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Abstract 

Prey abundance and quality are dynamic in time and space, impacting predator ecology . W e examine variation in species-specific krill 
quantity and quality as prey for humpback whales in the Northern California Current region, using generalized additive models to as- 
sess metrics including biomass and energy density derived from an integrated dataset of concurrent active acoustics, net tows, and 

marine mammal observations (2018–2022). Overall, prey metrics were positively correlated with humpback whale presence, with in- 
creasing trends modified by seasonal (early versus late foraging season) and spatial (continental shelf versus offshore) variation (model 
deviance explained 36.3%–40.8%). Biomass and energy density had strong positive effects on humpback whale presence, suggesting 

whales target high-quality swarms that offer more energy per lunge. Elevated Thysanoessa spinifera abundance near humpback whales 
suggests that they target this species, particularly in the late season when they are energetically richer than Euphausia pacifica , the 
region’s other abundant krill species. Environmental change may decrease krill abundance and quality, impacting humpback whales’ 
ability to meet energetic requirements and potentially driving changes in their distributions and exposure to anthropogenic threats. 
Clarifying dri ver s of humpbac k whale krill patc h selection can improve species distribution models and aid managers in mitigating risk 
to whales. 

Keywords: active acoustics; krill; prey quality; spatial ecology; Northern California Current; humpback whales 
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Introduction

Krill are an important prey resource across ocean ecosys- 
tems (Cotté et al. 2011 , Miller et al. 2019 , Videsen et al.
2023 ). Both prey quantity and quality are variable in time 
and space and influence whether a resource is advantageous 
to a predator (Spitz et al. 2012 , Cade et al. 2022 ). For large 
predators like baleen whales, sufficient prey biomass is essen- 
tial to meet energetic demands and support activity during 
nonforaging life history phases, including reproduction (Jöns- 
son 1997 ). Extreme body size ratios relative to their prey re- 
quire baleen whales to feed on aggregated patches (Benoit- 
Bird 2024 ), such as krill swarms (Brinton 1962 ). In Antarc- 
tica, krill swarm height, packing density, and depth drive patch 

selection for foraging blue whales ( Balaenoptera musculus ) 
across spatiotemporal scales (Miller et al. 2019 ). The depth 

and density of krill aggregations control blue whale dive depth 

in Southern California (Goldbogen et al. 2015 ) and the St.
Lawrence River Estuary, and whales maximize net energy gain 

by balancing travel time to the prey, recovery time after dives,
and resource acquisition (Doniol-Valcroze et al. 2011 ). 
Published by Oxford University Press on behalf of International Council for the E
employee(s) and is in the public domain in the US. 
The energetic content of krill themselves also shapes whale 
oraging choices and strategies. In Western Antarctic Penin- 
ula fjords, humpback whales ( Megaptera novengliae ) target 
arger krill with higher energetic value (Cade et al. 2022 ). In
he California Current System (CCS), blue whales target calor- 
cally rich Thysanoessa spinifera , although this species is less
bundant compared to other krill species (Fiedler et al. 1998 ,
ickels et al. 2018 ). Foraging whales may prey-switch, a strat-

gy in which animals target prey based on relative availabil-
ty and quality (Murdoch 1969 ). Compared to blue whales,
hich are obligate krill predators (Fiedler et al. 1998 , Mizroch

t al. 2009 , Fossette et al. 2017 ), humpback and fin whales
 Balaenoptera physalus) prey-switch to consume a broader 
iet including pelagic fish. 
Oceanographic processes influence krill quantity and qual- 

ty across time and space, shaping the preyscape encoun- 
ered by predators on their foraging grounds (Fleming et al.
016 , Ryan et al. 2022 ). The CCS is a productive Eastern
oundary Current Upwelling System in the northeast Pacific 
cean off the United States west coast, extending south from
xploration of the Sea 2025. This work is written by (a) US Government 

https://orcid.org/0009-0002-1671-131X
https://orcid.org/0000-0003-2775-2563
https://orcid.org/0000-0001-6920-1554
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Figure 1. Map of study area illustrating concurrent marine mammal 
observation and echosounder data (dashed black lines). Detected krill 
swarms (orange) are scaled by biomass (kg). Gray dots: bongo net tows; 
green dots: humpback whale groups. Isobaths (50, 100, 10 0 0, and 
1500 m) are represented by gray lines (deeper isobaths are shown in 
progressively lighter colors), and the 200 m isobath designating the shelf 
break is blue-green. 
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ancouver Island, British Columbia, to Baja California, Mex-
co (Checkley and Barth 2009 ). In the Northern California
urrent (NCC), from Cape Mendocino, California, to Van-

ouver Island, krill are essential prey for taxa including baleen
hales (humpback, blue, and fin whales; Fiedler et al. 1998 ,
izroch et al. 2009 ). Two dominant species, Euphausia paci-

ca and T. spinifera (hereafter “krill”), together comprise
 95% of the krill community (T. Shaw and J. Fisher personal

ommunication). Thysanoessa spinifera are more lipid-rich
han E. pacifica (Fisher et al. 2020 ) and are the preferred prey
f blue whales (Fiedler et al. 1998 ). However, the caloric con-
ent of both krill species may be impacted by life history traits
nd dynamic primary productivity processes that vary in space
nd time (Färber-Lorda et al. 2009 , Price et al. 2024 ). Further
esearch is needed to explain how energy density varies rel-
tive to krill body size, sex, reproductive stage, species, and
eason, and how this bioenergetic variability impacts the NCC
arine food web (Price et al. 2024 ).
Pursuing more energetically dense prey can increase the

rofitability of a given mouthful and help a whale offset the
nergy expended to earn it (Chenoweth et al. 2021 ), particu-
arly the costly hunt for prey on the foraging grounds (Videsen
t al. 2023 ). Humpback whales migrate to NCC foraging
rounds annually from low-latitude breeding grounds. As gen-
ralist predators, they target krill and prey-switch to fish in
esponse to basin-scale climate and environmental processes
Fleming et al. 2016 , Fossette et al. 2017 , Santora et al. 2020 ).
n this study, we examine fine-scale (5 km; Kaplan et al. 2024 )
ariation in krill quantity and quality as prey for humpback
hales on the NCC foraging grounds, comparing the early

oraging season (March–June) that follows the initiation of
pwelling (Checkley and Barth 2009 ) with the late foraging
eason (July–November) when upwelling peaks and subsides
Jorgensen et al. 2024 ). We analyze metrics of krill swarm
iomass, energetic density, and species composition in relation
o humpback whale distribution. We hypothesize that hump-
ack whales are observed in association with higher biomass
warms and/or those with higher energetic densities and in-
reased T. spinifera composition. 

ethods

urvey background

ince 2018, the National Oceanic and Atmospheric Admin-
stration’s (NOAA) Northern California Current Ecosystem
urveys (hereafter, “NCC surveys”) have sampled hydro-
raphic transects and collected underway marine mammal ob-
ervations between La Push, Washington, and Crescent City,
rinidad, or San Francisco, California, aboard the NOAA Ship
Bell M. Shimada” approximately three times per year in the
inter, spring, and fall (February , May , and September). We

ntegrated active acoustic and net sampling data to character-
ze the quantity and quality of krill and matched these data
ith concurrent observations of humpback whales ( Fig. 1 ).
ur study focuses on the NCC from Cape Mendocino to La
ush, which was sampled during eight surveys between 2018
nd 2022 ( Table 1 ). 

rill sampling for community composition, lengths,
nd modeled distributions

t long-term, established oceanographic stations ( Fig. 1 ), the
ooplankton community was sampled at nighttime and dusk
y towing a bongo net with a 0.6 m mouth diameter and
35 μm mesh obliquely to 100 meters depth ( Table 1 ). Sam-
les were preserved in 5% buffered formalin solution and
rought ashore for later analysis. In the laboratory, samples
ere split using a Folsom splitter, and krill were identified to

pecies and life history stage (juvenile, immature adult, mature
emale, and mature male), and standard lengths were mea-
ured (reported as standard length 2, from the anterior of the
ye to the end of the sixth abdominal segment; Mauchline
980 ). Juveniles were defined as < 10 mm, and mature adults
ere > 10 mm with a petasma (male), thelycum (female), or no

xternal reproductive features (immature adults). These data
llowed us to characterize the lengths, sex, stage, and propor-
ion of E. pacifica and T. spinifera at every sampling station. 

We modeled the proportion of T. spinifera (and reciprocally,
. pacifica ) to inform species-specific distributions through-
ut the study region, using a Generalized Additive Model
GAM) (“Distribution T. spinifera ”) fitted with a beta distri-
ution (suitable for data values between 0 and 1) and a logit
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Table 1. Concurrent active acoustic and whale observation efforts (km and days) per survey, and krill swarms, bongo net tows, caloric samples, and 
humpback whale groups included in models 

Year Month 
Observation 
effort (km) 

Observation 
effort (days) 

Humpback 
whale groups 

Bongo 
samples Krill s w arms 

Caloric 
samples 

2018 February 320 .0 6 2 
March 1 
May 574 .8 8 6 17 137 2 
June 2 

September 776 .2 7 2 18 144 
2019 April 1 2 

May 660 .2 8 3 187 8 
June 4 

September 869 .5 9 6 19 250 
2020 March 6 

June 9 
September 806 .1 8 27 18 121 

2021 March 7 
April 8 
May 946 .9 3 10 52 10 
June 9 
July 4 

August 2 
November 2 

2022 March 5 
April 23 
May 909 .3 8 33 18 199 147 
June 1 
July 1 

September 401 .5 3 2 9 2 88 

Note caloric samples were sometimes collected during surveys that did not include observation effort. 
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link function . Explanatory variables included distance from 

the continental shelf break (designated by the 200 m isobath) 
with unspecified basis size, latitude with a basis size of 5 (to 

capture any latitudinal distribution variability), season (fall,
winter, and spring), and year (2018–2022; Table S2 ). Smooth 

functions were fit to the continuous data using penalized thin 

plate regression splines, and nonsignificant variables were pe- 
nalized to zero (Marra and Wood 2011 ). All statistical analy- 
ses were conducted in R 4.3.1 (R Core Team 2024 ). 

Krill energetic data

During the May and September 2022 NCC surveys, krill (up 

to 30 individuals/tow) were collected from bongo net tows 
and frozen individually at −80 

◦C in cryovials ( Table 1 ). Ad- 
ditional samples were collected opportunistically within the 
study region between 2018 and 2022 and frozen in seawater 
at −80 

◦C as whole samples in clean plastic bags ( Table 1 ). 
In the lab, individual krill were thawed, gently blotted 

with a Kimwipe, weighed on a microbalance to obtain wet 
weights, and placed in a desiccating oven at 60 

◦C for 48–
72 hours, after which dry weights were recorded. Dried sam- 
ples were ground into homogenous powder and pressed into 

pellets. We assessed the caloric content of individual krill 
( n = 153) when possible, adding known quantities of ben- 
zoic acid (C 6 H 5 COOH) to reach the minimum pellet weight 
for analysis (0.025 g). When krill were too small to be ana- 
lyzed singly, we grouped 2–3 individuals by species, oceano- 
graphic station, stage, sex, reproductive status (with or with- 
out attached spermatophores), and length ( n = 181 grouped 

samples) to meet the minimum pellet weight. The caloric con- 
tent of each pellet was quantified using a semi-micro bomb 

calorimeter (Model 6725, Parr Instruments) and reported in 

kilojoules per gram wet weight (kJ g −1 WW). Due to sam- 
ling constraints, krill samples were available during different 
onths and years of our study. We grouped samples tempo-

ally into “early” (March–June) and “late” (July–November) 
easons to examine relationships broadly across seasons and 

ears. Outlier detection and removal were performed on the 
pecies- and season-specific krill caloric data (groups: early 
eason E. pacifica , late season E. pacifica , early season T.
pinifera , late season T. spinifera ) by omitting values outside
.5 times each group’s interquartile range (nine total samples 
mitted). 

coustic data and swarm metrics

ctive acoustic data were collected using hull-mounted,
ownward-looking, narrow-band split-beam echosounders 
2018 Simrad EK60; 2019–2022 Simrad EK80) operating at 
ultiple frequencies (18, 38, 70, 120, and 200 kHz) during
CC surveys ( Table S1 ; Fig. S1 ). Data were recorded from

he surface to 750 or 1000 m using a 1.024 ms narrow-band
ulse at rates between 1 ping per second and 1 ping per 8
econds, depending on bottom depth. 

Complete acoustic data processing methods are available 
n Kaplan et al. (2024) . Briefly, data collected during day-
ime (sunrise to one hour before sunset) and at survey speeds
reater than 5 kt were processed in Echoview 13.1 to calcu-
ate the mean volume backscattering strength (MVBS or Sv,
B re 1 m 

−1 ) attributable to krill through decibel (dB) differ-
ncing, using a range of 10–16.3 dB in the 120 and 38 kHz
ata (Phillips et al. 2022 ). Frequency selection for dB differ-
ncing can impact the backscatter identified as krill and result-
ng biomass estimates (Jarvis et al. 2010 ), and we selected this
requency pair and range for comparability with other efforts 
n the region (e.g. Phillips et al. 2022 , Dorman et al. 2023 ). We
sed Echoview’s school detection module to identify swarms 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf005#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf005#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf005#supplementary-data
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rom the dB-differenced data based on the following param-
ters, tuned to fit the dimensions of observed swarms: mini-
um total school height = 2 m, minimum candidate length
 5 m, minimum candidate height = 2 m, maximum verti-

al linking distance = 10 m, maximum horizontal linking dis-
ance = 52 m, and minimum total school length = 5 m. De-
criptors of each swarm were exported, including length (m),
hickness (m), MVBS, and NASC (Nautical Area Scattering
oefficient; m 

2 nmi −2 ). As the frequency responses of E. paci-
ca and T. spinifera overlap, and NASC integrates scattering
rom all lengths of krill classified using dB differencing, these
alues represent the combined abundance of both krill species.

The “Distribution T. spinifera ” model was used to predict
he proportion of T. spinifera in each identified swarm. This
pproach applied a model trained on nighttime tow data to
aytime acoustic data, and we assume these methods sampled
he same populations since krill in this region undergo diel
ertical migration that brings them from depth (mean day-
ime depth distribution 148 m ± 44 m; Phillips et al. 2022 ) to
he surface at night (Brinton 1967 , Dorman et al. 2023 ). We
inned data into four “ecoregions” (onshore-north, offshore-
orth, onshore-south, and offshore-south) to capture spa-
ial and seasonal (fall: September; winter: February–March;
pring: April–May) changes in krill body size, which influence
iomass. The 200 m isobath designated onshore and offshore
egions, and Cape Blanco (42.84 

◦N), an important oceano-
raphic feature in the NCC, served as the latitudinal bound-
ry between north and south ( Fig. 1 ). Subsequently, we applied
he target strength model developed in Dorman et al. (2023)
o convert MVBS to krill biomass (kg) and used the median
pecies-specific energetic density of krill sampled in the early
nd late foraging season to estimate swarm energetic density.
ee supplementary materials for full methods and equations. 

hale distribution data

arine mammal observers aboard NCC surveys recorded
hale detections and collected data enabling calculation of
erpendicular distances between each whale group and the
hip’s trackline, following a distance sampling protocol (Buck-
and et al. 2015 : see supplementary materials for details). Al-
hough these data have previously been analyzed in a distance
ampling framework for other purposes (Derville et al. 2022 ),
ur study adopted a different approach, focusing on the
reyfield as perceived from the whale’s perspective. For this
nalysis, data from humpback whale groups sighted > 5 km
rom the ship’s trackline were excluded (methods described in
reater detail in Kaplan et al. 2024 ). 

umpback whale–krill models

ive-kilometer radii circles were drawn around each whale
roup based on previous findings identifying this as the op-
imal range for describing humpback whale–krill relation-
hips in the NCC (Kaplan et al. 2024 ). In addition, we gen-
rated points at regular 5 km intervals along the ship’s track-
ine to sample the “background” preyscape ( n = 1169 back-
round points) and drew 5 km radius circles around them
“sf” R package; version 1.0–16; Pebesma and Bivand 2023 ).
rill swarm data (proportion T. spinifera, energy density, and
iomass) were averaged within 5 km of each humpback whale
ighting and background point, and biomass catch per unit ef-
ort (hereafter “biomass CPUE”; kg krill/km effort) was calcu-
ated by dividing total krill biomass (kg) by effort (km) within
ach 5 km circle. To compare the krill preyscape in habitats se-
ected by humpback whales versus the background preyscape,
rey metrics (proportion T. spinifera, swarm energy density,
warm biomass, and biomass CPUE) were analyzed within (i)
 km of humpback whale sightings and (ii) 5 km of back-
round points. Krill metrics were not normally distributed
Shapiro–Wilk test, P < .05), and not all metrics had equal
ariance (Levene’s test, P < .05). Therefore, seasonal and spa-
ial relationships were assessed using nonparametric tests on
ank-transformed data (Kruskal–Wallis and Type III ANOVA;
onover and Iman 1981 , Table 2 ), and median values are re-
orted. 
We assessed relationships between humpback whale pres-

nce and five krill swarm metrics: the acoustic abundance
roxy NASC, biomass, energetic density, biomass CPUE (a
easure of patchiness), and the proportion of T. spinifera ,
hich may be a preferred prey item. We formulated five
AMs with humpback whale presence as the response vari-

ble and the five krill prey metrics (logged to approximate
ormal distributions; Table 3 ): swarm NASC (m 

2 nmi −2 ;
NASC” Model), swarm biomass (kg; “Swarm Biomass”
odel), biomass CPUE (kg/km; “Biomass CPUE” Model)

s a measure of patchiness, swarm mean energetic density
kilojoules/m 

3 ; “Energetic Density” Model), and the propor-
ion of each swarm comprised of T. spinifera (0.0–1.0; “Pro-
ortion T. spinifera ”Model). Pearson’s correlation coefficients
alculated amongst metrics exceeded 0.5, and most exceeded
.7 (“corrplot”R package; version 0.92; Wei and Simko 2024 ,
ig. S2 ), and therefore explanatory metrics were used in sep-
rate models to test each variable independently and mini-
ize collinearity (Dormann et al. 2013 ). GAMs (“mgcv” R
ackage; version 1.9–1; Wood 2011 ) predicted humpback
hale presence using a binomial distribution with a cloglog

ink function and restricted maximum likelihood (REML)
nd penalized thin plate regression splines with a basis size
f k = 3 to limit overfitting. Weights were used to bal-
nce the total number of background points ( n = 1169)
ith the total number of presence points ( n = 76 humpback
hale groups, containing 98 total individuals) and account

or humpback whale group size (range 1–4 whales/groups).
ackground point weights (weight = 98 individuals/1169
ackground points) and presence point weights (increasing
ith whale group size) were scaled so that the mean of all
eights equaled 1, and weights summed to the total num-
er of presence and background points ( n = 1245). An in-
eraction term accounted for the effect of season (early ver-
us late foraging season) and location (onshore versus off-
hore) on the trends fitted between whale presence and prey
uality metrics. The survey was included as a random ef-
ect to account for variability in broad environmental condi-
ions between years and survey periods, potential variability
n acoustic data collection, and other potential observational
rror. 

esults

patiotemporal dynamics of krill preyscape quality

he spatial distribution of T. spinifera varied significantly with
istance from the continental shelf break and among years
deviance explained 39.8%; Table S2 ). The cross-shelf dis-
ribution patterns of the two species opposed one another,
ith T. spinifera concentrated on the continental shelf and at

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf005#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf005#supplementary-data


Krill swarm prey quality drives humpback whale distributions 5 

Table 2. Krill metric test results from rank-transformed ANO V A Type III (A) and Kruskal–Wallis (K) 

Metric Variable Sum of squares (A)/ χ2 (K) F value/df (K) P n Test Data 

E. pacifica length Ecoregion 
Season 

49.44 
63.552 

3 
2 

< .001 ∗∗∗

< .001 ∗∗∗
2853 K 2018–2022 

T. spinifera length Ecoregion 
Season 

42.073 
33.077 

3 
2 

< .001 ∗∗∗

< .001 ∗∗∗
631 K 2018–2022 

Krill caloric content Ecoregion 1.548 2 .461 334 K 2018–2022 
Krill caloric content Species 99 521 14.4479 < .001 ∗∗∗ 334 A 2018–2022 

Season 783 187 113.6994 < .001 ∗∗∗

Species:Season 22 019 3.1966 .075 
E. pacifica
caloric content

Sex 
Spermatophores 

Sex: Spermatophores 

18 
3048 
794 

0.0305 
5.1233 
1.3354 

.862 
.026 ∗

.251 

86 A 2022 

T. spinifera
caloric content

Sex 
Spermatophores 

Sex: Spermatophores 

137.2 
1252.3 

1.5 

2.4287 
22.1627 
0.0265 

.130 
< .001 ∗∗∗

.872 

34 A 2022 

Swarm Energetic 
Density 

Shelf 
Season 

Shelf: Season 

6 026 439 
7 882 090 
581 120 

14.581 
19.071 
1.406 

< .001 ∗∗∗

< .001 ∗∗∗

.236 

2242 A 2018–2022 

Swarm Biomass Shelf 
Season 

Shelf: Season 

19 788 617 
605 039 
601 538 

48.2489 
1.4752 
1.4667 

< .001 ∗∗∗

.225 

.226 

2242 A 2018–2022 

Biomass CPUE Shelf 
Season 

Shelf: Season 

4440 
371 
2883 

11.4130 
0.9531 
7.4107 

< .001 ∗∗∗

.332 
< .001 ∗∗∗

76 A 2018–2022 

Proportion T. spinifera Shelf 
Season 

Shelf: Season 

157 
2037 
2340 

0.4080 
5.2962 
6.0825 

.520 
.025 ∗

.016 ∗

76 A 2018–2022 

For each ANOVA term, we report the sum of squares, F value, P value, and sample size ( n ). For Kruskal–Wallis terms, we report chi-squared ( χ2 ) and degrees of 
freedom (df). Swarm energetic density (kilojoules/m 

3 ) and swarm biomass (kg) results describe relationships across the sampled preyscape ( n = 2224 swarms). 
Biomass CPUE (catch per unit effort; kg krill/km observation effort) and proportion T. spinifera results use data within 5 km of sighted humpback whale 
groups ( n = 76). “Ecoregion” denotes the four spatial bins within the study region; “Season” denotes early versus late humpback whale foraging seasons, 
“Spermatophores” indicates krill reproductive status, and “Shelf” identifies samples as on the continental shelf or offshore. 

Table 3. Summary of humpback-krill individual metric models, each calculated as: whale presence ∼ prey quality metric × season × location + (1 | survey) 

Prey quality metric Dev. exp. AIC 

Effect of prey quality metric by condition 
Survey Early season—

offshore 
Late season—

offshore 
Early season—

onshore 
Late season—

onshore 

Swarm Biomass 40 .7% 1509 .949 Edf = 1.652 
χ2 = 114.74 

P < .001 

Edf = 1.952 
χ2 = 4738.99 

P < .001 

Edf = 1.880 
χ2 = 53.57 

P < .001 

Edf = 1.772 
χ2 = 169.43 

P < .001 

Edf = 6.520 
χ2 = 164.71 

P < .001 
Energetic Density 36 .7% 1609 .741 Edf = 0.9783 

χ2 = 107.31 
P < .001 

Edf = 1.5508 
χ2 = 2533.33 

P < .001 

Edf = 0.9538 
χ2 = 39.49 

P < .001 

Edf = 1.4011 
χ2 = 3180.73 

P < .001 

Edf = 6.5223 
χ2 = 162.30 

P < .001 
NASC 36 .3% 1624 .153 Edf = 1.248 

χ2 = 142.73 
P < .001 

Edf = 1.778 
χ2 = 1930.5 

P < .001 

Edf = 0.946 
χ2 = 20.71 

P < .001 

Edf = 1.710 
χ2 = 491.08 

P < .001 

Edf = 6.525 
χ2 = 172.99 

P < .001 
Proportion T. 
spinifera 

40 .8% 1514 .347 Edf = 1.9366 
χ2 = 315.3 
P < .001 

Edf = 0.9827 
χ2 = 437.4 

P < .001 

Edf = 1.8670 
χ2 = 87.7 
P = .177 

Edf = 0.9852 
χ2 = 762.8 

P < .001 

Edf = 6.5492 
χ2 = 139.8 

P < .001 
Biomass CPUE 36 .4% 1614 .378 Edf = 1.356 

χ2 = 85.0, 
P < .001 

Edf = 1.376 
χ2 = 3172.0 

P < .001 

Edf = 1.185 
χ2 = 406.0 

P < .001 

Edf = 1.868 
χ2 = 148.1 

P < .001 

Edf = 6.534 
χ2 = 144.7 

P < .001 

For each model, we report deviance explained and AIC. For each smooth interaction term (e.g. early season—offshore, late season—onshore, etc.) and the 
random effect (survey), we report estimated degrees of freedom (edf), χ2 , and P values. Krill NASC (Nautical Area Scattering Coefficient, m 

2 nmi –2 ) is a 
relative abundance metric, and biomass CPUE is catch per unit effort (kg krill/km observation effort). 
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the shelf break and E. pacifica offshore ( Fig. S3 ). For both 

species, length varied seasonally and spatially ( Table 2 ) with 

the largest T. spinifera observed in the offshore-south ecore- 
gion during the early season ( Fig. 2 ). 

Krill caloric content was not explained by spatial distri- 
bution within the ecoregions or by sex, but it did vary sig- 
nificantly based on species and season ( Fig. 3 ), and repro- 
ductive status ( Table 2 ). E. pacifica and T. spinifera caloric 
contents were not significantly different during the early for- 
ging season (median = 2.79 kJ g −1 WW and 2.86 kJ g −1 

W, respectively), but they differed in the late foraging sea-
on (3.73 kJ g −1 WW and 5.85 kJ g −1 WW, respectively).
eproductive individuals of both species and sexes had sig-
ificantly lower caloric contents than those without attached 

permatophores ( Table 2 ). Length was a significant predictor
f caloric content for T. spinifera in the late season and E.
acifica during both seasons ( P < .001; Fig. 4 ). Swarm ener-
etic density varied seasonally and spatially ( Table 2 ), with

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf005#supplementary-data
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Figure 2. Krill (green: E. pacifica ; y ello w: T. spinifera ) length frequency distribution in each ecoregion (onshore-north, offshore-north, onshore-south, and 
offshore-south) and humpback whale foraging season (early: March–June and late: July–November). 
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ignificantly higher values in the late season and onshore (me-
ians = 28 kilojoules/m 

3 ) than in the early season or offshore
medians = 27 kilojoules/m 

3 ). 
We observed 76 humpback whale groups, containing be-

ween 1 and 4 individuals, across all surveys (early season: n
roups = 39, late season: n groups = 37; continental shelf:
 groups = 50, offshore: n groups = 26). The proportion of
. spinifera in the 5 km areas around sighted whales varied
easonally and in a seasonal-spatial interaction, with a higher
raction of T. spinifera near whales (onshore median = 0.30,
ffshore median = 0.28; Fig. S4 ) compared to background
oints (onshore and offshore median = 0). This relationship
as more pronounced in the late foraging season (whale sight-

ng area median = 0.51; background point median = 0) than
he early season (whale sighting area median = 0.28; back-
round point median = 0).

Biomass of krill swarms ( n = 2242) ranged from 0.48
o 2.46 × 10 

9 kg and varied significantly based on cross-
helf distribution ( Table 2 ). Biomass was greater offshore
median = 1140 kg; n = 1,421 swarms) compared to on-
hore (median = 510 kg; n = 821 swarms), and swarms were
eeper offshore (median depth = 182 m) compared to on-
hore (median depth = 106 m). Similarly, swarm biomass
PUE in the 5 km areas around each whale varied signifi-
antly based on cross-shelf distribution and season (onshore
edian = 0.020 kg/km; offshore median = 54.4 kg/km; early

eason median = 0.026 kg/km; and late season = 1.19 kg/km),
nd values were elevated above background points (all medi-
ns = 0 kg/km). Higher values of all prey metrics tended to
e associated with areas of humpback whale presence rather
han background points ( Fig. S4 ). 

umpback whale–krill models

n five GAMs modeling binomial humpback whale
resence/pseudo-absence ( Fig. 5 ), relationships with krill

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf005#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf005#supplementary-data
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Figure 3. Mass-specific caloric content (kilojoules per gram wet weight; kJ g −1 WW) of krill species in the early (March–June) and late (July–November) 
foraging seasons. Boxplot—dark line: median; box: interquartile range (IQR); error bars: max/min within 1.5 × IQR above/below IQR; and dots: outliers. 

Figure 4. Seasonal and species-specific relationships between krill length (mm) and mass-specific caloric content (kilojoules per gram wet weight; kJ 
g −1 WW). Dots and solid trend lines: early humpback whale foraging season; triangles and dashed trend lines: late foraging season. Smooths are fitted 
by linear regression ( E. pacifica r 2 -adjusted = 0.31, T. spinifera r 2 -adjusted = 0.61), with 95% confidence intervals in gray. Length was a significant 
predictor of caloric content for T. spinifera in the late season and E. pacifica during both seasons ( P < . 001). 
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decreased to become negative at high values ( Fig. 5 i).
prey metrics varied seasonally and spatially. Apart from 

the early season onshore term in the Proportion T. spinifera 
Model, all model terms were significant ( P < .001; Table 3 ). In 

the NASC Model (deviance explained = 36.3%), the partial 
effect on whale presence was greatest offshore during the 
early foraging season ( Fig. 5 a). During the late foraging sea- 
son, the partial effect of offshore krill NASC was lower than 

that onshore, where log NASC ∈ [0, 5], when the relationship 

reversed ( Fig. 5 b). Similarly, the Swarm Biomass Model 
(deviance explained = 40.7%), which contextualized how 

much biomass was available within the immediate foraging 
environment, showed a positive relationship between whale 
presence and increasing biomass, particularly onshore in the 
early season ( Fig. 5 c) and offshore in the late season ( Fig. 5 d).
n the Biomass CPUE Model (deviance explained = 36.4%),
hich captured the patchiness of the foraging environment,

he partial effect onshore was linear in the early season ( Fig.
 e), while the offshore trend declined following a midrange
eak, and the relationship reversed in the late season ( Fig. 5 f).
he Energetic Density Model (deviance explained = 36.7%) 
howed a greater effect on whale presence offshore in the
arly season ( Fig. 5 g) and linear relationships both onshore
nd offshore in the late season ( Fig. 5 h). In the Proportion
. spinifera Model (deviance explained = 40.8%), spatial
elationships were linear and uniform in the late season ( Fig.
 j), whereas in the early season, the offshore term had a
reater effect at higher values, and the onshore partial effect
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Figure 5. Humpback whale–krill relationships from generalized additive models across time (early versus late foraging season) and space (continental 
shelf versus offshore). Response curves represent the effect of the smooth function upon the trend in humpback whale presence, with higher values 
indicating higher predicted probability of occurrence. P re y metrics (in descending order) are logged swarm biomass (kg), logged swarm NASC (Nautical 
Area Scattering Coefficient; m 

2 nmi −2 ), logged biomass CPUE (catch per unit effort; kg/km observation effort), logged energetic density (kilojoules/m 

3 ), 
and proportion T. spinifera . Shaded ribbons: 95% confidence intervals, colored per fitted trend (orange: continental shelf; blue: offshore). Green indicates 
o v erlap betw een the regional response curv es.

D

W  

t  

i  

a  

b  

s  

c  

g  

b  
iscussion

e found that humpback whale presence in the NCC relates
o diverse metrics of krill swarm quality and quantity, includ-
ng energetic density, species composition, and biomass. Over-
ll, increases in these metrics were positively related to hump-
i  
ack whale presence, with increasing trends modified by sea-
onal (early versus late foraging season) and spatial (on the
ontinental shelf versus offshore) variation. These results sug-
est that humpback whales select preyscape areas that offer
oth plentiful and high-quality krill. Understanding variabil-
ty in krill prey metrics in space and time, and with regard to
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humpback whale presence can inform future studies linking 
baleen whale predators and krill, such as species distribution 

modeling efforts. 

Spatiotemporal dynamics of krill preyscape quality

Our study found spatiotemporal variability in krill energetic 
quality available to foraging humpback whales. Latitude was 
not a significant predictor of distribution for either krill 
species, suggesting a relatively even alongshore distribution 

across large scales of the NCC. In contrast, distance from the 
shelf break was a strong predictor of species-specific krill dis- 
tributions, with E. pacifica concentrated along and offshore 
of the shelf break and T. spinifera inshore of the shelf break,
supporting previous work in the region (Gómez-Gutiérrez et 
al. 2005 , Lindsey and Batchelder 2011 , Derville et al. 2024 ).
These cross-shelf patterns likely drive distributions of whales 
and other krill predators, many of which tend to occupy the 
shelf break where krill are abundant (Derville et al. 2022 ). In- 
dividual krill swarms had higher biomass offshore than on the 
continental shelf, offering an important resource for foraging 
baleen whales that require high prey biomass. However, off- 
shore swarms were deeper than those on the shelf, potentially 
requiring higher energetic expenditure to capture the deeper 
prey. 

Krill caloric content was comparable between species in 

the early foraging season (March–June) and significantly el- 
evated, particularly for T. spinifera , in the late season (July–
November). Mature individuals of both krill species with sper- 
matophores present had lower caloric contents than those 
without, echoing patterns in lipid content (Fisher et al. 2020 ).
The late-season differences in caloric content may result from 

life history strategies utilized by the two krill species. Thysa- 
noessa spinifera does not allocate energy to reproduction at 
the expense of growth, while E. pacifica allocates more energy 
to reproduction, shows negative growth, and has consistently 
lower lipid levels (Feinberg and Peterson 2003 , Ju et al. 2009 ,
Fisher et al. 2020 ). During the late foraging season, following 
several months of upwelling conditions, T. spinifera exhibited 

a greater degree of variability in caloric content than E. paci- 
fica , which may reflect the quality of phytoplankton in a given 

year. Differences in life history strategies between these two 

sympatric krill species may shape their tolerance of environ- 
mental conditions, drive species-specific responses to extreme 
events and climate change forcing (Weber et al. 2021 ), and 

mediate the energy available to whales (Fiechter et al. 2020 ). 
Interestingly, we found that E. pacifica individuals had 

higher mass-specific caloric content with increased length,
as did T. spinifera in the late foraging season. Baleen whale 
species target specific krill length classes in Antarctica (San- 
tora et al. 2010 ), and targeting larger krill in colder waters 
may be advantageous for blue whales and drive the timing 
of their arrival on the NCC foraging grounds (Szesciorka et 
al. 2020 ). In the NCC, krill length varies relative to environ- 
mental conditions, including temperature and chlorophyll [T.
Shaw and J. Fisher (personal communication)], and as a result 
of physical circulation and advection processes (Lindsey and 

Batchelder 2011 , Fiechter et al. 2020 ). 

Fine-scale humpback whale–krill relationships

The Marginal Value Theorem predicts foraging animals 
should pursue only prey patches in which the energy intake 
ate exceeds that of the average surrounding environment 
Charnov 1976 ), a result of the interplay between available
rey species, biomass, and energetic density. At the 5 km spa-
ial scale used in this study, relationships with important prey
etrics allowed us to assess humpback whale selection of krill
uality (energetic density), quantity (biomass), and species 
omposition, all in comparison to average values of these 
etrics in the background preyscape. Although we could not 
odel variables together due to high correlation, our single 
etric model approach allowed us to assess and compare two
iomass metrics (mean swarm biomass and biomass CPUE,
 measure of prey patchiness) as well as the average swarm
nergetic density and proportion of T. spinifera available to 

umpback whales. Additionally, this approach enabled us to 

est a common acoustic proxy for krill abundance, NASC, in
omparison to the more analytically complex metric of swarm
iomass. All models showed good performance, with deviance 
xplained values greater than 36%. The best models indicated 

hat the proportion of T. spinifera in a swarm, swarm biomass,
nd energetic density were the most important factors explain- 
ng humpback whale presence. 

Krill swarm energetic density had a positive effect on hump-
ack whale occurrence, particularly in the late season when 

. spinifera and E. pacifica have significantly different caloric
ontents, suggesting humpback whales target higher-quality
warms that offer more energy per lunge. However, this posi-
ive relationship was not present onshore during the early sea-
on, when the two krill species had similar caloric content.
umpback whales also target forage fish on the continental

helf (Santora et al. 2020 ) that have higher energetic densities
han krill (Price et al. 2024 ), indicating that whales may selec-
ively forage on fish despite higher energetic costs to capture
hem (Chenoweth et al. 2021 ). Variation in seasonal and spa-
ial relationships with krill swarm energetic density may ex- 
lain why humpback whales prey-switch. Fish are likely more
nergetically advantageous onshore during the early season,
nd krill are more energetically advantageous during the late
eason and offshore during both seasons.

Swarm biomass was assessed based on the average biomass 
f krill swarms within 5 km of sighted whales, and our re-
ults emphasize the value of high-biomass swarms in explain- 
ng humpback whale presence. The Biomass CPUE Model,
hich captures the patchiness of the foraging environment,
ad lower explanatory capacity . Interestingly , the effects of
hese variables on sighted whale groups were distinct. For ex-
mple, in the early season, the partial effect of swarm biomass
n humpback whale presence increased steeply onshore and 

as flatter offshore. This trend reversed in the late season,
ith a steep increase offshore and flatter onshore trend. This

ariability may reflect the foraging flexibility of humpback 

hales, which allows them to navigate tradeoffs between prey 
uality and quantity. In the late season offshore, krill quality
elevated due to higher late season caloric contents) together 
ith quantity (higher offshore biomass) may make offshore 

warms more favorable for the whales, despite being deeper. 
Across all models, several trends were characterized by 
idrange peaks followed by slight negative relationships at 
igh values, which may indicate that model predictions are 
ess certain at data extremes and with low observation density
Wood 2017 ). These results may also represent the functional
esponse of humpback whales to very high biomass patches 
r the generalist feeding strategies they utilize, including prey- 
witching to target prey based on availability and quality.
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oraging lunges are relatively inexpensive (Videsen et al.
023 ), and humpback whales do not need to exploit only
he densest aggregations in order to break even energetically
Hazen et al. 2009 ). Flatter trends and seasonal and spatial
ariability in our models may suggest humpback whales tar-
et krill swarms that meet a threshold of profitability, rather
han seeking only the highest-quality swarms, or that hump-
ack whales, as a low-prevalence species, cannot occupy all
he best areas of the NCC foraging grounds simultaneously.

hile our methodological approach collected a snapshot of
hale and prey distribution on the foraging grounds, it can-
ot resolve behavioral state, and some whale groups in this
tudy assumed to be foraging may have been traveling or en-
aging in other nonfeeding behaviors less associated with the
rill metrics evaluated. In Antarctica, humpback whale feed-

ng rates are highest immediately after the annual fasting pe-
iod, and their feeding behaviors change throughout the for-
ging season (Nichols et al. 2022 ). Humpback whales in the
CC may likewise tune their foraging efforts relative to life
istory demands like migration and fasting. 
Positive relationships between the proportion of T. spinifera

n a krill swarm and humpback whale presence suggest this
pecies preferentially preys upon T. spinifera , particularly dur-
ng the late foraging season, similarly to blue whales (Fiedler
t al. 1998 ), multiple species of seabirds (Santora et al. 2011 ),
nd fish (Tanasichuk 1998a ). Modeled relationships were
uch weaker in the early season, and while the offshore trend
ecame positive at high proportions of T. spinifera (though
here were relatively few observations), onshore relationships
ecame negative at the highest concentrations of T. spinifera.
his may indicate that when E. pacifica and T. spinifera have

he same weight-standardized caloric content (as in the early
eason), targeting T. spinifera does not confer an advantage
o humpback whales, and they may prey-switch to forage
sh. In contrast, higher proportions of T. spinifera in the late
eason were associated with higher humpback whale pres-
nce. These relationships suggest humpback whales target T.
pinifera , particularly in the late season when they are ener-
etically richer than E. pacifica . 

In addition to testing prey quality metrics, the NASC model
ssessed a methodological question: what explanatory power
s gained by calculating biomass rather than using relative
bundance, which is commonly used in whale-prey studies
e.g. Hazen et al. 2009 , Santora et al. 2020 )? While the species,
eason, and spatially informed biomass calculations we gen-
rated did provide additional information and explanatory
apacity, the comparable performance of the NASC Model
uggests relative abundance is a reliable proxy for biomass.
his can be advantageous, as measuring NASC is a less data-
nd computationally-intensive metric. Interestingly, one of our
est-performing models, based on only the proportion of T.
pinifera in swarms, is also one of our most accessible vari-
bles, as krill species distribution models have successfully
redicted T. spinifera in the NCC (Derville et al. 2024 ). Inte-
rating these two relatively simple metrics could support pre-
ictions of humpback whale distributions and inform future
hale-prey studies. 

uture implications

ariability in krill prey quality and relationships with hump-
ack whale distributions may exemplify how oceanographic
rocesses like upwelling, mediated through prey and trophic
elationships, impact baleen whales (Ryan et al. 2022 , Price
t al. 2024 ). Environmental conditions are changing in the
CC, with events like marine heatwaves and strong El Niño

vents influencing and potentially decoupling key phenolog-
cal processes (Asch 2015 , Jorgensen et al. 2024 ), leading to
onstationarity of ecological relationships and distributional
hifts across marine taxa (Muhling et al. 2020 ). E. pacifica and
. spinifera may respond to climate forcing differently based
n their life history strategies (Tanasichuk 1998a , 1998b ,
u et al. 2009 ). Physiological changes, such as the associa-
ion between smaller E. pacifica and warmer waters (Robert-
on and Bjorkstedt 2020 ), could lead to decreased krill ener-
etic density (Price et al. 2024 ) available for predators. Fur-
her, distributional shifts, including the disappearance of T.
pinifera from the NCC during the 2014–2015 NE Pacific ma-
ine heatwave (Peterson et al. 2017 ), could diminish or remove
his key prey item. As a result of climate and environmental
hanges, humpback whales may encounter lower-quality prey
nd/or spatiotemporal distribution shifts (Fleming et al. 2016 ,
heeseman et al. 2024 ), potentially leading to increased over-

ap with fishing gear that can result in entanglement (Santora
t al. 2020 ). Clearer understanding of humpback whale–krill
elationships, including prey patch selection with regards to
nergetic density, biomass, and species composition, can im-
rove species distribution models and aid resource managers
n mitigating entanglement risk on the NCC foraging grounds
Derville et al. 2023 ).

In addition to studying relationships between whales and
he quantity and distribution of their prey, clarifying the influ-
nce of prey quality on whale distributions offers a valuable
pportunity for improved spatial management in the NCC
nd beyond. Climate change and human use of the ocean
resent threats to whales and other marine wildlife, including
hanging environmental conditions, ship strikes, and entan-
lement events common in this region and globally. Our find-
ngs and approach can be used to elucidate predator–prey rela-
ionships in other marine ecosystems. Quantifying prey qual-
ty and variation in distributions may enable predictions of
redator distributions, offering another tool for conservation
anagement. 
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