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A B S T R A C T

In the alluvial plains of large rivers, annual flooding is essential for numerous ecosystem services, including
flood-based agriculture, biodiversity and groundwater recharge. Remote sensing provides increased opportu-
nities to monitor surface water dynamics across large floodplains that are currently poorly captured by local
hydrological monitoring and modelling due to data scarcity and the flat, heterogeneous topography. Combining
the advances in earth observations with hydrological modelling and extensive in situ fieldwork, this research
seeks to improve our understanding of surface water dynamics and associated agricultural practices in the
Senegal river floodplain. 2813 mosaics from Landsat, MODIS and Sentinel-2 earth observations are created
to map and monitor surface water variations using a site specific MNDWI classification adapted to complex,
wetland environments. Validated against ground truth data, the approach is upscaled using cloud computing
across this 2250 km2 floodplain over 1999–2022. Statistical regression models are then developed to estimate
flooded and cultivated areas based on upstream flow values since 1950 and analyse trends and exceedance
probabilities over time. Results reveal extreme interannual variations in peak flooded areas, ranging from
30,000 ha and 720,000 ha between 1950 and 2022, while annual water modules fluctuate between 210 and
1460 m3/s. After 1994, flooded areas show partial recovery, with 95th percentile reaching 89,000 ha during
1994–2022 compared to 37,000 ha in 1972–1993. Flood-based agricultural practices cover between 13,000 ha
and 133,000 ha over the same period, highlighting the pronounced variability faced by local rural communities.
Occurrence maps and predictive models for annual flooded and cultivated areas based on upstream flows can
support early warning tools, helping to prepare for extreme floods and droughts. These outputs are crucial
to assess the impact of future climatic and anthropic changes in the region, including planned dams, on the
amplitude of annual floods and their associated environmental benefits.
1. Introduction

In the alluvial plains of large rivers, annual flooding provides nu-
merous ecosystem services related to water and food supply, regulation,
biodiversity as well as important cultural and immaterial functions. In
Africa, more than 25 million hectares of alluvial floodplains are used
for flood-based agricultural systems (FBAS), primarily for family and
subsistence farming (Kool et al., 2018; Zenebe et al., 2022; Ayyad et al.,

∗ Corresponding author at: G-EAU, AgroParisTech, BRGM, Cirad, INRAE, Institut Agro, IRD, Univ Montpellier, Montpellier, France.
E-mail address: andrew.ogilvie@ird.fr (A. Ogilvie).

2022). However, these practices are conditioned by the amplitude of
the annual flood, making them vulnerable to both regional climatic
and anthropic changes. In semi-arid areas, hydrological regimes are
particularly affected by extreme climatic variability, land use changes,
and upstream interventions such as dam construction and agricultural
withdrawals. The development of large dams in Asia (Hecht et al.,
2019), in West Africa (Seidou et al., 2021; Tilmant et al., 2020) to meet
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growing demands for hydropower and irrigation for example introduce
ajor hydrological changes, reducing the amplitude of these benefi-

ial floods. Understanding these changes and evaluating the trade-offs
or the Water-energy-food-ecosystems (WEFE) nexus (Hellegers et al.,
008; Teutschbein et al., 2023; Cristiano et al., 2021) requires detailed
nderstanding of the hydrological dynamics of these floodplains. The
cale and flat topography of these floodplains lead to considerable
ncertainties in the hydrological modelling of lateral overflows, despite
mprovements in digital elevation models (Archer et al., 2018; Hawker
t al., 2018). These difficulties are exacerbated by the decline in hydro-
etric networks in Africa (Hannah et al., 2011; Tarpanelli et al., 2023)

s well as the difficulties to understand and represent the trajectories
f water resources and human activities (land use, dam management,
ithdrawals, etc.) and their mutual interactions.

The rising availability of earth observations (EO) with increasing
patial, temporal and spectral resolutions has led to increased oppor-
unities to monitor and characterise temporal and spatial variations of
urface water areas across large areas. Numerous works have shown the
otential of EO to monitor large surface water bodies, whilst also high-
ighting the specific difficulties in mapping and monitoring floods in
ixed water environments such as wetlands (Mahdianpari et al., 2018;
ahdavi et al., 2018). Global datasets have notably been developed

nd used for large scale mapping of surface waters. These include the
lobal Lakes and Wetlands Database (GLWD) by Lehner et al. (2011),

he Global Land Cover Facility surface water dataset by Feng et al.
2015) and the Global 3sec/1 s Water Body Map (G3WBM/G1WBM)
y Yamazaki et al. (2015). These products were developed using multi-
emporal and multi-source imagery to distinguish land, permanent
ater bodies and temporally flooded areas up to 30 m resolution.
ccordingly, they provide a static map of water bodies rather than
onthly or annual variations. Global Surface Water (GSW) datasets

y Pekel et al. (2016) provide monthly imagery based on Landsat
mages over 1982–2021 at 30 m resolution however their reduced
epetitivity (1 image per month) limits their suitability in monitor-
ng fine variations in small or fragmented water bodies such as wet-
ands (Yamazaki and Trigg, 2016). Previous works also highlighted
heir limitations in mixed environments such as wetlands and flood-
lains where shallow waters, and flooded vegetation (and vegetated
ater) are often undetected due to the mixed reflectance of water,
egetation and soil (Ogilvie et al., 2018, 2020a; Herndon et al., 2020;
ardy et al., 2019). Context specific classification and monitoring
pproaches need to be developed and optimised in multiple settings
nd combining multi-source imagery is essential to capture short term
ynamics and long term changes (Heimhuber et al., 2018; Ogilvie
t al., 2020a). The advent of cloud computing environments notably
llows for combining the respective advantages of a catalogue of EO
ensors (Claverie et al., 2018) in terms of spatial resolution (up to 10 m
ith Sentinel-2), temporal repetitivity (daily with MODIS), and depth
f observations (since 1972 with Landsat) or observation mode (passive
nd active sensors) (Amani et al., 2019; Nguyen et al., 2020).

In the mid-Senegal River valley, in floodplains and along riverbanks,
he annual flood waters have traditionally been exploited for flood-
ecession crops, fishing, grazing, fibre and timber. An essential habitat
or birds and other wildlife, this floodplain contains seven wetland sites
f international importance listed under the Ramsar convention, includ-
ng the Parc National du Djoudj in Senegal and the Parc National du
iawling in Mauritania. The droughts of the 1970s and 1980s encour-
ged the development of irrigation, but to this day it still only concerns
 small percentage of farmland, with yields and financial results often

falling short of initial expectations, and crop residues without good
fodder value. Flood recession crops, in basins and on riverbanks, are
still grown whenever the floodwaters are high enough, on several tens
of thousands of hectares and are necessary to feed the population (and
their herds) who have no access to irrigated areas (Bruckmann, 2018;
oussin et al., 2020; Sall et al., 2020b). Dam operation at Manantali on

he Senegal river since 1987 to support irrigation and the development

2 
f hydroelectricity begun to modify the hydrological regimes, reducing
he amplitude of floods. The downstream Diama dam completed in
986 also raised water levels in the floodplain and two run-of-river
ydroelectric plants have been commissioned in Felou (2013) and
ouina (2022) as part of the transboundary river basin development

trategy (Fig. 1). Several new dams, including Gourbassi, Boureya,
alassa and Koukoutamba, are planned by the river basin agency and
et to introduce major hydrological changes (BRLi et al., 2021; Raso
t al., 2020). Understanding the evolution of the flooded areas is
herefore essential, in order to define suitable water management and
llocation strategies to optimise their operation and minimise their
mpacts on wetlands, as well as on flood-based agriculture in the region.

Previous research focussing on the Senegal river floodplain explored
ydrological regimes and their variations following the construction of
he Manantali dam (Bader, 1997; Bader et al., 2003; Sambou et al.,
019; Raso et al., 2020) as well as propagation of flows between the
iver bed and lateral overflows in the floodplain Ogilvie et al. (2020b),
ader et al. (2017). In particular, research led to defining objective

flood hydrographs to maintain objectives of flooded areas and potential
flood-recession crop areas in the floodplain. Inundation patterns were
explored using eight SPOT images from the 1990s to derive a correla-
tion between river flow and water surface areas (Lamagat and Bader,
2004). These results underpin predictive tools and water allocation

odels that continue to guide stakeholders in defining reservoir opera-
tion rules and assessing the impacts of future river basin development
and management scenarios (SCP et al., 2009; Bader, 2015; BRLi et al.,
2021). Updating and improving the scientific basis of these tools is
essential to account for changes in the hydrological regime over the
past three decades. Leveraging advances in earth observation science
is crucial to shed light on the scale and importance of flood-based
agricultural systems, which are often overlooked in favour of hydro-
electric and irrigation concerns. Since the Manantali hydroelectric plant
became operational in 2004, no releases have been made to support the
annual floods and FBAS (Bruckmann et al., 2022). Recently, Bruckmann
et al. (2022) investigated recent hydrological variations and looked at
flood patterns on a single MODIS image per year at 500 m resolution
on the floodplain between Dagana-Matam. In parallel, Ogilvie et al.
(2020a) looked at combining multi-sensor satellite imagery to monitor
flood dynamics on a subset of the floodplain around Podor, demon-
strating the value of a context-specific approach at 20 m resolution
adapted to the particularities of these heterogeneous environments.
This research builds on earlier work and aims to provide a detailed up-
to-date understanding of the scale and dynamics of flooded areas and
flood recession cropping in the Senegal River floodplain. Specifically,
our works seek to first provide the most comprehensive assessment
of the interannual variability of inundated areas across this expansive
floodplain by harnessing and comparing the effectiveness of available
optical EO imagery. Secondly, regressive models are developed to esti-
mate flooded areas based on upstream hydrological data, extrapolating
trends back to 1950. Thirdly, flood mapping results are combined with
field observations and data on FBAS to identify potential areas for FBAS
nd estimate cropped areas since 1950 across the whole floodplain.

. Data and methods

.1. The Senegal River and its floodplain

The Senegal River is a large transboundary basin spread over
337,000 km2 across four countries: Guinea, Mali, Mauritania and
Senegal. Downstream of Bakel, the Senegal River flows into a vast
floodplain of 10–20 km wide, over the last 790 km of its rivercourse.
Topography is very flat, with average decline in the rivercourse of 1–
3 cm per km (Bader, 2015). Bakel corresponds to the beginning of the
floodplain and is situated downstream of all the major tributaries of
the Senegal River: the Falémé, Bafing and Bakoye. West of Dagana, the

river flow is heavily influenced by the dykes and embankments built
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Fig. 1. Location of the Senegal river basin, its floodplain and major dams. Background imagery composited from Bing satellite imagery and Verdin (2017) topography data.
p
R
s

during the 20th century to prevent overflow, the greater influence of
the Diama dam and the numerous large irrigated perimeters notably
around Richard Toll.

The Senegal floodplain situated between the towns of Dagana and
Bakel was studied here (Fig. 1). These boundaries are based upon
those used in previous studies (Lamagat and Bader, 2004; Bruckmann
et al., 2022) but seek to include the full expanse of the floodplain,
covering a total of 1,100,000 ha. The region of interest (ROI) ex-
tends further south than the area studied in the POGR (Programme
d’Optimisation de la Gestion des Réservoirs) by Lamagat (2001) which
ocussed on the Matam-Dagana section. This choice was partly due
o the spatial coverage of the satellite imagery they obtained at the
ime and Lamagat (2001) recognise that flooded areas upstream of
atam (between Matam and Bakel) are estimated to represent 19% of

he total flooded area between Matam and Dagana. Sentinel-2 imagery
onfirmed that FBAS are observed in areas upstream of Matam, such as
he floodplain west of Maghama as illustrated in the Sentinel-2 image
rom February 2020. For the same reasons, wetlands east of Kaedi were

included in the ROI.

.2. Earth observation mapping and monitoring of flooded areas

Images from MODIS Terra, Landsat 5–7 and 8, and Sentinel-2
atellites were used to combine their respective strengths in terms
f spatial resolution, temporal resolution and temporal coverage. The
omplete archive of images per year was used rather than a single
mage close to the flood peak, to ensure the flood peak is accurately
aptured. In the Senegal floodplain, the timing of peak waters varies

according to the amplitude of the flood and the location along the
loodplain. The flood is effectively slowed by the friction of spreading
cross the floodplain, meaning that a large flood will progress slower
han a minor flood (Bader et al., 2017). The peak in Podor occurs

in mid-October during a large flood, and in early September in low
flood years. At Bakel 500 kilometres upstream, the flood peak occurs in
early September and late August respectively. The Google Earth Engine
(GEE) Cloud computing platform (Gorelick et al., 2017) is used here
to reduce downloading and geoprocessing times considerably, essential
when multiplying image sources, tiles and time periods. A total of
3 
2813 mosaics for MODIS, Landsat, and Sentinel-2 over 1984–2022 were
created and processed in GEE.

2.2.1. Earth observation data
Imagery from the MODIS sensor aboard the Terra satellite were

accessed via Google Earth Engine (asset MODIS/006/MOD09A1). With
its wide swath, this medium spatial resolution sensor (500 m) ben-
efits from short recurrence periods and provides daily coverage of
many parts of the globe since February 2000. The 6th version of the
MOD09A1 surface reflectance products were used, where each pixel is
selected within an 8-day window to provide a composite image with
the best observation in terms of low viewing angle, reduced clouds
and cloud shadow presence and minimal aerosol loading. 1043 MODIS
images from the h16v07 path/row over 2000–2022 were treated here.

The European Space Agency’s (ESA) Sentinel-2 A and Sentinel-
2B satellites provide multispectral imagery in the 10 m and 20 m
bands since 23 June 2015 and 7 March 2017, respectively, over our
region of interest. The satellites have a 10-day revisit frequency offset
by 5 days, leading to image availability every 5 days since 2017
when combining both sensors. Imagery from European Space Agency’s
(ESA) constellation of Sentinel-2 satellites were accessed via GEE (asset
𝐶 𝑂 𝑃 𝐸 𝑅𝑁 𝐼 𝐶 𝑈 𝑆∕𝑆2_𝐻 𝐴𝑅𝑀 𝑂 𝑁 𝐼 𝑍 𝐸 𝐷). Level 2 surface reflectance
roducts are not available until 16 December 2018 in GEE for our
OI but Level 1C products have successfully been used in recent water
tudies (Yang et al., 2020; Ogilvie et al., 2020a). Our region of interest

overlaps on tiles T28QDD, T28QED, T28PFD, T28QFD captured on the
same day and 3 tiles (T28PGC, T28PGB, T28PHB) with images 2 days
later. Mosaics combining images acquired over a 5-day interval were
therefore created to combine these observations. 500 S2 mosaics over
2016–2022 were created.

Images from the TM sensor aboard Landsat 5, the ETM+ sensor
aboard the Landsat 7 satellite, and the OLI sensor on Landsat 8 were
used in this study. These sensors have similar characteristics providing
multispectral imagery at 30 m spatial resolution, at a 16-day time inter-
val, since 1984 for Landsat 5. The combination of imagery from Landsat
7 and Landsat 8 satellites can reduce repetitivity to eight days after
2013 thanks to the eight-day offset between their acquisitions. Imagery
from OLI-2 aboard Landsat 9 were not exploited in this long-term study
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considering that image acquisition began only in autumn 2021. These
urface reflectance products are available through Google Earth Engine
assets 𝐿𝐴𝑁 𝐷 𝑆 𝐴𝑇 ∕𝐿𝑇 05∕𝐶02∕𝑇 1_𝐿2, 𝐿𝐴𝑁 𝐷 𝑆 𝐴𝑇 ∕𝐿𝐸07∕𝐶02∕𝑇 1_𝐿2

and 𝐿𝐴𝑁 𝐷 𝑆 𝐴𝑇 ∕𝐿𝐶08∕𝐶02∕𝑇 1_𝐿2). Tiles of the following paths and
rows were used: 204 48, 204 49, 203 49 203 50. Tiles situated on the
same paths are overpassed on the same day, while row 204 is covered
7 days after 203. Mosaics for each sensor were created to exploit all
imagery within a 16-day interval. Landsat 7 and 8 mosaics were offset
by 8 days based on the 8-day time gap between acquisitions over the
same area. 158 Landsat 5 (since 1984), 482 Landsat 7 (since 1999) and
223 Landsat 8 mosaics (since 2013) were created.

2.2.2. EO classification of flooded areas and GEE
The Modified Normalised Difference Water Index (MNDWI) (Xu,

2006) was used to detect water pixels and classify flooded areas. The
index was shown (Li et al., 2013; Ogilvie et al., 2015, 2018, 2020a) to
provide the greatest accuracy in detecting water in mixed environments
(water, flooded vegetation, shallow waters) compared to other com-
monly used indices. In floodplains, as in wetlands and shallow water
bodies, the presence of flooded vegetation (reeds, scrubland, trees) can
be important. The stability of the MNDWI threshold over time and
locations compared to indices including NDWI and NDVI (Ji et al.,
2009; Ogilvie et al., 2018) also increases its suitability when applied
to long term studies of water dynamics. The EO imagery geoprocessing
chain to obtain binary rasters and estimates of flooded surface areas is
detailed in Ogilvie et al. (2020a). Research on a subset of the floodplain
around Podor (2000 ha) involving substantial ground truth data and
very high-resolution imagery UAV between 2016 and 2019 had enabled
the calibration of the index thresholds for each sensor used here. Cloud
and shadow masks were generated here to (i) remove the pixels affected
by clouds on each image, (ii) assess the percentage of clouds over the
ROI. Masks were processed in GEE based on the quality assessment
(QA) bands provided with each image. For USGS Landsat Collection 2
imagery, QA bands are produced with CFMask, for Sentinel-2 imagery
these are based on SEN2COR and for MODIS these are provided by
the MODIS Adaptive Processing System. A USGS gap-fill method was
used to account for the SLC-off problems with Landsat 7 ETM+ imagery
after 2003. Codes were developed in GEE to apply the approach on
the entire image collection for each sensor and export the water, cloud
and shadow surface areas over our area of interest for each mosaic
image. Images with more than 20% clouds over our ROI were removed
here and time series were checked manually to remove aberrant values
related to undetected cirrus clouds notably. This approach was chosen
to evaluate the actual presence of clouds over our ROI and not unneces-
sarily remove images where clouds obscure pixels outside of our ROI. R
and QGIS were used to analyse and exploit the raster and .csv outputs
from GEE.

2.3. FBAS field observations across the floodplain

Field surveys were carried out during the 2022 flood to acquire
ground truth data along the Senegal floodplain against which to evalu-
ate the accuracy of the classified areas. These were contained in eight
sections of the floodplain between Bakel and Podor in Senegal (Fig. 1)
to provide a cross section of areas across the floodplain where recession
crop farming is carried out. The surveys identify 64 locations which had
been flooded and used for recession crop farming and 56 nearby areas
which were not flooded. Locations were captured using GPS and un-
manned aerial vehicle (UAV) imagery and were selected to be located
within an area at least 30 m by 30 m to be coherent with the size of the
classified Landsat and Sentinel-2 pixels (see Fig. 2). Flooded pixels were
carefully chosen to be outside permanent water bodies as the difficulty
here lies in correctly identifying temporarily flooded areas. Likewise,
non flooded pixels were chosen on the periphery of flooded areas,
as classification difficulties lie in the fringe areas. These non flooded

pixels were chosen outside of areas used for recession crop farming, as

4 
Fig. 2. Example of sorghum plots in the Senegal river floodplain surveyed with GPS
and unmanned aerial vehicle (UAV) imagery.

hese indicate that they were flooded at some point during the season.
onfusion matrices to assess the performance of the classification al-
orithm were used. These assess the agreement between predicted and

observed classes, i.e. the ability of EO data to correctly detect flooded
and non flooded pixels. Commonly used pixel based accuracy metrics
were calculated within R: overall accuracy, producer accuracy, user
accuracy, and Kappa coefficient. Producer accuracy (Prod. Accu) and
user accuracy (User Accu.) values are important to interpret overall
accuracy values as they inform about omission and commission errors,
respectively. These well-known metrics are explained in Stehman and
Foody (2019), Li et al. (2018).

In addition field data gathered in 2018 in the Podor floodplain
was used. Using a handheld GPS, 446 plots used for flood-based agri-
culture following the 2018 flood were surveyed and delimited. This
data is exploited here to analyse the duration of the flood across these
plots and provide insights into the water requirements for flood-based
agriculture.

2.4. Global water data sets

Global Surface Water (GSW) datasets produced by Pekel et al.
(2016) were also used for comparison. These exploit the Landsat 5, 7
nd 8 archives to provide, based on a combination of expert systems,
isual analytics and evidential reasoning, what is often regarded as
he most advanced and detailed surface water datasets at a 30 m
esolution (Huang, 2018). All available monthly images from the GSW
atasets for 1999–2021 available within Google Earth Engine (asset
 𝑅𝐶∕𝐺 𝑆 𝑊 1_4∕𝑀 𝑜𝑛𝑡ℎ𝑙 𝑦𝐻 𝑖𝑠𝑡𝑜𝑟𝑦) were processed to extract monthly
urface water values for our region of interest. The flood dynamics
btained by GSW were compared here with those obtained by Landsat,
entinel-2 and MODIS, as well as with the hydrological flow data at
akel. The flood occurrence maps produced by the GSW datasets (asset
 𝑅𝐶∕𝐺 𝑆 𝑊 1_4∕𝐺 𝑙 𝑜𝑏𝑎𝑙 𝑆 𝑢𝑟𝑓 𝑎𝑐 𝑒𝑊 𝑎𝑡𝑒𝑟, band 𝑜𝑐 𝑐 𝑢𝑟𝑟𝑒𝑛𝑐 𝑒) from imagery
ver 1984–2021 was also extracted for the ROI and compared through
isual interpretation with the multi-year occurrence maps produced in
his work.

.5. Hydrological data and regression models

Monitoring of stage levels of the Senegal River has been carried
ut since 1904 at Bakel and is currently managed by the DGPRE
Direction de la Gestion et Planification Générale pour la Protection

des Ressources en Eau, in French) in Senegal in collaboration with
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the OMVS (Organisation pour la Mise en Valeur du Fleuve Séné-
al). Early data contain more gaps and uncertainties, therefore the

corrected datasets produced by IRD for the Actualisation de la mono-
raphie (Bader, 2015) were used here. These provide flow data based
n updated stage-discharge rating curves. Daily flow measurements
ver 1950–2022 from Bakel gauging station on the Senegal river were
xploited, and averaged into monthly and yearly flow values.

.5.1. Comparing annual flood amplitudes from EO and hydrological data
Hydrological data was used to explore the coherence of the annual

peak flooded areas estimated through EO in the Senegal floodplain
against flow data from the upstream Bakel gauging station over 2000–
2022. The Bakel station is a strategic station for this, as it is situated
ownstream of the major tributaries: Bakoye, Falémé and Bafing and
s therefore representative of the total flow transiting through the
loodplain. Correlations were explored between monthly peak flow
nd peak surface areas detected by all five EO sources (L5, L7, L8,

MODIS, S2) and GSW global surface water datasets. R-squared (𝑅2), a
tandard goodness-of-fit measure was used to evaluate the correlation.
orrelations were investigated using peak monthly flow data instead
f peak daily data, as the extent of inundated areas is determined
y both the amplitude and the duration of the flood pulse (Bader,
015) as illustrated by the flow hydrographs (Fig. A.2). For example,
he prolonged peak observed in 2020 (𝑄𝐽𝑚𝑎𝑥 = 3464 m3∕s, 𝑄𝑀𝑠𝑒𝑝𝑡 =
854 m3∕s) leads to a greater flooded area than the higher, shorter flow
ulse measured in 2019 (𝑄𝐽𝑚𝑎𝑥 = 4956 m3∕s, 𝑄𝑀𝑠𝑒𝑝𝑡 = 2400 m3∕s).

.5.2. Modelling historical variations in the floodplain
Relations between hydrological data of the Senegal river and earth

bservations of flooded areas were further explored to derive the
ptimal numerical model equations which can be used to estimate
eak flooded areas based on hydrological observations. Considering
he difficulties in modelling floodplains due to digital elevation model
DEM) uncertainties across these large, flat alluvial plains, several
orks have focussed on developing statistical regression models to

elate variations in stage or flow in the river with water surface areas
n the floodplain As shown in previous studies of large rivers (Ogilvie
t al., 2015; Orieschnig et al., 2022), the amplitude of large floods
hich are generated by rainfall upstream are well correlated with the
mplitude of flow in the river bed upstream. These regression models
an then be fed into 1D models or water use models for planning
urposes as done in the Niger river (Ogilvie et al., 2015; Seidou et al.,
021; Jung et al., 2011; Orieschnig et al., 2022; Padi et al., 2011). In
he Senegal river, the existing relationship developed on the basis of 7
POT images in the 1990s remains used to model future changes in the
xtent of the flooded areas under the influence of upstream changes,
otably dam operations (Bader et al., 2003; Tilmant et al., 2020; SCP
t al., 2009; BRLi et al., 2021).

Regression models were explored using monthly flow data at Bakel
or 2000–2022 averaged over different months of each year. Maximum
onthly runoff (Qmeanmax) and average runoff over two and three
onths to identify which month(s) could be best suited to estimate or
redict the flooded areas based on flow data upstream were investi-
ated. Based on Fig. A.2, mean runoff per year for the highest month,
or the months of August, September, October and for their bimonthly
nd trimonthly means were used to investigate correlations, i.e. 𝑄𝑀𝑚𝑎𝑥,
𝑀𝑎𝑢𝑔 , 𝑄𝑀𝑠𝑒𝑝, 𝑄𝑀𝑜𝑐 𝑡, 𝑄𝑀𝑎𝑢𝑔−𝑜𝑐 𝑡, 𝑄𝑀𝑎𝑢𝑔−𝑠𝑒𝑝 and 𝑄𝑀𝑠𝑒𝑝−𝑜𝑐 𝑡. Regres-

ions were explored using a 60–40 split sample approach (Motavita
t al., 2019), where data from 60% of the years were used to calibrate
he equations-models and the other 40% were used for validation. The
3 years (2000–2022) were therefore split into two periods: 2000–
012 and 2013–2022 for validation. Both periods considered including
ery wet years (2003, 2020) and dry years (2006, 2017) but in other
ases methods such as sliding window techniques or differential split
ample tests (Dakhlaoui et al., 2019) may be used to ensure a range

f hydroclimatic conditions. MODIS earth observations were used here i

5 
s they provide a reliable time series over 20 years (vs 7 years for S2).
he amplitude of the annual flood peaks detected by MODIS over 2000–
022 were bias corrected based on the near systematic underestimation
𝑅2 = 0.99) of MODIS compared to S2 over 2016–2022 using the
ollowing equation:

𝑚𝑎𝑥_𝑆2 = 1.1336 ∗ 𝑆𝑚𝑎𝑥_𝑀 𝑂 𝐷 𝐼 𝑆 (1)

here 𝑆𝑚𝑎𝑥_𝑆2 and 𝑆𝑚𝑎𝑥_𝑀 𝑂 𝐷 𝐼 𝑆 are the annual peak water surface
reas detected by Sentinel-2 and MODIS imagery respectively. Linear
olynomial models were calibrated and evaluated based on standard
erformance metrics between the peak surface area predicted by the
odel and peak surface area estimated from earth observations. Nash–

utcliffe Efficiency (NSE) and Kling–Gupta Efficiency (KGE) which
combine the three components of model errors (correlation, bias, ratio
of variances or coefficients of variation; Liu 2020) were used.

The regression model with the strongest performance is then cal-
ibrated on the full time series of 23 years of bias-corrected MODIS
observations and flow data. The definitive numerical model is finally
applied to the long term time series of data from the Bakel gauging
station available for 1950–2022 to model past variations in flooded
areas in the Senegal floodplain. The 73 years of observations are then
sed to calculate quantiles and converted into exceedance probabilities,
.e. indicating the surface areas flooded at least 1%–99% of the time.
uantiles are calculated over 1950–2022 as well as over three periods
orresponding to the high flow years (1950–1971), the great drought
1972–1993) and recent times (1994–2022) where rainfall and flow
ecovered somewhat Bodian et al. (2020), Descroix et al. (2020).

.6. Estimating flood based agriculture in the floodplain

.6.1. EO multi-year flood occurrence maps
Earth observations of flooded areas were aggregated to create com-

osite flood occurrence maps. The classified rasters mosaicked over
he whole floodplain for each 5 or 8 day period were aggregated for
ach year and over several years in GEE. Filters were used to select
mages between September and November when the river overflows
nto the floodplain and thus exclude areas which are flooded for other
easons notably irrigated perimeters. Fieldwork in the Podor floodplain
onfirmed that even in high flood, waters had receded at the end of
ovember in areas used for recession crop agriculture. Cloudy pixels
ere masked when creating the mosaics on each date but additional

ilters are applied in posttreatment to remove their residual presence
ased on a minimal threshold. Visual interpretation is first used to
dentify the range of values of residual cloudy pixels, i.e. pixels classed
s flooded outside the floodplain resulting from cloud and shadow in-
erferences. Accuracy values are then evaluated for varying thresholds
n increments of 2 within this range (here 1–21) and pixels below
he threshold which maximises overall accuracy are excluded. These
roducts provide maps of the duration pixels are flooded, which are
nalysed to appreciate the amount of land in the floodplain which is
uitable to flood recession agriculture. Applied to the full time series of
bservations, this approach creates a multi-year occurrence map which
lso provides a mask at 20 m of permanent water bodies and temporary
looded areas that are relevant to FBAS.

.6.2. Regression model of FBAS cropped areas
Data to characterise the extent of flood recession agriculture in the

loodplain were compiled from available literature and national data
ources. Crops grown in the floodplain consist essentially of sorghum,
aize, cowpea and to a lesser extent melon and watermelon (Poussin

t al., 2020; Sall et al., 2020a). Data for the period 1950–2000 were
xtracted from Lamagat (2001). This work had compiled, analysed and
riticised observations and statistics data over the period 1946–2000 on
ecession crop farming on both the Senegalese and Mauritanian banks
f the Senegal river floodplain. Based on this data, Lamagat (2001)

dentified a relationship with estimates of the flooded surface area and
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secondly with river stage data at Bakel. Despite the simplifications in-
herent to this approach which does not model socio-economic changes
r livelihood changes, this relationship remains an essential tool for

the river basin agency (OMVS) in the operational management of the
Manantali dam as well as in its long term strategic planning (Bader
et al., 2003; SCP et al., 2009; BRLi et al., 2021). This regressive model is
here updated based on the flooded surface area that we obtain from our
approach. Considering the complex relation between flooded areas and
cropped areas developed by Bader, which led to a specific equation be-
low 80,000 ha cropped and over, natural spline smoothing is used. This
is a powerful regression method which builds a piecewise polynomial
function, therefore fitting a different polynomial curve for different
ranges of flooded areas. The model was calibrated on the 18 years
where observations are available and then applied over 1950–2022 to
provide an estimate of areas cultivated in recession farming. Quantiles
and exceedance probabilities are calculated to analyse and discuss the
dynamics in cultivated areas. For recent years, annual statistics are
hard to obtain considering the emphasis placed on irrigated crops and
the large, transboundary scale of the floodplain. Statistics gathered by
national authorities in Senegal provide data on the number of house-
holds involved in flood based agriculture but not associated surface
areas sown and production levels (ANSD, 2014). Cropped areas and
production levels are however available per department for major crops
per department (DAPSA, 2021). Data on key FBAS crops including
sorghum, millet and cowpea are exploited here to estimate surface area
cropped in part of the floodplain and discuss the relevance of the results
from the regression model.

3. Results and discussion

3.1. EO mapping and monitoring inundated areas in the Senegal floodplain

3.1.1. Multi-year flood dynamics from EO sensors vs. hydrological data
Flood dynamics obtained from earth observations are illustrated

for each satellite in Fig. 3. Though Landsat 5 TM and GSW provide
observations since 1984, results highlight how the limited availability
of images until 1999 leads to clear difficulties in monitoring flood
dynamics. Following the launch of Landsat 7, observations are reliably
acquired on the entire globe every 16 days but results point to ongoing
difficulties in capturing the flood dynamic, as seen in the absence of
a coherent flood pulse with clear flood rise and decline phases, and a
marked flood peak (Fig. A.3). The lower correlation metrics between
peak flooded areas detected by Landsat observations and the peak
monthly flow in the Senegal river (Fig. A.5) confirm these difficulties to
reliably capture the flood peak, and outliers point to underestimations
certain years (e.g. 2009, 2018). Landsat 8 imagery for the floodplain
provides enhanced possibilities to monitor the flood dynamics partly by
removing uncertainties through improved high (cirrus) cloud detection
with the Band 9 as well as narrower spectral bands, but the 16 day
interval between acquisitions leads to underestimating some annual
peaks.

Sentinel-2 and MODIS, despite its 500 m resolution, allows for an
effective, coherent monitoring of the flood dynamic over time, partly
due to the increased temporal repetitivity. The high correlations be-
tween upstream flow values and peaks water surface areas detected by
S2 and MODIS imagery point towards an accurate detection of the peak
flooded areas, at least in relative terms, as their amplitude are shown
to vary accordingly to the amplitude of river flows. Water surface
areas estimated from S2 observations are close to those obtained from
MODIS observations (Fig. A.4) but peaks are consistently higher (by
13%, Eq. (1)), which is coherent with the finer spatial resolution of
Sentinel sensors. The 20 m resolution also allows a better understanding
of the flood recession phase thanks to the increased detection of small
flooded areas visible in Fig. A.4. In 2022, greater cloud presence during

the flood led to more scattering in the results from Sentinel-2.

6 
Table 1
Accuracy metrics calculated for MNDWI classification of flooded areas on Landsat 7,
Landsat 8, Sentinel-2 and MODIS imagery against 2022 ground truth.

Satellite Producer
accuracy

User accuracy Overall
accuracy

Kappa

Sentinel-2 0.89 1.00 0.94 0.88
Landsat 8 0.91 0.97 0.93 0.87
Landsat 7 0.91 0.92 0.91 0.81
MODIS 0.76 1.00 0.87 0.75

3.1.2. Pixel based accuracy assessment of EO classifications of inundated
areas

Table 1 summarises the accuracy metrics of the confusion matrix
omparing the resulting maps of water areas from each satellite source
gainst extensive ground truth data acquired along the floodplain in
022. Overall accuracies are high especially with Sentinel-2 and Land-
at 8 partly as a result of their high spatial resolution. Fig. 4 illustrates
he capacity of these earth observations to correctly classify dry (’not
looded’) and wet (’flooded’) pixels in this heterogeneous environment.
ODIS accuracy metrics are lower due largely to the lower spatial

esolution (463 m). Fig. 4 illustrates the omission errors (the central
round truth points) resulting from the lower spatial resolution and
he difficulties to correctly capture smaller flooded areas, notably small
hannels and meanders that were then used for recession cropping
n 2022. These errors are reflected in the lower producer accuracy
ut user accuracy is optimal indicating that calibration of the MNDWI
hreshold here prevents overestimation of flooded areas and overall
ccuracy remains good despite the lower spatial resolution at 0.87%.
andsat 7 performs less well than Landsat 8, in part due to the scan line
orrector problems after 2003 which are filled through interpolation
nd therefore reduce the level of detail and precision, potentially
asking isolated land or water pixels, as illustrated in Fig. 4. GSW

magery is not available for 2022 so could not be used in the pixel-based
ccuracy assessments. These results confirm the relevance and accuracy
f the MNDWI classification of flooded areas and confirm that the high
oodness of fit coefficient obtained in the previous section do not mask
 systematic under or overestimation of surface water areas.

.2. Modelling flooded area from upstream flows

Table 2 summarises the accuracy and performance indicators for
each of the regression models which seek to estimate flooded areas
based on monthly flow values over different periods in calibration and
validation phase. Strong correlations are observed between the monthly

aximum flow and maximum flooded areas but the relationship can be
further improved by considering the mean flow over August–September
each year. Taking the mean flow over the two highest months improves
the coefficient of determination NSE and KGE from 0.64 to 0.84 in val-
idation phase. Peak flow occurs between August and October at Bakel
(Fig. A.2) and including October monthly flow improve marginally
upon this correlation, with a 0.01 point increase in both NSE and
KGE. The timing of the peak flow depends on rainfall in the upstream
catchments but also the amplitude of the flood. At Bakel the peak flow
is generally reached during September but occasionally mean August
flow can be superior as occurred during lower floods in 2011 and 2021.

The most robust approach is then used to define the linear model
based on the full 23 years of MODIS observations and flow data. The
definitive correlation curve is shown in Fig. 5 and defined in the
following equation:

𝑆𝑚𝑎𝑥 = −1.745 ∗ 109 + 3.576 ∗ 106 ∗ 𝑄𝑚𝑒𝑎𝑛8910 − 345.5 ∗ 𝑄2
𝑚𝑒𝑎𝑛8910 (2)

where 𝑆𝑚𝑎𝑥 is the annual peak water surface area in the floodplain in
2 and 𝑄𝑚𝑒𝑎𝑛8910 is the average flow over August–October at Bakel in
3/s.
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Fig. 3. Flooded surface area across all areas over full available period based on 6 satellite sources compared with monthly runoff in the Senegal river at Bakel gauging station
over 1984–2022.
3.3. Historical variability of flooded areas

Based on the results obtained above, the variations in flooded area
were modelled since 1950 (Fig. 6). Water surface areas display stark
variations over time, ranging from 30,000 to 720,000 ha. The average
flooded area over the whole 1950–2022 reaches 329,000 ha but clear
phases are observed in line with the high variability of the hydrological
regime of the Senegal river since 1950 which typically distinguishes
three phases (Bader, 2015; Bruckmann et al., 2022). Fig. A.1 illustrates
the stark difference in average annual discharge at Bakel, with high
flow during the 1950s and 1960, followed by the very dry years of the
great drought in the Sahel from 1974, and a relative return to higher
flow years since the mid 1990s.
7 
Peak flooded areas exceeded 600,000 ha ten times and reached
an average of over 553,000 over 1950–1971 (Fig. 7). In terms of
peak monthly flow, historical data reveals maximum values reaching
over 8000 m3/s in early September 1950, and over 4000 m3/s when
averaged over August-October 1950. On only two occasions over this
period did average flow on August-October fall below 2000 m3/s.
Over 1972 to 1993, the average flooded area per year remained under
200,000 ha (196,000 ha) and on four occasions below 50,000 ha (1983,
1984, 1987, 1990). During this period mean flows over August-October
remained under 2000 m3/s with the exception of 1974. Since 1994,
flooded areas have recovered somewhat but remain highly variable,
reaching over 300,000 ha during good years (13 years over 1994–
2022) but below 100,000 ha on four years (1996, 2004, 2006, 2017),
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Fig. 4. Comparison of flooded areas detected by four EO sensors for 2022 against ground truth in two locations.
Table 2
Performance metrics of the linear models estimating flooded areas based on monthly
flow at Bakel over different periods.

Flow data source Calibration Validation

NSE KGE NSE KGE

𝑄𝑀𝑚𝑎𝑥 0.96 0.97 0.56 0.64
𝑄𝑀𝑎𝑢𝑔 0.77 0.83 0.36 0.69
𝑄𝑀𝑠𝑒𝑝 0.94 0.96 0.58 0.62
𝑄𝑀𝑜𝑐 𝑡 0.51 0.59 0.32 0.68
𝑄𝑀𝑎𝑢𝑔−𝑜𝑐 𝑡 0.91 0.93 0.81 0.85
𝑄𝑀𝑎𝑢𝑔−𝑠𝑒𝑝 0.96 0.97 0.80 0.84
𝑄𝑀𝑠𝑒𝑝−𝑜𝑐 𝑡 0.86 0.90 0.62 0.70

leading to an area of 260,000 ha exceeded 50% of the years over this
period (Fig. 15). Flooded areas exceeded 95% of the years over each
8 
period varied from 400,000ha, to 37,000 ha before recovering partly
to 89,000 ha. This is mirrored in the flow data where mean flows over
August-October have recovered partly exceeding 2000 m3/s on good
years.

The absolute values for several years (in grey in Fig. 7) before 1975
are subject to greater uncertainty as several values before 1975 are for
mean flow values outside the range the model was developed upon.
As Fig. 6 emphasises the model was calibrated-validated upon average
monthly flows over Aug–Sep under 2200 m3/s. Unlike linear relations,
the quadratic polynomial regression used here does however lead to
a slower increase at the high end of the range, potentially limiting
overestimation errors. Values obtained here correspond to peak flooded
areas, i.e. synchronously flooded areas, as opposed to the sum of areas
flooded at some point during the flood. Over 2022, total flooded areas

reaches 433,000 ha vs a peak flood of 424,000 ha. This indicates that
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Fig. 5. Correlation between peak flooded area in the floodplain and mean flow at Bakel over aug–sep and aug–oct respectively).
Fig. 6. Estimated peak flooded areas based on earth observations and modelled based on Bakel flow data over 1950–2022.
f
t

2
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espite the scale of the floodplain the peak is concomitant across the
loodplain i.e. when the south is flooded the north is still flooded (even
f only marginally).

.4. Supporting flood based agricultural systems

3.4.1. Mapping water occurrence and potential for FBAS
Fig. 9 provides an overview of the produced multi-year water oc-

currence map, and Fig. 10 a close-up view of the flooded areas at 20 m
esolution. The high resolution mask provides a coherent connection
etween flooded areas, reproducing small channels and meanders seen
n the Sentinel-2 true colour composite imagery.

Field observations in the Podor floodplain of the areas effectively
ropped in 2018 were compared with the 2018 flood occurrence map.

Fig. 10 highlights the accuracy of the map in detecting temporarily
 y

9 
looded areas used for FBAS that year. It also illustrates how much of
he flood based agriculture is concentrated on the periphery where the

flood duration is lower. The density distribution plot (Fig. 11) reveals
that the greatest proportion of land used for FBAS was flooded 40 days
(median 42 days, s.d. 15 days) and that 80% of land cropped is flooded
between 19 and 57 days. Annual occurrence maps for 2017–2022 were
created from S2 observations and Fig. 12 summarises for each year the
surface area in the floodplain flooded for varying durations of time over
September–November. The areas in green on Fig. 12 isolate the areas
which are flooded between 19 and 57 days and are potentially suitable
for FBAS.

In good years such as 2018, 2020, 2022, we estimate that near
00,000 ha in the floodplain were flooded for this duration of time and
herefore could be suited in hydrological terms to FBAS. In low flood
ears such as 2017, just under 50,000 ha were flooded, illustrating the
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Fig. 7. Annual maximum flooded surface area estimated based on earth observations and regression model for 1950–2022.
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Fig. 8. Image from Papy (1951) of the floodplain at Rosso looking towards Mauritania
uring the high flood, 18.10.1950.

mpact of lower amplitude floods on FBAS. The effect of prolonged
loods is also clearly visible on the flood duration plots, where the

prolonged periods of flows above 2500 m3/s in 2020 (Fig. A.2) is shown
o have produced a more prolonged flood than in 2022.

.4.2. Modelling recession flood cropping in the floodplain
The correlation between flooded areas and recession cropping are

hown in Fig. 13 updated here based on the results from our approach.
hese lead to estimating for the past 72 years the estimated extent (ha)
f recession farming practised in the floodplain based on the flooded

surface areas detected from the earth observations. Fig. 14 highlights
that cultivated area vary between from just over 10,000 ha to over
100,000 ha over 1950–2023. Values of 100,000 ha were regularly
exceeded during the 1950s, nearly 75% of the time until 1971 (Fig. 15)
but since 1974 this values is estimated to have been reached only once.
Since 1994 and the return of larger flooded areas, the average recession
rop area is estimated to 57,000 ha but variability is high with an
lternation of years where cropped area reach over 75,000 ha and years
nder 40,000 ha.
 f

10 
Fig. 13 points to a modest rise in cultivated areas for flooded
reas up to 200,000 ha which appears consistent with observations in

the (Podor) floodplain and the fact that areas most regularly flooded
include land where natural vegetation thrives and hinders cultivation.
These are also areas where water may remain for extended periods in
temporary ponds and are therefore not suited to recession cropping
which must begin sufficiently early in the growing season. Once floods
increase over 200,000 ha, flood waters reach some of the most suit-
able land in the floodplain and the increase per ha flooded is more
significant. Field observations during 2022 confirmed the significant
land areas turned into recession crop farming following the large flood.
Above 500,000 ha of flooded land, the rise in cultivated area per
hectare of flooded land declines. This may partly be due to the fact
that part of the land flooded in these extreme high waters includes non
agricultural land, e.g. roads, urbanised areas (as seen in illustrations
in Papy (1951)), and includes areas which are not regularly used for
flood recession cropping. Fig. 13 also points to the fact that Lamagat
(2001) in the POGR modelled larger cultivated areas for flooded areas
nder 300,000 ha, apparently giving less weight to observations over
976–1979 and 1994.

. Discussion

.1. Monitoring surface water dynamics in floodplains with earth observa-
ions

By exploiting a site-specific MNDWI classification approach suited
o shallow, mixed water environments and the full archive of MODIS,
andsat, Sentinel-2 satellite imagery, up to 135 000 ha additional
looded areas in the Senegal river floodplain are detected compared
o Global Surface Water (GSW) data sets (Pekel et al., 2016). Accu-

racy assessments in Ogilvie et al. (2020a), carried out on a subset of
the floodplain against ground truth data consisting of high resolution
DEM, limnimetric measurements and unmanned aerial vehicle (UAV)
imagery, previously established that GSW led to greater errors (RMSE
= 228 ha, NSE = 0.69) and underestimations in the peak flooded
reas. These omission errors are here clearly propagated at the scale
f the whole floodplain and confirm previous concerns about GSW’s
uitability to detect non-pure pixels where vegetation and water re-
lectance mix (Aires et al., 2018; Yamazaki and Trigg, 2016; Hardy
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Fig. 9. Overview of Sentinel-2 multi-year flood occurrence map.
Fig. 10. Water occurrence over sep–nov in 2018 for 464 FBAS plots surveyed in the Podor floodplain.
et al., 2019; Herndon et al., 2020). Furthermore, despite providing
data since 1980s, GSW which combines observations from Landsat
imagery sources suffers from the same difficulties as Landsat 5 until
1999 to reproduce water dynamics in the floodplain (Fig. 3). Using a
single image per month, the GSW datasets underestimate the flooded
areas after 1999 compared to other sensors, partly as a result of earth
observations during high waters occurring up to several weeks after
the flood peak. Over 2013–2022 (Fig. A.3), peak flooded areas are
estimated around 200,000 ha with GSW data, but reach above 300,000
ha with MNDWI applied to Landsat, Sentinel and MODIS imagery.
11 
Several products in the literature focus on combining multi-source
imagery, especially Landsat and Sentinel-2 observations (Yamazaki and
Trigg, 2016; Donchyts et al., 2016; Claverie et al., 2018), to moni-
tor water bodies. Results here illustrate the difficulties of Landsat to
capture flood peaks accurately due to its temporal resolution, reducing
the value of such products before Sentinel-2 imagery. Fusion of multi-
source earth observations holds greater potential by combining the
benefits of high spatial resolution imagery from Landsat and Sentinel-2
satellites with high temporal resolution MODIS observations. Data fu-

 al., 2006) and ESTARFM (Zhu
sion methods including STARFM (Gao et
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Fig. 11. Density distribution of the duration of the flood in the 464 FBAS plots and scatterplot of the surface area vs. the number of days each plot is flooded.
Fig. 12. Length of time surface area are flooded in the floodplain over September–November and proportion of these which areas suited to FBAS based on S2 occurrence maps
for 2017–2022.
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et al., 2010) are the most widely used. Xiao et al. (2022) notably
used ESTARFM to create 25 images from Sentinel-2 and MODIS ob-
servations to monitor irrigation dynamics over one growing season,
and Heimhuber et al. (2018) similarly generated 8-day resolution maps
from Landsat and MODIS imagery to study Australian floods in 2010.
However, spatiotemporal fusion (STF) methods remain subject to nu-
merous challenges, including spatial and spectral differences between
fine and coarse EO imagery as well the application of STF models (Xiao
et al., 2023) especially in long-term and large scale studies. Fusion
methods also face difficulties to accommodate sudden changes of land
se over time in complex, heterogeneous environments (Htitiou et al.,
021) as observed in such floodplains.

Importantly, results here highlighted the high spatial accuracy
overall accuracy = 0.87) of MODIS imagery despite its moderate
patial resolution and its optimal ability to study long term surface

water dynamics (𝑅2 = 0.87). As in other case studies, MODIS remains
 o

12 
essential to explore surface water variations in wetlands and flood-
plains (Bergé-Nguyen and Crétaux, 2015; d’Andrimont and Defourny,
018; Aires et al., 2020), as well as on smaller water bodies (Ogilvie
t al., 2020a). Considering the poor performance of Landsat 5 observed
ere (Fig. 3), fusion methods would not have been capable of extending
O observations as far back as 1984. MODIS imagery was therefore
sed to monitor temporal dynamics over 2000–2022 and to derive long
erm regression models between discharge and flooded areas that were
hen used to model flooded areas as far back as 1950. High spatial
esolution 5-day imagery from the Sentinel-2 A and 2B constellation
ere used to map water occurrence and FBAS potential in recent years.

n other contexts, such as small water bodies, fusion methods may
rovide benefits to monitor surface water dynamics at very high spatial
nd temporal resolution. Results also confirm here the ability of optical
ensors to correctly reproduce the flood dynamics, due to the limited
loud presence in this Sahelian floodplain during the rainy season. In

ther regions, however, the presence of monsoon clouds may require
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Fig. 13. Relationship between annual peak flooded area and surface area cropped for recession farming.

Fig. 14. Surface area exploited for flood recession cropping over 1950–2022 estimated from in situ observations and modelling.
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Fig. 15. Exceedance plots indicating the probability that values of mean flow, flooded area and cultivated areas are exceeded for a given year over 1950–2022 and for three
sub-periods: 1950–1971, 1972–1993, 1994–2022.
imagery from active sensors such as Sentinel-1 (Mahdianpari et al.,
2018; Amani et al., 2019).

4.2. Historical and future trends in flooded areas

Earth observations of flooded areas across the Senegal floodplain
over 22 years led to the development of robust regression models
(KGE ≥ 0.84) between peak flooded areas and discharge data. These
allow the most comprehensive assessment of interannual trends in
flooded areas over 1950–2022. Results show that average flooded areas
over the whole period reach 329,000 ha but with stark interannual
variability already observed in the hydrological regime. The average
flooded area declined drastically to 196,000 ha over the dry 1972–1993
period from 553,000 ha during the hyper wet 1950–1971 period. Since
1994, flooded areas have recovered partially to an average of 260,000
ha, supported by the increase in annual rainfall observed by Bodian
et al. (2020). Discharge and flooded areas however remain significantly
lower to levels reached in the 1950s and 1960s as a result of reduced
rainfall and the influence of the Manantali dam put into operation on
the Bafing tributary in 1987 (Bruckmann et al., 2022).

In the literature, peak flooded areas in 1999 were previously es-
timated around 210,000 ha (Lamagat, 2001; Bader, 2015; Bruckmann
et al., 2022) vs 454,000 ha in this work. Part of the difference originates
from the differences in ROI which here extends upstream of Matam,
the inclusion of permanent areas (estimated around 16,000 ha from
our Sentinel-2 water occurrence maps) and the improved MNDWI
classification discussed previously. Furthermore, regressions based on
a limited (7) number of images, that were rarely synchronous with
the flood peak according to the authors, were used to extrapolate
to other years. Mettrop et al. (2019) estimated a peak of 450,000
ha in 2003 which is comparable with our estimation of 506,000 ha,
despite a significantly different approach aggregating flooded areas
estimated from stage values at Podor and Matam. Their ROI was limited

to 755,000 ha vs 1,100,000 ha, and notably excluded the regularly
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flooded areas east of Kaedi. Our assessment reveals that the large floods
occurring in the 1950–1960s may have flooded in excess of 600,000 ha.
Aerial photography of the 1950 flood (Papy, 1951) relate the amplitude
of the devastating floods where much of the floodplain was indeed
inundated (Fig. 8). 1950 along with 1866, 1871, 1906, 1922, 1927,
1936, were recorded as being exceptional flood years.

These correlations are important as they allow stakeholders to
estimate the flooded areas based on observed, accessible hydrological
data. These regression models notably update the previous equations
developed using seven SPOT images from the 1990s (Lamagat and
Bader, 2004), improving the assessment of flooded areas by leveraging
advances in earth observations. Updating these regressions has also
ensured that they reflect the changes in hydrological regime observed
over the past decades. These models have direct operational conse-
quences as they are used to predict the amplitude of the flooded
area and guide reservoir operation to support FBAS activities in the
floodplain. The river basin agency (OMVS) currently exploits such
correlations to define reservoir operation rules in order to maintain
at least 50,000 ha of FBAS and to design the Senegal river basin
development master plan (SCP et al., 2009; Bader, 2015; BRLi et al.,
2021). Results also point to the increase in reliability when estimating
peak flooded areas based on upstream flows in August–September vs.
August alone which leads to much larger uncertainties. Future research
on hydrodynamic modelling based on high resolution digital elevation
models should help refine estimates of flooded areas, notably for high
stage values outside the range observed over 2000–2022.

4.3. Mapping FBAS potential areas and modelling long term trends in
cultivated areas

FBAS remain poorly documented, despite the millions of hectares in
Africa and Asia which support the livelihoods of millions of smallholder
farmers (Kool et al., 2018). Unlike irrigated systems that have been

widely investigated with earth observations, there are very few studies
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which focus specifically on mapping FBAS practices using EO (Mané
and Fraval, 2001; Poussin et al., 2020). The heterogeneous, small
scale cropping activities are difficult to distinguish especially when
working at large scales and over extended periods. Studies on FBAS
ocus predominantly on characterising and improving the productivity
f these practices (Kool et al., 2018; Ayyad et al., 2022; Sall et al.,
020b,a; Zenebe et al., 2022). Here, we developed an approach to map
BAS potential areas and estimate FBAS cropped areas based on the
nowledge of surface water dynamics in the floodplain. Characteris-
ng inundation dynamics in floodplains is an essential step to under-
tand FBAS practices and potential FBAS areas. In East Africa, Harou
t al. (2020) similarly exploited MODIS data and Bayesian networks to
redict plausible areas for FBAS.

Correlations between flooded areas and available statistics on FBAS
nabled the estimation of total FBAS cultivated areas in the floodplain
nd their variations over the past 72 years. Results show that values
f 100,000 ha of cropped FBAS were regularly exceeded between
950 and 1971. This is in agreement with Dieye et al. (2020) who
stimated 108,000 ha cultivated over 1946–1971. Similarly, Dickmann
t al. (2009) estimated that 114,000 ha were cultivated (out of a FBAS
otential of 233,000 ha) before 1971 and the onset of droughts across
he Sahel. Since 1994 and the return of greater flooded areas, the
verage FBAS cropped area is estimated here around 57,000 ha, but
ith high inter-annual variations. The current scale of FBAS practices

emains hard to confirm but partial statistics by the Senegal govern-
ent provides an estimate of surface areas per crop (DAPSA, 2021).
onsidering only the departments bordering the river (Dagana, Podor,
atam, Kanel and Bakel) the total area cropped for key recession

rops (sorghum, millet and cowpea) reach 54,000 ha during the large
022 flood. Previous analysis of data in Lamagat (2001) led to an
stimate of a 66–34 ratio between cropped areas on the Senegalese
nd Mauritanian sides, which would lead to an estimate of 36,000 on
he right bank and a total of 90,000 ha. Despite uncertainties as to
he part actually cultivated on the Senegal floodplain per department
nd double cropping of cowpea–sorghum, the result is remarkably
omparable to the 87,000 ha estimated for 2022 from our regression
odel. At the same time, our S2 water occurrence maps identified
88,000 ha as potentially suitable land for FBAS in 2022. Literature
uggests that in the floodplain around 50% of land suitable for FBAS
s effectively cropped (Mané and Fraval, 2001; Dickmann et al., 2009;
oussin et al., 2020). On this assumption, up to 94,000 ha may have
een cropped in 2022, further supporting the consistency of estimates
erived from both water occurrence maps and regression models.

In parallel, this research led to the first assessment for the Senegal
iver floodplain of the areas suitable for FBAS. Annual and multi-
ear water occurrence maps produced from Sentinel-2 observations
re valuable results to visualise the dynamics of the flood, identify
ryland, permanent flooded areas and temporary flooded areas which
ay be relevant for recession farming. These improve upon available
lobal Surface Water occurrence maps (Pekel et al., 2016) due to the
reater detection of heterogeneous flooded areas achieved here. The
hresholds applied in this approach seek to remove uncertainties from
louds, occasional rainfall events and wet season irrigation but some
f these may lead to pixels being wrongly classified as temporarily
looded. Experience working in the region with local farmers shows
hat excluding these pixels is complex as certain parts of irrigated
erimeters may well become flooded during large flood events, as
een in the top left of Fig. 11. The maps combine imagery between
eptember and November, therefore excluding dry season irrigated
erimeters. Flood occurrence maps provide spatialised information to
nable farmers and stakeholders to better appreciate areas which are
looded most often and help determine suitable plots. These results
re important for stakeholders to appreciate the potential of FBAS in
he floodplain. These maps also have other applications in hydrology
otably to improve research on evaporation over flooded areas, the
 o
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ater balance (Kool et al., 2022) and to support the calibration of 2D
ydrodynamic models of floodplains (Jafarzadegan et al., 2023).

The estimates of areas suitable for FBAS and of total FBAS cul-
ivated areas were based on hydrological variables. Sufficient water
eserves in the soil are the most limiting factor (Sall et al., 2020b).
ader et al. (2003) previously estimated that FBAS suitable areas
equired a minimum flood duration of 25 days. Analysis of the S2
ccurrence maps over 446 FBAS plots in Podor, Senegal showed here
hat areas effectively used for FBAS were flooded between 19 and
7 days. Farmers indicate that a flood duration of 15 to 60 days is
equired to allow recession cropping (Sall et al., 2020a), highlighting
 strong coherence between our results and the farmers’ observations
nd knowledge. In areas where water stagnates for too long, land
s not cultivated. This can be due to dense natural vegetation that
hrives as a result of being regularly flooded, but also for reasons
elated to the agricultural calendar. Farmers typically sow sorghum
nd cowpea crops in October-November as the flood recedes. Flood
aters however need to retreat sufficiently early to allow sorghum

rops to be sown and grow before the temperatures drop (Poussin
t al., 2020). Cropping plots in December leads to reduced yields as
orghum is a photoperiodic crop (Chantereau et al., 2013). In addition,
armers need to have harvested FBAS crops in time to start working
n the dry season irrigated crops (onions, rice). By considering areas
looded up to 57 days, this approach ensured that most years the
lood will have receded by the end of November. Depending on the
mplitude of the annual flood, this corresponds to a total area ranging
etween 50,000 ha and 200,000 ha which has the potential to support
BAS. FBAS, like other agricultural practices, are driven by several
actors. Water availability is not the only driver (Ogilvie et al., 2019)
nd FBAS will depend on numerous factors including proximity for
armers, land tenure and socio-economic difficulties which must be
nvestigated locally (Sall et al., 2020a). These results underline the need
or local assessments of FBAS practices, and argue for better collection
f national statistics on flood-based agriculture (Sidibe et al., 2016;
oussin et al., 2020). Further research exploiting remote sensing and in
itu observations to map the actual cropped areas will also help confirm
ow FBAS practices have evolved following hydro-climatic changes and
ocio-economic shifts in the region.

. Conclusions

By combining earth observations, hydrological regression models
nd extensive fieldwork, this research provides a detailed understand-
ng of water surface dynamics and flood-based agricultural systems in
he Senegal river floodplain. These works demonstrate the effectiveness
f optical EO data in capturing long-term interannual variations across
 large semi-arid floodplain and producing the most comprehensive
aps of temporary inundated areas. Regressive models, trained with
ydrological data and agricultural field observations, enable the anal-
sis of long term trends in flooded and FBAS cropped areas from
950 to 2022. These findings reveal the return of strong floods since
he mid-1990s, as well as the pronounced variability experienced by
BAS farmers due to climatic and human-induced changes, including
he operation of the Manantali dam. Predictive models for annual
looded and cropped areas based on upstream flows can guide early
arning systems for farmers, authorities, and aid agencies, granting
etter preparation for extreme floods and droughts. However, growing
ater demands for hydropower and irrigation during the dry season are
t odds with these livelihoods strategies, which rely on annual floods.
redictive models developed here will help quantify the impacts of
uture dams on peak flows and FBAS, allowing for the definition of
ptimal water allocation strategies that balance the competing needs
f the water-energy-food-ecosystems nexus.



A. Ogilvie et al.

n

Agricultural Water Management 308 (2025) 109254 
Fig. A.1. Mean annual flow at Bakel over 1950–2022. Flow is calculated over the hydrological year, e.g. for 2022 using flow data from June 2022 to May 2023.
Fig. A.2. Flow hydrographs at Bakel gauging station for 2017–2022.
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Fig. A.3. Flooded surface area in Senegal river floodplain over the past ten years (2013–2022) based on 5 satellite sources.

Fig. A.4. Comparison between MODIS and Sentinel-2 estimates of flood dynamics of Senegal floodplain (2017–2020).

Agricultural Water Management 308 (2025) 109254 

17 



A. Ogilvie et al.

R

A

A

A

A

A

A

B

B

B

B

B

B

B

Agricultural Water Management 308 (2025) 109254 
Fig. A.5. Relationships between peak monthly flow data at Bakel and peak water surface area detected by each EO source per year over 2000–2022.
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