in the biplot with assigned colours corresponding to their Tr or Br values 
(see Fig. 8).

The results of the PCA analysis of Br from Test 2 and 3 showed a 
similar trend: the top 3 traits that had the most impact on PC1 and PC2 
were the same, i.e., hull_coverage, voxel_kurtosis and lightness_adj, and 
the distribution of genotypes in the PC space were alike. The PC1 and 
PC2 scores were mainly determined by these top 3 features, since the 
loading vectors of the other features, namely voxel ratio 2 and 4, were 
relatively small (Fig.8, left). Moreover, it can be seen that the genotypes 
with a relatively larger Br are located on the lower right side of the 
biplot, which had high PC1 score and low PC2 score. A higher PC1 and a 
lower PC2 score are associated with a larger hull_coverage and vox
el_kurtosis, which could represent genotypes with less leaf overlapping 
and/or more upright leaves that are not uniformly distributed along the 
stem, for instance a relatively larger portion of voxels in the lower part of 
the canopy, which is fully in line with the “smart canopy” ideotype that 
was theorized earlier (Fig. 3 in [8]). In other word, these are the plants 
with morphological structures allowing deeper light penetration, more 
complete light interception, and higher photosynthesis in the lower 
canopy.

Although not having as strong an association as hull_coverage and 
voxel_kurtosis, a lower lightness_adj was also partially linked with an 
increasing Br in Fig. 8 (left). Lightness_adj measures the relative depth of 
light penetration, by dividing the depth of light penetration by a plant’s 
height. A smaller lightness_adj indicates less light penetration into the 
lower canopy, but it cannot be directly translated to less photosynthetic 

activities. For example, a smaller lightness_adj could indicate a plant 
with a bigger expanded top or middle portion, which does not facilitate 
deeper light penetration into the lower canopy. However, a bigger 
expanded top canopy could mean a larger leaf area is exposed to the 
light, and thus it could lead to more photosynthetic activities. Reversely, 
a higher lightness_adj could indicate a plant with narrow leaves allowing 
light penetration deep down but possibly with an incomplete light 
interception (hence less photosynthetic activities). Therefore, a 
comprehensive and accurate understanding of a plant can be achieved 
via the combination of multiple traits, rather than a single trait. In this 
case, the genotypes with relatively larger Br identify themselves with a 
morphological structure that favours better photosynthesis in the lower 
canopy, such as genotypes with less overlapped leaves and a relatively 
larger lower canopy.

The analysis of Tr was performed on selected traits from Test 3, not 
Test 2, because only 2 Tr-correlated traits were detected from Test 2, 
which was not sufficient for multivariable analysis. Furthermore, the 
loadings of each trait on PC1 and PC2 are displayed as arrows in the 
biplots, of which the directions and lengths represent the alignment of 
traits to PC1 and PC2. The results of the analysis suggested that geno
types with relatively larger Tr values tend to be located on the right side 
of the biplot, thus having relatively higher PC1 scores (see Fig. 8, right). 
PC1 score was mostly determined by smaller average_surface_angle and 
larger leaf_inclination as the influence of the other two traits are trivial. 
This indicated that the genotypes with larger Tr values differ from others 
by having more vertically aligned leaves. This aligns well with an earlier 
study [28] in which genotypes with larger Tr values had also higher 
WUE. It also alignes well with previous review or theoretical studies [4,
8] Genotypes with higher Tr values were interpreted to be those 
allowing more light to penetrate inside the canopy, leading to bottom 
leaves taking a larger share of the whole plant’s photosynthesis. The leaf 
transpiration from the bottom leaves were indeed shown to explain the 
lower vapor pressure deficit (VPD) values inside the canopy, which then 
led to higher WUE [33].

3.6. ANOVA and post-hoc analysis

The selected traits, of which the mean values were used in the cor
relation study and PCA analysis, were also evaluated whether they show 
statistically significant genotypic variation. Such evaluation was per
formed via One-Way ANOVA using genotype as the factor and the 
within-genotype mean of each trait as the response. The analysis results 
show that genotype is a significant factor influencing all the selected 
traits (see details in the supplement document).

Fig. 8. PCA biplots of Br-correlated traits (left) and Tr-correlated traits (right). Each point on the biplots represent one genotype and its colour the corresponding Br 
or Tr value, respectively. Arrows demonstrate the alignment of each selected trait with PC1 and PC2 in the biplots (For details refer to Suppl. Table 9–10).
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As part of the ANOVA evaluation, the normality and the homoge
neity of variances of the data have been investigated. While majority of 
the data are normally distributed and have homogeneous variance, there 
exist some outliers from each feature (more so with lightness_adj than 
others). However, as these outliers are distributed in multiple genotypes, 
instead of from 1—2 specific ones, and one-way ANOVA is robust in 
dealing with slightly non-normal distribution data, it was decided not to 
remove any outliers from the analysis (for details please see Fig. S1 and 
S2 in the supplement document).

Additionally, a post-hoc Tukey analysis has been performed to 
identify which genotypes show significant differences in the selected 
traits. Fig.9 gives the example of the Br-correlated traits, where the 13 
genotypes are clustered in different groups, based on their within- 
genotype mean values of the corresponding traits. The genotypes, who 
are not in the same group, are significantly different from each other for 
the corresponding traits.

The ANOVA result, including that from its post-hoc analysis, pro
vides more certainty in the conclusions drawn from the previous data 
analysis study and also gives insights how future study can be focused 
on: to generate data from a bigger sample pool, with bigger sample size 
within genotypes and more diversity in genotypes. The analysis results 
strongly suggest that the selected features can be used to identify ge
notypes with positive response to sowing density and even potentially 
used as phenotypic-markers for the breeding of the high yield crops. A 
potential usage of this result can be that the same selected features for a 
new genotype with an unknown density response can be analysed with 
the same PCA approach to predict whether it belongs to the high-density 
response group. Such an approach can be used as a screening procedure 
for quick selection of promising candidates for further investigation.

4. Conclusions and recommendations

The present study has identified phenotypic traits, measured by 3D 
laser scanning, that are strongly correlated to two traits used as in
dicators of the degree of sowing density responses in sorghum geno
types. This is an important innovation because traits explaining 
important field-based agriculture productivity indicators could be pin
pointed by high-tech tools – here 3D laser scanner and related algo
rithms - in distant environments. Our results strongly suggest that 
morphological traits favouring better photosynthesis in the lower can
opy lead to a larger Biomass ratio (Br) under increased sowing density. 
On the other hand, a plant of more vertically aligned leaves tends to 
have larger Tr values, indicating more efficient water usage (high WUE) 
under increasing sowing density. Furthermore, the PCA analysis results 
show that the identified traits can be further developed as phenotypic- 
markers for the prediction of the density response behaviour for novel 

genotypes. Additionally, our research approach outlines a possible 
framework to integrate 3D-imaging into plant research. Future study 
will focus on screening more genotypes with bigger sample sizes to 
enrich the database, to bring more insights about the mechanisms 
behind genotypic variations in sorghum responses to sowing density, as 
well as to enable the construction of statistical models for sowing density 
response predictions. Future studies also implies developing phenotyp
ing tools and protocols for measuring these traits under field conditions.
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