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Abstract
The future of tropical forests hinges on the balance between disturbance rates, which 
are	expected	to	increase	with	climate	change,	and	tree	growth.	Whereas	tree	growth	
is	a	slow	process,	disturbance	events	occur	sporadically	and	tend	to	be	short-	lived.	
This difference challenges forest monitoring to achieve sufficient resolution to cap-
ture	 tree	 growth,	 while	 covering	 the	 necessary	 scale	 to	 characterize	 disturbance	
rates. Airborne LiDAR time series can address this challenge by measuring landscape 
scale	changes	in	canopy	height	at	1 m	resolution.	In	this	study,	we	present	a	robust	
framework for analysing disturbance and recovery processes in LiDAR time series 
data.	We	apply	this	framework	to	8000 ha	of	old-	growth	tropical	forests	over	a	4–5-	
year	time	frame,	comparing	growth	and	disturbance	rates	between	Borneo,	the	east-
ern	Amazon	and	the	Guiana	shield.	Our	findings	reveal	that	disturbance	was	balanced	
by	growth	 in	eastern	Amazonia	and	 the	Guiana	shield,	 resulting	 in	a	 relatively	 sta-
ble	mean	canopy	height.	In	contrast,	tall	Bornean	forests	experienced	a	decrease	in	
canopy	height	due	to	numerous	small-	scale	(<0.1 ha)	disturbance	events	outweighing	
the	gains	due	to	growth.	Within	sites,	we	found	that	disturbance	rates	were	weakly	
related to topography, but significantly increased with maximum canopy height. This 
could be because taller trees were particularly vulnerable to disturbance agents such 
as	drought,	wind	and	 lightning.	Consequently,	we	anticipate	that	tall	 forests,	which	
contain substantial carbon stocks, will be disproportionately affected by the increas-
ing severity of extreme weather events driven by climate change.
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1  |  INTRODUC TION

The twentieth century carbon sink provided by tropical forests 
(Phillips et al., 2008) seems to have diminished in recent decades 
(Hubau et al., 2020; Mitchard, 2018). Part of this decrease was 
likely driven by the increased severity of extreme weather events 
(IPCC, 2021),	 which	 caused	 wide-	spread	 disturbance	 in	 tropical	
forests	(Berenguer	et	al.,	2021; Leitold et al., 2018;	Negrón-	Juárez	
et al., 2010). The amount trees can grow each year is limited by their 
photosynthetic rate and resource availability (Cabon et al., 2022; 
Kannenberg	 et	 al.,	2022), but forest disturbance and tree mortal-
ity have no such physiological limits. Therefore, an increase in the 
frequency	or	severity	of	disturbance	events	 is	 likely	to	reduce	the	
amount	of	carbon	sequestered	and	stored	by	these	forests	(Muller-	
Landau et al., 2021).	 Unfortunately,	 forest	 disturbance	 and	 tree	
mortality processes are poorly represented in land surface models 
due	to	a	lack	of	data	(Bugmann	et	al.,	2019) which limits our ability 
to	predict	how	tropical	forests	will	respond	to	climate	change.	We	
therefore	urgently	need	to	quantify	disturbance	and	recovery	pro-
cesses in tropical forests.

Forest	 dynamics	 are	 often	 characterized	 as	 ‘slow-	in,	 rapid-	out’	
(Körner,	2003). Trees grow slowly over decades, but rare disturbance 
events can devastate a patch of forest in minutes. This difference in 
scale makes it challenging to measure both disturbance and recov-
ery processes in a consistent way. On one hand, traditional satellite 
remote sensing can map large (>0.1 ha)	disturbance	events	 (Reiche	
et al., 2021; Vancutsem et al., 2021), but they generally are not sensi-
tive enough to measure the slow growth of canopy height (a few me-
tres per year). On the other hand, field measurements can accurately 
quantify	tree	growth,	but	do	not	usually	cover	a	 large	enough	area	
and	 are	 not	 sampled	 frequently	 enough	 to	 reliably	 capture	 distur-
bance events. One way to overcome this limitation is to collate large 
networks	of	 field	plots,	 thus	 increasing	 the	spatial	 coverage	 (Gloor	
et al., 2009). This method showed that tropical forests are net carbon 
sinks	 in	 central	Africa	 (Bennett	 et	 al.,	2021)	 and	 in	 South	America	
(Bennett	et	al.,	2023),	except	 in	El	Niño	years.	Field	measurements	
are extremely valuable and represent the work of thousands of peo-
ple over many years (de Lima et al., 2022), but remote sensing meth-
ods are necessary to monitor forests at the landscape level.

Repeated airborne LiDAR scanning provides accurate mea-
surements	of	canopy	height	and	how	it	changes	over	time	(Nunes	
et al., 2021;	 Silva	 et	 al.,	2019). It is perfectly suited to detecting 
canopy	gaps	(Jucker,	2022), which are difficult to map in the field 
(Clark et al., 2022). Repeat LiDAR can therefore be used to effi-
ciently	 scale-	up	 the	 classic	 canopy	 gap	 dynamics	 analyses	 pio-
neered	by	Brokaw	(1982) and Denslow (1987). This enables us to 
compare	 disturbance	 and	 recovery	 rates	 across	 sites	 (Gorgens	
et al., 2023; Hunter et al., 2015) and, in the long term, assess how 
forests	are	responding	to	climate	change.	At	the	 landscape-	scale,	
repeat LiDAR can be used to map the spatial patterns of distur-
bance and recovery, and how they vary with canopy structure 
and topography (Cushman et al., 2022). However, recent repeat 

LiDAR studies used different definitions of canopy gaps and dis-
turbance	events	(Gorgens	et	al.,	2022; Hunter et al., 2015; Leitold 
et al., 2022),	which	hinders	our	ability	to	generalize	over	time	and	
space.	Furthermore,	 repeat	LiDAR	studies	on	old-	growth	tropical	
forests have so far focused on the Americas and data from tropical 
Africa or Asia are lacking.

In this study, we provide a unified framework for analysing re-
peat LiDAR data and use it to compare disturbance and recovery 
rates	in	Borneo	with	those	in	the	eastern	Amazon	and	Guiana	shield.	
We	address	the	following	three	research	questions:

Q1: Was	 disturbance	 balanced	 by	 recovery	 in	 old-	growth	 tropical	
forests?	We	expect	 large	variation	at	the	plot	scale	 (10 ha)	due	
to	the	slow-	in	fast-	out	nature	of	forest	dynamics,	but	this	vari-
ation	should	balance	out	to	roughly	equilibrium	at	the	site	level	
(~1000 ha).	We	also	expect	the	balance	between	disturbance	and	
recovery	to	be	impacted	by	the	2015–2016	El	Niño	event,	which	
caused	severe	drought	 in	Borneo	and	the	eastern	Amazon	but	
not	in	the	Guiana	shield	(Rifai	et	al.,	2019).

Q2: Were	 disturbance	 and/or	 recovery	 rates	 in	 Borneo	 higher	
than	 those	 in	 the	 eastern	 Amazon	 and	 Guiana	 shield?	 The	
dipterocarp-	dominated	forests	of	Borneo	are	home	to	the	tallest	
tropical trees (Ashton, 2014;	Shenkin	et	al.,	2019) and have high 
productivity	(Banin	et	al.,	2014; Piponiot et al., 2022).	We	there-
fore expect particularly high disturbance and recovery rates in 
these forests.

Q3: What	 drives	 the	 spatial	 variation	 in	 disturbance	 within	 each	
site?	 We	 expect	 higher	 disturbance	 rates	 due	 to	 wind,	 light-
ning	and	drought	in	(a)	areas	with	taller	trees	(Gora	&	Esquivel-	
Muelbert, 2021) and (b) on exposed hilltops and ridges (Cushman 
et al., 2022;	Muller-	Landau	et	al.,	2021).

2  |  METHODS

2.1  |  Study sites

We	selected	study	sites	in	Borneo,	eastern	Amazonia	and	the	Guiana	
shield (Figure 1).	Combined,	these	sites	cover	over	8000 ha	of	old-	
growth humid tropical forest. All sites are located in strictly pro-
tected areas with no evidence of human disturbances, although we 
cannot rule out the possibility of illegal logging.

The	two	Bornean	sites,	Danum	and	Sepilok,	are	 located	within	
100 km	 of	 each	 other	 in	 Sabah,	 Malaysia	 and	 have	 similar	 non-	
seasonal	 climates	 with	 approximately	 2300 mm	 rainfall	 per	 year.	
They	 have	 rugged	 topography	 and	 are	 highly	 productive	 (Banin	
et al., 2014; Piponiot et al., 2022).	They	are	dominated	by	the	fast-	
growing trees from the dipterocarp family (Ashton, 2014) and the 
basal	area-	weighted	wood	density	is	substantially	lower	than	in	the	
Amazonian	 sites	 (Table 2) (Mitchard et al., 2014; Qie et al., 2017). 
Sepilok	also	contains	a	plateau	with	a	distinct	soil	type	and	shorter,	
heath	forest	(Jucker,	Bongalov,	et	al.,	2018).
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The	 two	 sites	 in	 the	 eastern	 Brazilian	 Amazon	 vary	 consid-
erably in their climatic conditions and forest structure. Adolpho 
Ducke	 (hereafter	 ‘Ducke’)	 is	 located	 in	 Amazonas	 State,	 near	 the	
city of Manaus with a mean annual temperature of 27°C and rainfall 
of	2194 mm.	Tapajós	 is	 located	 in	 the	eastern	part	of	 the	Brazilian	
Amazon,	in	the	state	of	Pará.	It	has	an	annual	mean	temperature	of	
25.1°C	and	rainfall	of	2012 mm.

Compared	to	the	rest	of	the	Amazon,	the	forests	of	the	Guiana	
shield have poorer soils (Quesada et al., 2010), higher wood density 
(Chave et al., 2009), slower growth rates (Chave et al., 2020) and are 
dominated	by	the	Fabaceae	family	(ter	Steege	et	al.,	2006).	We	se-
lected	two	sites	in	the	Guiana	shield,	both	located	in	French	Guiana.	
Paracou is situated near the Atlantic coast and has a mean annual 
rainfall	of	approximately	3000 mm	with	a	3-	month	dry	season	from	
mid-	August	to	mid-	November	(Wagner	et	al.,	2012). It has very little 
topographic	variation	and	a	dense	forest	canopy.	Nouragues,	which	
is	 situated	100 km	 inland,	 has	 a	 similar	 climate	but	 covers	 a	much	
larger	range	of	elevation	(20–430 m	asl).

These	Amazonian	sites	cover	a	large	area	and	range	of	climatic	
conditions, but they are not representative of the whole region. 
Specifically,	we	 could	 not	 find	 any	 repeat	 LiDAR	data	 available	 in	
the	western	Amazon,	which	has	higher	woody	productivity	 (Malhi	
et al., 2004), potentially due to higher phosphorus availability 
(Quesada et al., 2010).

2.2  |  LiDAR data collection and processing

In	Danum	and	Sepilok,	we	collected	airborne	LiDAR	data	in	October	
2014	 and	 again	 in	 February	 2020	 (Coomes	 &	 Jackson,	 2022). In 
Paracou	and	Nouragues,	we	collected	airborne	LiDAR	data	in	October	
2015	and	November	2019	(Jackson	et	al.,	2023a, 2023b). In Ducke and 
Tapajós,	we	used	available	 repeat	LiDAR	data	 from	the	Sustainable	
Landscapes	 Brazil	 programme,	 with	 flights	 in	 February	 2012	 and	
April	2017,	and	July	2012	and	March	2017,	respectively	(dos-	Santos	
et al., 2019). These dates were selected so that the interval between 
scans	would	be	similar	to	that	in	Borneo.	The	interval	between	LiDAR	
scans	varied	from	4.16	to	5.36 years	among	sites	(Supplementary ma-
terial S1). The scanning was conducted at similar times of year when-
ever	possible,	to	minimize	the	potential	effects	of	leaf	phenology	on	
our	results.	We	checked	the	aerial	photographs	collected	alongside	
the	LiDAR	scans	in	Borneo	for	differences	in	phenology	and	found	no	
evidence of this (Supplementary material S2). Detailed specification 
of all the LiDAR scans is given in Table S1.

The repeat LiDAR datasets used in this study represent the 
most robust way to measure changes in canopy height, particu-
larly	 as	 these	 sites	 were	 selected	 due	 to	 their	 high	 data	 quality	
(Supplementary material S1). Instead of analysing the LiDAR point 
cloud,	we	built	 canopy	height	model	 (CHM)	 rasters	at	1-	m	 resolu-
tion to represent the canopy surface. In particular, we used a locally 

F I G U R E  1 A	map	of	the	study	sites	and	an	example	of	the	repeat	LiDAR	data	used	in	this	study.	(a)	Map	of	study	sites	overlaid	onto	forest	
cover	map	(green = forest	and	white = non-	forest)	derived	from	Global	Ecosystems	Dynamics	Investigation	data.	(b)	Example	of	canopy	
height	rasters	derived	from	LiDAR	data	from	Danum,	Malaysia.	Smaller	panels	show	a	close-	up	of	a	10-	ha	forest	patch.	(c)	Canopy	height	
change rasters for the same area as in (b). Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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adaptive	spike-	free	(lspikefree)	method	to	build	our	CHM	which	was	
designed to be robust to variation in LiDAR scanning characteris-
tics	(Fischer	et	al.,	2024).	These	CHMs	are	available	online	(Jackson	
et al., 2024).	To	focus	the	analysis-	only	over	old-	growth	forest,	we	
manually	masked	out	all	roads	and	rivers	from	the	LiDAR	data.	We	
also masked out the experimental manipulations in Paracou using 
GPS	coordinates	of	these	plots	and	we	masked	out	patches	of	bam-
boo	as	well	as	a	non-	forest	rocky	outcrop	in	Nouragues	using	a	field	
verified map of these features.

2.3  |  Framework for assessing canopy 
disturbance and recovery

Our aim was to study canopy dynamics using a framework that best 
distinguishes disturbance and recovery processes (Q1). In light of the 
sensitivity issues involved in estimating small changes in mean can-
opy height, we decided to distinguish the large disturbance events 
from	the	background	growth	 in	 intact	canopy.	We	also	wanted	 to	
make full use of the repeat LiDAR data, while preserving a link to 
the	rich	history	of	research	on	canopy	gap	dynamics	(Brokaw,	1982; 
Denslow, 1987). To this end, we developed the framework described 
in Table 1.

We	initially	subdivided	the	forest	canopy	into	three	categories:	
gaps,	disturbances	and	intact	canopy.	We	defined	gaps	as	contigu-
ous areas with an initial canopy height <10 m.	We	defined	distur-
bances as contiguous areas where the canopy height decreased by 
5 m	or	more	between	LiDAR	scans.	We	set	a	minimum	area	threshold	
of	25 m2 for both gaps and disturbances, but we give results using 
a	10 m2 minimum area threshold in the Supplementary.	We	classi-
fied	the	remaining	canopy	area	as	‘intact	canopy’.	We	then	further	
subdivided the gaps and disturbances based on their canopy height 
in	the	second	LiDAR	survey.	We	subdivided	gaps	into	those	which	
recovered between LiDAR surveys (final canopy height >10 m)	and	
those which persisted (final canopy height <10 m).	We	subdivided	
disturbances into those which created a new canopy gap (final can-
opy height <10 m)	 and	 those	which	occurred	 in	 the	upper	 canopy	
(final canopy height >10 m).	We	tested	the	sensitivity	of	our	results	
to these thresholds in Supplementary material S7.

Subdividing	gaps	and	disturbances	as	described	above	has	multi-
ple	advantages.	Firstly,	including	canopy	disturbance	events	captures	
an important component of canopy dynamics (Leitold et al., 2018; 

Marvin	&	Asner,	2016).	Secondly,	it	enabled	us	to	link	our	results	to	
the literature by calculating traditional gap dynamics metrics such 
as the gap recurrence period (Denslow, 1987). The gap recurrence 
period was calculated using Equation (1) (Hunter et al., 2015).	Finally,	
isolating disturbance events which create new gaps enabled us to 
test whether disturbance intensity varied with canopy height (Q3) 
without the confounding effect that disturbance events are natu-
rally	larger	in	taller	forests.	We	would	expect	the	total	canopy	vol-
ume disturbed to increase with canopy height simply because there 
is more canopy volume to lose in a taller forest. However, if the ef-
fect was simply due to canopy height, we would expect this increase 
to be confined to the disturbance events occurring in the canopy. 
Disturbance	events	which	create	a	new	gap	 (i.e.	 reach	10 m	above	
the ground) should be rarer in a tall forest. Therefore, if total area 
of new gaps created increases (or the recurrence period decreases) 
with canopy height, we can be confident this result is robust.

For	each	class,	we	calculated	 the	change	 in	canopy	volume	by	
multiplying	the	area	with	the	canopy	height	change.	We	then	com-
pare the changes in canopy volume in each class across the sites 
(Q2). Canopy volume change is closely related to biomass change 
(Jucker,	Asner,	et	al.,	2018), but we decided not to convert to units 
of biomass because this conversion would depend on assumptions 
about	 the	 stem	 size	 distribution,	 canopy	 packing	 and	 trees'	wood	
densities, which are weakly correlated with the LiDAR measured 
canopy height. Canopy volume changes are more robust since they 
are directly measured by the LiDAR surveys. All data processing 
were carried out in R (R Core Team, 2021), primarily using the terra 
package (Hijmans et al., 2022) and the scripts are available online 
(Jackson,	2024).

2.4  |  Spatial patterns of disturbance across the 
landscapes

All six repeat LiDAR surveys cover large and roughly rectangular 
areas. This allowed us to explore the spatial patterns of disturbance 
within	each	site.	We	split	the	rasters	into	10-	ha	plots	(316 m × 316 m)	
and built separate multiple linear regression for each site individu-
ally.	We	chose	area	disturbed	as	our	response	variable,	rather	than	
volume disturbed, to avoid confounding with canopy height.

We	expected	 that	 the	 area	 disturbed	would	be	 larger	 in	 taller	
forests	(Q3a).	We	used	the	maximum	canopy	height	(99th	percentile	
for robustness) instead of the mean because the latter is more in-
fluenced	by	the	area	of	canopy	gaps.	We	also	hypothesized	that	the	
area disturbed would be larger in forests on steep slopes or on hill-
tops	(Q3b).	We	therefore	calculated	the	topographic	position	index	
(de Reu et al., 2013)	and	slope	and	for	each	site	using	a	30 m	pixel	
size.	Preliminary	analysis	showed	that	area	disturbed	was	closely	re-
lated to the initial gap fraction, so we also included gap fraction in 

(1)

Recurrence period=

sampling interval×
area of initially intact canopy

area of gaps formed between scans

TA B L E  1 Framework	for	classifying	canopy	gaps	and	
disturbance events.

Initial canopy 
height

Height 
decrease

Final canopy 
height (m)

Gaps-recovered <10 m -	 >10

Gaps-persistent <10

Disturbances-canopy -	 >5 m >10

Disturbances-new	gap <10

Intact canopy All remaining canopy
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the	model.	Finally,	we	included	the	pulse	density	increase	between	
the two LiDAR scans in the model to control for this potential bias 
(Fischer	et	al.,	2024). The resulting model is given in Equation (2).

All predictor variables were centred and scaled before analysis. 
We	graphically	checked	for	co-	linearity	between	predictor	variables	
prior to modelling and found no strong evidence of this.

2.5  |  LiDAR quality control and sensitivity analyses

Different LiDAR surveys will sample the canopy surface in different 
ways, leading to uncertainties and potential biases in canopy height 
estimates. In the following sensitivity analysis, we compare the ro-
bustness of the lspikefree CHM method with two commonly used 
methods,	which	we	call	the	‘highest’	and	‘tin’	CHM.	The	highest	CHM	
method	selects	the	highest	point	per	square	metre	but	is	known	to	
be sensitive to variation in pulse density (Roussel et al., 2017). The 
tin method uses a 2D Delaunay triangulation of the first returns to 
construct	 a	Triangular	 Irregular	Network	 (the	 ‘TIN’),	which	 is	 then	
mapped	 onto	 a	 1 m	 grid.	 The	 tin	CHM	 fits	 a	 surface	 to	 the	mean	
height of first returns, which is not only more robust to sampling 
characteristics than the highest CHM, but it also samples small 
openings <1 m	in	extent.	As	a	result,	it	does	not	represent	the	top	of	
canopy	height	at	1 m	scale,	but	rather	the	mean	height	at	which	light	
is	first	intercepted	by	the	canopy	(Fischer	et	al.,	2024).

We	focus	our	uncertainty	analysis	on	 the	 two	sites	 in	Borneo,	
Danum	and	Sepilok,	since	they	have	the	largest	difference	in	scan-
ning characteristics (Table S1).	The	2014	scan	 in	Borneo	was	con-
ducted	 from	 an	 aeroplane	 flying	 at	 approximately	 1800 m	 over	
Sepilok	and	2300 m	over	Danum,	while	 the	2020	 scan	used	a	he-
licopter	 flying	at	250 m	over	both	 sites.	This	difference	 in	altitude	
resulted	in	LiDAR	datasets	with	different	characteristics.	Below,	we	
discuss a number of potential biases, alongside the sensitivity analy-
ses, we conducted to address them.

A Pulse density. Pulse density is the primary measure of LiDAR data 
quality	(Fischer	et	al.,	2024).	We	filtered	the	data	to	only	include	
areas where both 2014 and 2020 scans had more than two pulses 
per	 square	metre,	 as	 recommended	 in	 Fischer	 et	 al.	 (2024), to 
isolate other potential biases from the effect of pulse density. In 
Danum, the lspikefree estimate of canopy height difference was 
0.24 m	 greater	 after	 filtering	 for	 pulse	 density	 (Supplementary 
material S5). The highest raster method was substantially more 
sensitive to this filter (+0.98 m),	but	the	‘tin’	raster	method	was	
more robust (+0.03 m).	 The	Sepilok	 estimates	were	 largely	 un-
changed	by	this	filter	because	most	of	Sepilok	has	more	than	two	
pulses	per	square	metre.

B	 Scan angle. The lower altitude 2020 scan used a wider scan angle 
than the 2014 scan, which may miss the top of the canopy in 
some	areas.	We	therefore	filtered	the	data	to	areas	where	both	

scans had a scanning angle under 10°. The canopy height change 
estimates calculated using the lspikefree raster method were ro-
bust to this filter (<0.1 m	difference	in	both	sites,	Supplementary 
material S5).

C Footprint size. The high altitude 2014 scans had a larger LiDAR 
footprint	size	than	the	2020	scan.	A	 larger	footprint	size	could	
lead to lower canopy height estimates because the first maxi-
mum of the returned energy is lower (Roussel et al., 2017), or 
higher canopy height estimates, because it is more likely to sam-
ple	the	tallest	parts	of	the	canopy	and	has	a	greater	horizontal	
uncertainty about the location of the return, which results in 
a	 ‘smoother’	canopy	height	model.	The	effect	of	 footprint	size	
was	isolated	in	Sepilok	in	2014	by	scanning	the	same	area	twice	
in	1 day	 at	 altitudes	of	 from	800 m	and	1800 m,	 keeping	pulse	
density constant (Supplementary material S6). This showed 
that the lspikefree and highest canopy height estimates were 
0.36–0.38 m	 higher	 in	 the	 high-	altitude	 scan	 compared	 to	 the	
low altitude scan. The tin method had a larger bias (+1.03 m).	
This positive bias likely impacts our comparison of the high alti-
tude 2014 scan with the low altitude 2020 scan (the difference 
in	footprint	size	is	similar),	but	the	2020	scan	had	a	much	higher	
pulse density which may counterbalance this bias to some extent 
by sampling a larger area of the canopy.

D Horizontal alignment.	In	all	cases,	the	scans	were	geo-	referenced	
by the provider using ground control points accurately located 
with	a	differential	GPS.	We	confirmed	the	alignment	of	the	scans	
by comparing the positions of fixed features such as buildings 
(Supplementary material S3).

E	 Ground detection.	 We	 calculated	 the	 canopy	 height	 change	 as	
the difference between canopy height models, where each scan 
was	normalized	by	its	own	terrain	model.	However,	there	is	some	
uncertainty in the terrain models which interacts with LiDAR 
scanning	characteristics.	We	therefore	calculated	the	difference	
between the 2014 and 2020 terrain models as a component of 
the uncertainty in canopy height change. The results showed a 
mean	increase	in	ground	elevation	of	0.3 m	in	Danum	and	0.5 m	
in	Sepilok	(Supplementary material S4).

F	 Combined effects. In addition to the differences in scan 
angle,	 footprint	 size	 and	 pulse	 density,	 the	 2014	 and	 2020	
scans were conducted using different LiDAR scanners (Leica 
ALS50-	II	 and	 Riegl	 LMS-	Q560,	 respectively).	 These	 LiDAR	
scanners have different characteristics including the wave-
length	and	the	method	used	to	discretize	the	returned	wave-
form	 into	 a	 discrete	 point	 cloud.	 Fortunately,	 an	 additional	
scan was conducted in a small area of Danum in 2013 using 
the same scanner and similar scanning characteristics as the 
2020 scan. In this area, the lspikefree canopy height estimate 
from	the	high	altitude	2014	scan	was	0.69 m	higher	than	the	
low altitude 2013 estimate (Supplementary material S6). This 
is not a perfect control, since the actual canopy height may 
have changed in between these scans, but it this gives an esti-
mate of the scale of bias to expect when comparing the LiDAR 
scans	in	Danum	and	Sepilok.

(2)
Area disturbed∼Δpulse density+max height

+elevation+gap fraction
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In	summary,	our	sensitivity	analysis	shows	that	the	‘lspikefree’	
raster method was the most robust to the variation in scanning 
characteristics. However, we still expect a negative bias of up to 
0.7 m	 in	 the	 2020	 canopy	 height	 estimates	 due	 to	 the	 different	
scanning	characteristics	(point	F).	These	results	are	in	line	with	pre-
vious studies, which found small biases, both positive and negative, 
in	canopy	height	with	LiDAR	beam	footprint	size	(Goodwin	et	al.,	
2006; Morsdorf et al., 2008;	Næsset,	2009; Roussel et al., 2017).

3  |  RESULTS

3.1  |  Mean canopy height changes

Our	repeat	LiDAR	estimate	of	mean	top-	of-	canopy	height	remained	
stable	in	eastern	Amazonia	and	the	Guiana	shield	but	decreased	in	
Borneo.	We	estimate	a	2 m	decrease	in	Danum	(0.38 m	per	year)	and	
a	0.78 m	decrease	in	Sepilok	(0.15 m	per	year).	However,	the	magni-
tude	of	these	height	changes	may	be	overestimated	by	up	to	0.7 m,	
due to differences in scanning characteristics between the 2014 
high	altitude	scan	and	the	2020	low	altitude	scan	(see	Section	2.5; 
Supplementary	material	S2–S6).

Focusing	on	changes	in	mean	top-	of-	canopy	height	overlooks	the	
dynamic processes of disturbance and recovery. In all sites, most of the 
forest canopy grew taller (medians were consistently positive), but all 
sites also showed evidence of large height losses through disturbance 
(long tails to the left, Figure 2b). This suggests a widespread growth in 
canopy height, approximately balanced by disturbance events (Q1). In 
the following sections, we disentangle the effects of disturbance and 
recovery	using	the	framework	described	in	Section	2.3.

3.2  |  Site- level canopy disturbance and 
recovery rates

Across all sites, disturbance events caused a large loss of canopy 
volume (Figure 3a), despite covering a small proportion of the can-
opy	area	(7%–25%,	Figure 3b). In fact, the majority of canopy vol-
ume	loss	was	contained	in	disturbance	events	smaller	than	300 m2, 
but	 bigger	 than	 our	 minimum	 threshold	 of	 25 m2 (Figure S7.2). 
Canopy volume recovery rates were relatively similar across all 
sites (Table 2) and were sufficient to balance out the disturbance in 
the	eastern	Amazon	and	Guiana	Shield,	but	not	in	Borneo	(Q1).	In	
all sites, canopy volume growth was dominated by intact canopy, 
because this class makes up the vast majority of the canopy area 
(Figure 3b).	 Growth	 rates	 in	 the	 canopy	 gaps	were	 significantly	
faster than the growth in the intact canopy (Table 2) because this 
represents the recovery of recently disturbed forests. However, 
canopy gaps cover a small area, so the canopy volume change due 
to this growth was small.

We	 found	 that	 taller	 sites	 experienced	 more	 disturbance	
(Q2), both in terms of canopy volume (Figure 3a) and canopy area 
(Figure 3b). Tall sites also had faster gap recurrence rates, caused 
by the higher disturbance rates (Table 2). This demonstrates that 
the larger volume disturbed in taller forests was not simply because 
these forests have larger initial volume. In these tall forests, more 
canopy	volume	must	be	lost	to	reach	the	10 m	height	threshold	for	
canopy gaps. A constant disturbance rate (i.e. proportion of canopy 
affected by a height drop >5 m)	would	therefore	result	in	fewer	new	
gaps in taller forests, and a longer gap recurrence time. The fact 
that we found a shorter gap recurrence time demonstrates that the 
trend of increasing disturbance with canopy height was robust.

F I G U R E  2 (a)	Canopy	height	distribution	in	the	first	LiDAR	scan.	(b)	Canopy	height	change	over	the	4–5-	year	periods.	The	sites	are	
ordered by the 99th percentile of canopy height (given in brackets).
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3.3  |  Was disturbance balanced by recovery at the 
10- ha scale?

We	subdivided	 the	LiDAR	scans	 into	plots	 to	 test	whether	distur-
bance	and	recovery	were	balanced	at	the	10-	ha	scale	(Q1).	The	sites	
in	the	eastern	Amazon	and	Guiana	shield	generally	clustered	around	
the	equilibrium	line,	meaning	that	disturbance	was	balanced	by	re-
covery	at	 the	10-	ha	 scale	 (Figure 4a).	However,	 the	Bornean	sites	
were clustered underneath (Figure 2a) or to the left of (Figure 2b) the 
equilibrium	line,	meaning	that	disturbance	outpaced	recovery	rates	
in	 the	majority	 of	 10-	ha	 plots.	We	 also	 observed	 that	 the	 largest	
decreases	in	canopy	height	occurred	in	the	tallest	10-	ha	plots	(Q3b,	
Figure 4b).

3.4  |  Modelling the spatial variation in disturbance 
within sites

We	 ran	 multiple	 linear	 regression	 models	 (Figure 5)	 at	 the	 10-	ha	
scale to understand how the area disturbed (combining both canopy 
disturbance and new gaps) varied across each site. In three of the 
six	 sites,	 the	 model	 showed	 moderate	 predictive	 power	 (Tapajós	
R2 = 0.35,	Nouragues	R2 = 0.53	and	Sepilok	R2 = 0.55).	The	model	had
low predictive power in Paracou and Ducke (R2 = 0.19	and	R2 = 0.23,

respectively) and very low in Danum (R2 = 0.06).	Excluding	Danum,
we found that the effect of LiDAR pulse density was not significant, 
showing that the trends we observed were robust to the primary 
source of sampling bias.

In	Sepilok,	Nouragues	and	Ducke,	we	found	a	significant	increase	
in area disturbed with maximum canopy height (Figures 5 and 6a). 
The	 same	 trend	 (although	 non-	significant)	 was	 also	 detected	 in	
Paracou	 and	 Tapajós.	 This	 aligns	 with	 our	 expectation	 that	 taller	
forests will experience more disturbance (Q3a), which could be due 
to a greater vulnerability to drought, wind and lightning. However, 
this trend was not observed within Danum, presumably because the 
range of maximum canopy heights was relatively low (Figure 6a).

Contrary to our expectation (Q3b), we found that disturbance 
rates were not strongly or consistently related to topography 
(Figures 5 and 6b).	We	tested	slope,	elevation	and	topographic	posi-
tion index and found weak and contradictory trends between sites. 
We	therefore	used	elevation	in	the	final	model,	which	is	simpler	be-
cause the other metrics vary with the spatial scale at which they are 
calculated.	Note	 that	we	 found	a	significant	effect	of	elevation	 in	
Tapajós,	but	this	site	is	almost	completely	flat	(Figure 6b) so we can-
not	 interpret	this	as	ecologically	meaningful.	We	did	find	a	strong	
effect	of	 elevation	on	disturbance	 in	Sepilok,	 but	we	believe	 that	
this is likely due to differences in forest type rather than increased 
exposure	to	wind,	lightning	or	drought	(discussed	in	Section	4.3).

F I G U R E  3 Comparing	disturbance	and	recovery	rates	across	sites.	(a)	Canopy	volume	change	for	each	canopy	class.	(b)	Percentage	of	the	
site area contained in each canopy class. The sites are ordered by the 99th percentile of canopy height (given in brackets).

TA B L E  2 Overview	of	the	study	sites,	their	canopy	gap	dynamics	and	recovery	rates.

Site
Area 
(ha)

Canopy height (m, 
99th percentile)

Basal area weighted 
wood density

Gap recurrence period 
(years) (from Equation 1)

Mean disturbance 
size (m2)

Growth rate (m/year)

Gaps
Intact 
canopy

Danum 1509 68 0.54 80 155 0.86 0.35

Sepilok 1779 64 0.59 184 107 0.99 0.26

Nouragues 2172 50 0.67 221 105 1.54 0.23

Tapajós 879 49 0.68 117 117 1.18 0.47

Paracou 657 42 0.70 573 103 1.47 0.15

Ducke 1088 39 0.73 726 91 1.22 0.28
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Surprisingly,	we	found	that	the	area	disturbed	was	positively	cor-
related with initial gap fraction in four of the six sites (Figure 5), as 
well as across sites (Figure 6c). This is despite the fact that these 
classes (canopy gaps and disturbances) are mutually exclusive in our 
analysis framework. This means that, if the location of disturbance 
events was random, we would expect negative correlations between 
them. The positive relationships therefore show that disturbances 
occur more often in areas of forest which have experienced previous 
disturbance leading to canopy gaps.

4  |  DISCUSSION

We	provide	the	first	landscape-	scale	comparison	of	disturbance	and	
recovery	rates	between	forests	in	Borneo,	the	eastern	Amazon	and	
the	Guiana	 shield.	We	 used	 repeat	 LiDAR	 to	measure	 fine-	scaled	

changes	in	canopy	height	over	a	4–5-	year	period	covering	8000 ha	
of	old-	growth	humid	tropical	forest.	Our	results	show	that	recovery	
rates were relatively similar across all sites, but that the tall forests 
of	Borneo	suffered	particularly	high	disturbance	rates.

4.1  |  Slow- in, rapid- out forest dynamics

Across all sites, most of the forest canopy area remained intact and 
grew	taller	over	time.	However,	this	large-	scale	canopy	growth	was	
effectively counterbalanced by a large number of small disturbance 
events	(Q1).	This	pattern	is	characteristic	of	the	‘slow-	in,	rapid-	out’	
forest	dynamics	described	by	Körner	(2003).

Canopy growth rates were relatively similar across sites, 
presumably because trees have similar photosynthetic rate 
(Muller-	Landau	 et	 al.,	 2021). This is despite the fact that field 

F I G U R E  4 Taller	forests	experienced	the	largest	decrease	in	canopy	height,	both	within	and	across	sites.	(a)	Changes	in	canopy	volume	
changes	due	to	disturbance	and	recovery	at	the	10-	ha	scale	within	each	site.	(b)	Net	height	changes	against	initial	maximum	canopy	height	
at	the	10-	ha	scale.	The	black	lines	in	both	figures	represent	the	equilibrium	line	(i.e.	no	net	change	in	canopy	volume	or	height).	Each	point	
represents	a	10-	ha	plot.

F I G U R E  5 Normalized	effect	sizes	
from multiple linear regression models 
of area disturbed for each site at the 
10-	ha	scale.	The	points	show	the	mean
effects, and the whiskers show the
95% confidence intervals. The model
coefficient of determination (R2) for each
model is given in parentheses in the
legend.
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data	 has	 shown	 Borneo	 to	 have	 higher	 productivity	 than	 the	
eastern	 Amazon	 and	 Guiana	 shield	 (Banin	 et	 al.,	2014; Piponiot 
et al., 2022). This discrepancy could be simply due to the fact that 
field data measures changes in tree trunk diameter, while LiDAR 
measures changes in canopy height. The two measures are not 
necessarily correlated for tall trees, because they may allocate re-
sources to reproduction, crown expansion or root growth, rather 
than height growth.

The	 mean	 size	 of	 a	 disturbance	 event	 ranged	 from	 91 m2 in 
Ducke	to	155 m2 in Danum (Table 2).	 In	total,	around	10%–25%	of	
the canopy area was disturbed in each site, but the canopy volume 
loss in these disturbance events was similar to the growth in the re-
maining	75%–90%	of	 the	 forest	canopy	 in	 the	sites	 in	 the	eastern	
Amazon	 and	Guiana	 shield	 but	 larger	 in	 Borneo.	 Because	 canopy	
volume	change	is	closely	related	to	carbon	dynamics	(Jucker,	Asner,	
et al., 2018), we confirm previous findings that a large proportion 

of the forest carbon dynamics occur in small disturbance events 
(Espírito-	Santo	et	al.,	2014). The majority of these small disturbance 
events would have been missed by traditional satellite disturbance 
trackers, because they have a minimum mapping unit of approxi-
mately	1000 m2	(0.1 ha)	(Reiche	et	al.,	2021; Vancutsem et al., 2021). 
This	emphasizes	the	need	for	additional	data,	such	as	LiDAR	or	high-	
resolution (<5 m)	satellite	imagery	to	track	canopy	disturbance	over	
time (Dalagnol et al., 2023).

4.2  |  Tall Bornean forests suffered the highest 
levels of disturbance

Taller forests experienced higher disturbance rates, both across 
sites and within each site (Q3a). This may be due to the greater 
vulnerability	of	tall	trees	to	wind	(Jackson	et	al.,	2020), drought and 

F I G U R E  6 Area	disturbed	against	(a)	maximum	canopy	height,	(b)	elevation,	(c)	initial	gap	fraction	and	(d)	increase	in	LiDAR	pulse	density	
between	scans.	Each	point	represents	a	10-	ha	plot,	and	the	lines	are	bivariate	linear	regressions	displayed	to	help	visualize	the	data.
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lightning	(Gora	&	Esquivel-	Muelbert,	2021). Danum, which is home to 
the	tallest	trees	in	the	tropics	(Shenkin	et	al.,	2019), had the highest 
disturbance rates in this study and experienced an overall decrease 
in canopy height (although mean canopy height changes were 
sensitive to LiDAR processing methodology). Danum also had the 
shortest	gap	recurrence	time	of	80 years,	compared	to	117–726 years	
across the other five sites. Together, these results suggest that taller 
forests	suffered	from	increased	disturbance	and	did	not	adequately	
recover	 during	 the	 study	 period.	Because	 the	 rates	 of	 disturbance	
vary dramatically while recovery rates are limited by tree growth 
rates	(Muller-	Landau	et	al.,	2021), we expect this reduction in canopy 
height to be exacerbated by the effects of climate change.

The	2015–2016	El	Niño	event	caused	a	severe	drought	in	Borneo	
and	eastern	Amazonia,	but	not	in	the	Guiana	shield	(Rifai	et	al.,	2019). 
Our repeat LiDAR results show that canopy height remained roughly 
stable	over	time	in	the	Guiana	shield,	which	may	be	expected	given	
the low turnover rates in these forests (Chave et al., 2020). However, 
we also found no substantial change in canopy height in the eastern 
Amazon,	despite	the	fact	that	the	second	LiDAR	measurement	was	
conducted	in	2017,	only	1	year	after	the	peak	of	the	El	Niño	event.	
This	suggests	that	the	forests	in	Ducke	and	Tapajós	recovered	their	
canopy	 structure	 quickly	 after	 this	 drought.	 Field	 measurements	
show that tree trunk diameter growth rates slowed in the regions 
most affected by the drought (Rifai et al., 2018), but this seems to 
have	had	little	knock-	on	effect	on	canopy	structure	in	over	the	pe-
riod of our study. This overall stability in canopy height suggests that 
these forests were neither a large source nor a large sink of carbon 
over this period, which is in agreement with results from field data 
(Hubau et al., 2020).	We	note	that	the	comparison	of	disturbance	and	
recovery between sites is complicated by the opportunistic nature 
of our sampling resulting in different dates for the LiDAR surveys.

4.3  |  Disturbance was weakly related to 
topography

We	expected	strong	topographic	trends	in	disturbance	rates	(Q3a)	
driven by increased exposure to wind, drought and lightning on the 
ridges and hilltops (Cushman et al., 2022;	Muller-	Landau	et	al.,	2021). 
However, we found that disturbance rates were only weakly related 
to topography (we tested slope, topographic position index and el-
evation). This could be because the processes we expected to be 
driving disturbance (wind, drought and lightning) were less topo-
graphically structured than we had assumed, or that the disturbance 
was driven by other processes which we had not considered.

We	did	find	a	strong	effect	of	elevation	on	disturbance	rates	in	
Sepilok.	However,	 the	forest	 in	Sepilok	changes	from	dipterocarp-	
dominated forest on the low elevation alluvial soil (similar to Danum) 
to	heath	forest	on	sandy	soil	on	the	nearby	plateau	(Jucker,	Bongalov,	
et al., 2018).	We	therefore	believe	this	change	in	disturbance	rate	is	
likely due to soil type and forest structure, rather than being a true 
effect of topography driven by the mechanisms we were intending 
to	explore	(e.g.	increased	wind	and	lightning	exposure).	We	note	that	

some of the sites had relatively flat terrain, so no topographic trend 
was expected in these sites.

Intriguingly, we found that disturbance was higher in areas which 
had larger initial gap fractions (i.e. areas which had previously suffered 
more disturbance). This suggests a compounding effect often referred 
to	 as	 ‘gap	 contagiousness’,	 whereby	 the	 initial	 disturbance	 changes	
the local microclimate (e.g. increasing wind exposure of the remaining 
trees) and thus increases the risk of future disturbance. There is strong 
evidence	 of	 gap	 contagiousness	 in	 some	 temperate	 forests	 (Krüger	
et al., 2024), but no strong effects have been found in tropical forests 
(Hunter et al., 2015;	Jansen	et	al.,	2008).	We	were	therefore	surprised	
by this result, particularly as the two classes (initial gaps and distur-
bance) are mutually exclusive in our framework, so we would have 
expected a negative relationship between them by default. Another 
possibility is that some underlying driver, perhaps related to water 
availability or soil fertility, increases the local productivity leading to 
higher growth and higher sustained levels of disturbance.

4.4  |  Future research priorities

Repeat LiDAR data has the both the scale and sensitivity needed to 
measure disturbance and recovery in tropical forests. However, col-
lecting	airborne	LiDAR	data	are	expensive	as	it	requires	the	use	of	an	
aircraft	and	costly	sensors.	We	therefore	believe	that	future	research	
opportunities	 lie	 in	combining	more	frequent	LiDAR	data	collection	
with	regular	low-	cost	drone	monitoring	and	high-	resolution	satellite	
imagery. This increased temporal resolution would help us better un-
derstand the drivers of disturbance and recovery (Araujo et al., 2021; 
Simonetti	et	al.,	2023). In addition, this would help us track small gaps, 
many of which are likely to have both formed and recovered within 
the	4–5-	year	 interval	between	LiDAR	scans,	and	better	account	for	
potential confounding factors such as leaf phenology.

The cost of repeat LiDAR data also limits its spatial coverage. In 
this	study,	we	could	not	find	any	repeat	LiDAR	data	for	the	Western	
Amazon,	 where	 productivity	 and	 mortality	 rates	 are	 higher	 than	
the regions we studied (Malhi et al., 2004),	or	for	West	and	Central	
African forests, which are a crucial part of the terrestrial carbon cycle 
(Bennett	 et	 al.,	 2021).	 Field-	based	 gap	 dynamics	 studies	 showed	
that African forests had slower turnover rates than those in cen-
tral	and	South	America	(Jans	et	al.,	1993), but it would be extremely 
valuable to test this over larger scales using modern methods. This 
problem	 could	 potentially	 be	 overcome	 by	 coupling	 space-	borne	
LiDAR (Duncanson et al., 2022; Holcomb et al., 2023, 2024) to track 
forest	recovery	with	regular	high-	resolution	 (<5 m)	satellite	optical	
imagery to track forest disturbance (Dalagnol et al., 2023). However, 
we believe that periodic airborne LiDAR data, processed using ro-
bust	pipelines	(Fischer	et	al.,	2024), will be invaluable in measuring 
landscape-	scale	forest	dynamics	for	the	foreseeable	future.
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