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Abstract: The aim of this study is to characterize the compound extremes of rainfall and
temperature in Côte d’Ivoire. For this purpose, we analyzed the outputs of fourteen (14)
climate models from the CORDEX-Africa project. Results show an increase (approximately
4.3 ◦C) in the surface temperature and a decrease (5.90%) of the mean rainfall in the near
(2036–2065) and far futures (2071–2100) over Côte d’Ivoire during the January–February–
March (JFM) period. The analysis of the compound extremes of the wet/warm type
highlights an increase in the frequency of this climatic hazard in the northern and central
parts of the country during the January–March (JFM) season in the near and far futures. The
dry/warm mode will increase in the central and southern parts of the country in the near
future and in the whole country in the far future. These increases in compound extremes
could lead to an increase in droughts and natural disasters across the country and could
have a negative impact on socio-economic activities, such as transportation and agricultural
production. This work could provide decision support for political decision-makers in
formulating future public policies for managing agricultural production, food security, and
natural disasters.

Keywords: CORDEX-Africa; compound extremes; precipitation; temperature; Côte d’Ivoire

1. Introduction
Climate change is a phenomenon that we are all witnessing because of its harmful

consequences, which are already clearly visible.
The resurgence of extreme events, such as floods, droughts, and frequent heatwaves,

accompanied by bushfires (in Africa, Europe, America, etc.) is a visible consequence of
climate change. These events have unprecedented negative effects on both people and the
environment. For example, the 2003 heatwave resulted in 15,000 deaths in France [1–3], and
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7000 in Russia [4,5]. Similarly, many fires have occurred in 2021 in Europe [6] (San-Miguel-
Ayanz et al., 2022). These fires have caused major loss of life and massive destruction of
flora and fauna.

Furthermore, in West Africa in general and in Côte d’Ivoire in particular, several
authors have conducted studies on climate events based on individual variables, i.e.,
using only temperature or precipitation to show extreme events, and their trends and
impacts [6–11]. However, other studies have shown that these events can occur simulta-
neously or successively [12,13], forming climatic hazards known as compound extreme
events. These compounds are “precipitation–thermal” events. Their occurrence is linked to
both precipitation and temperature exceeding a threshold.

In other words, these phenomena are concomitantly linked to temperature and precip-
itation values outside the norm and/or that are undesirable.

In addition, compound weather, climate events, or a combination of several factors
and/or hazards contribute to societal and environmental risks [14,15]. The co-occurrence of
extremely high temperatures and low or high precipitation can intensify negative effects on
ecosystems and society, causing worse impacts on food production and security compared
to the impacts of extreme individual variables [16–19].

However, West Africa in general and Côte d’Ivoire in particular are regions of Africa
where the main activity of the population is rain-fed agriculture [20,21]. Côte d’Ivoire’s
economy is based mainly on coffee and cocoa, which are perennial tropical plants. The
yields of coffee and cocoa are strongly linked to climatic parameters, such as temperature,
precipitation, and wind speed [22].

Compound extreme weather events are better understood and documented in Eu-
rope [23–26], Asia [15,27–33] and America [34–39], where several authors have demon-
strated their impacts on humans and the environment. In Africa, these phenomena have
been little studied. Indeed, the lack of documentation and impoverishment of West African
states make this region highly vulnerable to climate change, which is becoming a key factor
in the increase in compound extremes. Thus, the conditions under which extreme climatic
events occur and how they are characterized depend on the region and some factors, such
as a favorable initial state, the presence of large-scale drivers, positive local feedback, and
stochastic processes (noise) [40]. In Côte d’Ivoire, studies related to compound events
have not yet been conducted. Thus, the need to characterize these events is essential in
West Africa, where the economy strongly depends on agriculture and weather conditions.
Moreover, in the beginning, climate change scenarios were carried out with global climate
models (GCMs) [41] (IPCC, 2013). However, these GCMs face enormous difficulties in
representing the climate at the regional scale because of their low horizontal resolution
(200 to 300 km). These GCMs do not take into account certain surface processes such as
topography, or heterogeneities of the Earth’s surface. To remedy this, regional climate
models (RCMs) are increasingly being used to dynamically disaggregate GCMs [42–44]
(Giorgi et al., 2014; Laprise et al., 2013; Camara et al., 2013). The main objective of this work
is to study the evolution of compound extreme events of precipitation and temperature in
Côte d’Ivoire during the January to March (JFM), April to June (AMJ), July to September
(JAS), and October to December (OND) seasons for present and future climates using
fourteen (14) regional climate models involved in CORDEX-Africa phase 2 simulations.
The first category of CORDEX-Africa simulations (present time) consists of evaluating
the performance of RCMs to reproduce past climates. Studies conducted in this context
(e.g., [42,45–47] Gbobaniyi et al., 2014; Kim et al., 2014; Nikulin et al., 2012; Camara et al.,
2013) have shown that these CORDEX RCMs represent well enough the spatial distribu-
tion of rainfall and temperature over Africa, and particularly in West Africa, and also the
ensemble mean of the models outperforms regional climate models taken individually.
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The remainder of this paper is structured as follows: Section 2 describes the study area,
the CORDEX-Africa simulations, the methods used, and the definition of the compound
extremes. Section 3 presents the results and discussion, followed by a summary and
a conclusion.

2. Materials and Methods
2.1. The Study Area

This study focuses on Côte d’Ivoire, a country located in West Africa on the edge
of the Gulf of Guinea (9◦ W–2.5◦ W; 4◦ N–11◦ N), with a surface area of 322,462 km2

(refer to Figure 1). Furthermore, Côte d’Ivoire consists of three climatic zones, including
the littoral, central, and northern zones, characterized by a specific rainfall regime [48].
The littoral zone and the center have a bimodal precipitation regime (two rainy seasons
with peaks observed in June and October), while the north presents a single rainy season
(July–September) with a peak occurring in August.
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2.2. Models and Data

This study used a set of fourteen (14) simulations carried out by eight regional climate
models (RCMs) forced by seven global climate models (GCMs) from the second phase of the
“COordinated Regional climate Downscaling EXperiment” (CORDEX-Africa) project [49].
Seven (GCMs) derived from the fifth phase of the Coupled Model Intercomparison Project
(CMIP5). The CORDEX project involves the coordination of numerical climate simulations,
implemented by several research centers. It provides reliable climate change scenarios at a
high resolution (~50 km), enabling climate impact studies and associated uncertainties for
future climate projections using RCMs [50–53]. The CORDEX project is based on two types
of simulations, with two objectives:

- To provide a framework for evaluating and comparing the performance of RCMs
(evaluation framework).

- To design a set of experiments to produce climate projections for use in impact and
adaptation studies (climate projection phase).

The use of all of these high-resolution RCMs is essential to account for the complex
topography, the strong variation in vegetation cover, and the variability of rainfall at the
mesoscale over West Africa [46–48]. It is also an advantage to use RCMs as they provide
more detailed information on the climate at the sub-regional and local levels [54,55].
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The CORDEX simulations used in this study are from the second phase (climate
projection phase), including daily precipitation and minimum and maximum temperatures
at a horizontal resolution of 0.44◦ (~50 km). These simulations cover the African continent
and use a dynamic downscaling technique, in which RCMs are forced by Global Climate
Models (GCMs) (Table 1). The RCMs’ outputs are available from this website: https:
//www.cordex.org/output.html (accessed on 31 March 2018) These models are described
in details by [47].

Table 1. List of the 14 CORDEX-Africa phase 2 simulations used in this study.

RCMs GCMs RCPs Status

CanESM2 8.5 ESGF
CNRM-CM5 8.5

SMHI-RCA4 ES-EARTH-r12 8.5
IPSL-CM5A-MR 8.5

MPI-ESM-LR 8.5
ES-EARTH-r12 8.5

CLMcom-CCLM4-8-17 HadGEM2-ES 8.5 ESGF
CNRM-CM5 8.5

DMI-HIRHAM5 EC-EARTH-r3 8.5 ESGF
KNMI-RACMO22E EC-EARTH-r1 8.5 ESGF
CCCma-CanRCM4 CanESM2 8.5 CCCMA ftp

MPI-CSC-REMO2009 MPI-ESM-LR 8.5 RCM group
CNRM-ALADIN52 CNRM-CM5 8.5 RCM group (not all vars)

BCCR-WRF331 NorESM1-M 8.5 RCM group

The historical simulations cover the period 1950–2005, and the projections span the
2006–2100 period under the RCP4.5 and RCP8.5 forcing scenarios [56,57]. This study is
focused on the worst RCP8.5 scenario.

2.3. Methods

A compound extreme event can be defined as two or more extreme events occurring
simultaneously or successively, or as combinations of events that are not themselves extreme
but lead to a negative event or impact when combined [21,58,59].

According to Leonard [18], a compound event is an extreme that depends on several
variables or a statically dependent event.

Clearly, if we consider the variables (precipitation and temperature), we can distin-
guish several types of compound extremes depending on the choice of percentiles (for
example, the 10th, 25th, 75th, 90th, and 95th percentiles) as in [60–62].

Based on previous definitions and the choice of the 10th and 90th percentiles [29,63,64],
we characterized the dry/warm and wet/warm compound modes in Côte d’Ivoire, annually,
during the January–March (JFM), April–June (AMJ), July–September (JAS), and October–
December (OND) seasons.

This subdivision of the seasons is commonly used in all climatological studies in West
Africa. It is based on the northward and then southward migration of the Intertropical
Convergence Zone (ITCZ), which also reflects latitudinal variation in the rain belt. From
January to July, the ITCZ migrates northwards, reaching its maximum position in August.
Then, from September to December, the ITCZ descends southwards towards the Gulf of
Guinea. Because of its geographical position, Côte d’Ivoire experiences alternating dry
and rainy seasons. The JFM (January, February, and March) is a dry season with high
temperatures and less rain. AMJ (April–May–June) marks the start of the main rainy
season, with higher temperatures in April and May, especially in the south of the country.
JAS (July–August–September) is the rainy season in the north and center, with maximum
rainfall in the north and moderate temperatures. JAS is the short dry season in the south.

https://www.cordex.org/output.html
https://www.cordex.org/output.html
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OND (October–November–December) marks the end of the rainy season in the north and
the start of the short rainy season in the center and south.

For the ensemble mean of the models and for different periods (historical, near future,
and far future), we first calculated separately the dry days (number of days with daily mean
rainfall different from zero and below the 10th percentile of daily mean rainfall), the warm
days (number of days with daily temperature above the 90th percentile of daily maximum
temperature) and the wet days (number of days with daily mean rainfall above the 90th
percentile of daily mean rainfall). The dry/warm metric corresponds to the total number of
days where a dry day coincides with the warm day. The wet/warm metric corresponds
to the total number of days where a wet day coincides with the warm day. Therefore, the
considered compound events (dry/warm and wet/warm) are defined as being when two
extremes occur simultaneously (dry and warm or wet and warm).

3. Results and Discussions
3.1. Annual Cycles of Mean Temperature and Precipitation over Different Areas of Côte d’Ivoire

Côte d’Ivoire, located in West Africa, particularly in the Guinea Gulf region, has an
equatorial, a tropical savannah, and a transition to a tropical monsoon climate in the coastal,
central, and northern regions of the country, respectively. The annual cycles of the mean
temperature and rainfall under the RCP8.5 scenario are shown in Figure 2. The annual
cycle of the mean temperature varied according to the different climatic zones.
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Figure 2. Annual cycle of the mean temperature (a,c,e) and mean precipitation (b,d,f) over the
historical period 1976–2005 (black), the near future period 2036–2065 (blue) and the far future period
2071–2100 (red) for the different zones (south, center, and north) under the RCP8.5 scenario.

In the south, the seasonal cycle of the daily mean temperature shows a significant
peak with 28.94 ◦C in February, while in the center and the north, there are two peaks
in April (28.96 ◦C) and in November (26.69 ◦C) for the center and in April (28.69 ◦C)
and in November (26.42 ◦C) for the north, under RCP8.5. The annual cycles of the mean
temperature over the climatic zones of Côte d’Ivoire are in line with the findings of [56].

The seasonal cycle of the mean precipitation exhibited a significant peak over the three
sub-regions of Côte d’Ivoire (Figure 2b,d,f). In the northern region, the rainfall regime is
characterized by a peak in August. This result is consistent with the findings of [48], who



Atmosphere 2025, 16, 3 6 of 15

used in situ observation data from 22 stations in Côte d’Ivoire over the period 1964–1997.
The peaks observed in July for the south and August for the central regions highlight the
unimodal nature of the rainfall regime. Similarly, using CPC and ARC2 observational data,
the results of [56] also demonstrated a bimodal rainfall regime in the south and center
of Côte d’Ivoire. Consequently, the ensemble mean of the models fails to reproduce the
bimodal feature of the annual cycle of the mean precipitation in the south and center of
Côte d’Ivoire, mainly because of the physical parameterizations of the models. Numerous
studies [52,61,64,65] (Ceccherini et al., 2017; Sylla et al., 2016; Giorgi et al., 2014; Boko
et al., 2007) highlighted that the predictions of models based on greenhouse gas emissions
scenarios showed that global warming continues to increase. However, these temperature
changes are not uniform.

3.2. Changes in Precipitation and Temperature

Changes in rainfall and temperature are partly linked to climate change due to anthro-
pogenic effects of human activities. These changes affect the mean rainfall and maximum,
minimum, and mean temperatures in the southern, central, and northern climatic zones of
Côte d’Ivoire.

Figure 3 shows the changes in mean rainfall during the January–March (JFM) season
for the historical period 1976–2005 (Hist, blue), the near future 2036–2065 (NF, green), and
the far future 2071–2100 (FF, red) over the southern, central, and northern climatic zones
of Côte d’Ivoire for the ensemble mean of the CORDEX-Africa simulations. The results
show that the rainfall will decrease in the south and the center of the country in the near-
and far futures. Figure 4a–c shows the projections of the maximum, minimum, and mean
temperatures over the JFM summer period for the three (03) periods (historical, near and far
futures) in the southern, central, and northern climate zones of Côte d’Ivoire, respectively.
The analysis shows that the minimum, maximum, and mean temperatures will increase in
the south, north, and south of Côte d’Ivoire in the near and far futures. This could lead to a
high frequency of extremes events, such as diurnal heatwaves and a dry/warm mode, and
an increase in future energy consumption. Indeed, the climate change scenarios used in
West Africa showed that the greatest temperature rises are recorded in semi-arid areas such
as the Sahara and the Sahel, and the lowest in the lower latitudes, especially in the Guinean
zone [66].
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Figure 4. Projections of the maximum (a), minimum (b), and mean (c) temperatures (◦C) during
the JFM season (January–March) for the historical period 1976–2005 (His in blue), the near future
2036–2065 (NF in green), and the far future 2071–2100 (FF in red) in the south, center, and north of
Côte d’Ivoire for the ensemble mean of all models.

3.3. Compound Extremes of Precipitation and Temperature
3.3.1. Present and Future Climates

The dry/warm (DW) and wet/warm (WW) precipitation and temperature extremes
are shown in Figures 5 and 6, respectively. These hazards are presented for two modes of
variability: their inter-seasonal trends (JFM, AMJ, JAS, and OND) and their sub-regional
trends over the different climate zones of Côte d’Ivoire (littoral (south), center, and north)
(Figure 6). The analysis of the total number of compound dry/warm extremes per year
over the periods 1976–2005 (historical), 2036–2065 (near future), and 2071–2100 (far future)
shows that the ensemble mean of the models simulates a high occurrence of compound
dry/warm and wet/warm events. The dry/warm mode will decrease in the future for
all seasons.
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Furthermore, human health and crop yields could be adversely affected by the
dry/warm mode because high temperatures pose a serious threat to human health and
plants [17,21].

Figure 6 shows the total number of dry/warm and wet/warm compounds for the
JFM, AMJ, JAS, and OND seasons over the historical (1976–2005) and future periods in the
south, center, and north of Côte d’Ivoire.

In AMJ and JAS, the compound dry/warm type (DW) will decrease in the three sub-
regions of the country. The wet/warm type (WW) will increase in DJF and OND. In the
AMJ and JAS seasons, DW mode decreased in the three sub-regions in the near and far
futures. The WW mode will increase in the south, center and north of the country in the
near and far futures. During the OND season, DW mode showed a downward trend over
all climatic zones, while WW mode showed an upward trend in the future.

Furthermore, heavy rainfall associated with high temperatures (or slight rainfall
associated with abnormal temperatures) can simultaneously intensify thermal amplitude,
which has a negative impact on living organisms and their growth. This could also have a
major impact on agriculture, particularly during plant flowering.
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3.3.2. Spatial Changes in Compound Extremes for the JFM Season

Previous study conducted by [62] Diba et al. (2022) showed good performance by
the CMIP5 models in representing the compound extremes of dry/warm and wet/warm
modes over West Africa at the seasonal and intraseasonal timescales in spite of the presence
of some biases. Changes in the occurrence of compound dry/warm extremes in the near
(2036–2065) and far (2071–2100) future periods are shown in Figure 7. The ensemble mean
of the models projected an increase in dry/warm compound extremes in the southern and
central parts of Côte d’Ivoire under the RCP8.5 scenario. The wet/warm mode will increase
in the northern and central parts of the country. The minimum values of changes in the
dry/warm mode in the northern part of the country could be explained by the advent of
the harmattan phenomenon, which intensified during JFM in the northern part of Côte
d’Ivoire. This means that it is cooler in the north than south of Côte d’Ivoire. Thus, the
influence of harmattan attenuates the heat at this time of year and reduces its occurrence in
the north of the country. Similarly, it shows a south–north gradient, with maxima located
in the north, and mainly from the center to the north (Figure 7). The ensemble mean of
the models projected a high occurrence of compound extremes of DW and WW modes in
the study area, which is likely to change significantly in the future. In the north of Côte
d’Ivoire, most of the rainfall is accompanied by strong sunshine. This could explain the
high occurrence of these hazards.
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Figure 7. Changes in the occurrence (%) of compound extreme dry/warm (a,c) and wet/warm (b,d)
modes during January–March (JFM) season in the near (2036–2065) and far (2071–2100) futures under
RCP8.5 scenario.

These authors assessed the variability in global land and crop areas affected by com-
pound dry and warm events. The authors of [15,18,27,30] assessed the variability of
compound dry/warm events in global land and crop areas. Their results have projected an
increase in compound dry/warm events over the entire spatial extent of global land areas
during June–August (JJA) and December–February (DJF).

Following [67], the intensification of the dependence between precipitation and tem-
perature favors an increase in the dependence on the compound dry/warm mode. The
authors of [68,69] have also shown that increasing temperature is the main factor in the vari-
ation in compound dry/warm events in Europe. This study could contribute to increasing
the resilience of agriculture and human health to the effects of extreme climate events.

The increase in WW could have a major impact on agriculture and food security in
Côte d’Ivoire. The author of [16] showed that compound events had a negative impact on
agriculture (wheat and maize production) in China.

Under the rcp4.5 scenario [additional material], the dry/warm mode shows little
change in the south and an increase in frequency in the north in the far future under the
rcp4.5 scenario. The wet/warm mode is more intense in the far future than in the near
future. Compared with rcp8.5, the rcp4.5 scenario shows higher percentages of changes
than those simulated in the rcp8.5 scenario, but in absolute terms, the number of compound
events is lower in rcp4.5 than in rcp8.5. This analysis shows that whatever the scenario
considered, the occurrence of compound events will increase in the near and distant future,
but much less in number in rcp4.5 than in rcp8.5.
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4. Conclusions
This study contributes to the study of climatic events, and represents, in particular, an

initiative to characterize the occurrence of compound extreme events (i.e., dry/warm (DW)
and wet/warm (WW) modes) in Côte d’Ivoire under future climates.

This study, carried out with fourteen (14) CORDEX-Africa simulations, has made it
possible to characterize compound events (DW and WW) as well as their future evolutions
under the greenhouse gas emission scenario RCP8.5 over Côte d’Ivoire. As for results, in
the southern part of the country, the seasonal cycle of the daily mean temperature shows
a significant peak, with 28.94 ◦C in February, while in the center and the northern parts,
there are two peaks in April (28.96 ◦C) and in November (26.69 ◦C) for the center and in
April (28.69 ◦C) and in November (26.42 ◦C) for the North.

The overall average of the models showed a decrease in precipitation and an increase
in temperature (maximum, minimum, and average) from the south to the north of the
country in the near and far future periods.

The analysis of historical CORDEX simulations data showed a significant increase in
the occurrence of compound events in the past climate.

According to the multi-model ensemble, the frequency of compound events will
increase in the near future (2036–2065) and far future (2071–2100) in JFM. This increase
will affect human health and agriculture sectors in the future. While, in the AMJ, JAS and
OND seasons, DW events will decrease (~−0.076 for NF and ~−0.399 for FF), while WW
events will increase (~0.605 for NF and ~0.620 for FF). The increase in WW events under
the greenhouse gas emission scenario RCP8.5 could have a major impact on the agriculture
of the local population in Côte d’Ivoire. Results provide strong evidence that temperature
variations in West Africa are linked to the hydrologic cycle.

This increase in compound events will have a negative impact on agriculture, and
therefore on the economy of Côte d’Ivoire. Irrigation could therefore be an aid to adaptation
strategies to protect the agricultural sector.

The results of this study could also help to increase the resilience of certain human
activities in West Africa to climate change, especially in Côte d’Ivoire, a country where
agriculture is the main activity and source of income for most of the population.

In short, it is undeniable that this work needs to be taken further in order to improve the
state of studies of the impact of compound events on human activities such as agriculture
in West Africa in the context of climate change.
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