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Abstract
Premise: Deep learning has become increasingly important in the analysis of digitized
herbarium collections, which comprise millions of scans that provide valuable
resources for studying plant evolution and biodiversity. However, leveraging deep
learning algorithms to analyze these scans presents significant challenges, partly due
to the heterogeneous nature of the non‐plant material that forms the background
of the scans. We hypothesize that removing such backgrounds can improve the
performance of these algorithms.
Methods: We propose a novel method based on deep learning to segment and
generate plant masks from herbarium scans and subsequently remove the non‐plant
backgrounds. The semi‐automatic preprocessing stages involve the identification and
removal of non‐plant elements, substantially reducing the manual effort required to
prepare the training dataset.
Results: The results highlight the importance of effective image segmentation, which
achieved an F1 score of up to 96.6%. Moreover, when used in classification models for
plant morphological trait identification, the images resulting from segmentation
improved classification accuracy by up to 3% and F1 score by up to 7% compared to
non‐segmented images.
Discussion: Our approach isolates plant elements in herbarium scans by removing
background elements to improve classification tasks. We demonstrate that image
segmentation significantly enhances the performance of plant morphological trait
identification models.
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Biodiversity is essential for maintaining ecological balance
and supporting life on Earth. Understanding and preserving
this biodiversity is critical in the face of extensive challenges,
particularly the profound impacts of climate change. There
is an urgent need for the scientific community to employ
multidisciplinary and innovative strategies, which require
comprehensive taxonomic and ecological studies that
leverage recent advances in biodiversity informatics, as well
as extensive databases on species traits and occurrences.

Integrating these approaches will improve our under-
standing of biodiversity threats and enable the development
of more effective conservation tools (Lorieul et al., 2019).

Natural history collections are invaluable in this en-
deavor, holding centuries of data on biodiversity evolution
and environmental changes. The growing interest in these
collections is well founded, as they provide essential insights
into understanding and mitigating biodiversity threats
(Yue et al., 2017; Lorieul et al., 2019; Younis et al., 2022;
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Triki et al., 2022a; Sklab et al., 2024a). Recent advances in
digitizing and aggregating specimen‐related data have sig-
nificantly improved the accessibility to these collections.
Through extensive digitization efforts and by making this
data available online to both the scientific community and
the public via platforms like ReColNat (https://explore.
recolnat.org/) and the Global Biodiversity Information
Facility (GBIF; https://www.gbif.org/), the scientific com-
munity is now better equipped to conduct in‐depth research
into plant behavior and its various manifestations.

Between 2005 and 2007, the French Museum of Natural
History (Muséum National d'Histoire Naturelle [MNHN];
https://www.mnhn.fr) in Paris was a pioneer in the field of
industrial plant specimen digitization. The museum, which
houses one of the world's largest herbaria with more than
eight million specimens, has led a collaborative effort to
digitize the major herbarium collections in France, resulting
in a dataset of around 10 million high‐resolution images
called ReColNat. Describing this extensive collection for
enhanced usability requires the automated capture of
comprehensive metadata. To navigate and search efficiently
within this massive dataset, users need specific criteria to
select the specimens of interest. We focus on criteria based
on descriptive characteristics (traits) observable in the
specimen images, which relate to plant morphology or the
specimen's conservation state. The integration of computer‐
based processing techniques, particularly deep learning,
presents a promising approach to analyzing herbarium

specimens (Dhaka et al., 2021). However, herbarium spec-
imens pose several challenges due to their highly variable
backgrounds containing diverse elements such as labels,
scale bars, color palettes, envelopes, and various notes; these
elements constitute visual noise and may negatively impact
classification models through shortcut learning (Leksut
et al., 2020; Moayeri et al., 2022). Furthermore, the support
paper on which they are mounted can darken over time,
until the color is similar to the plant specimens themselves
(Figure 1). Despite these challenges, deep learning–based
methods have shown significant promise in plant image
analysis for predictive tasks involving herbarium specimens
(Dhaka et al., 2021; Triki et al., 2021, 2022a, 2022b;
Thompson et al., 2023; Ariouat et al., 2024; Sklab
et al., 2024a). For instance, these methods have facilitated
significant strides in plant disease classification, offering
new possibilities for enhancing plant health and resilience
(Borhani et al., 2022). Another critical application of deep
learning is trait recognition, where identifying key char-
acteristics, such as leaf features (Corney et al., 2012; Younis
et al., 2018; Triki et al., 2022a) or reproductive structures
(flowers, fruits, seeds) (Lorieul et al., 2019), plays a pivotal
role in understanding plant biodiversity and attributes
(Corney et al., 2012; Younis et al., 2018; Lorieul et al., 2019;
Triki et al., 2021).

Multimodal approaches that integrate textual and image
data (Sahraoui et al., 2023) represent an innovative strategy
to improve plant analysis, bridging the gap between textual

F IGURE 1 Examples illustrating the diversity in paper color, quality, and the non‐plant elements present on herbarium sheets.
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descriptions and visual representations. For example,
Ariouat et al. (2024) and Sklab et al. (in press) developed an
improved YOLOv7 (Wang et al., 2023) with an attention
mechanism to detect plant organs and non‐plant elements,
achieving an accuracy of 99%. This integration of deep
learning applications highlights its importance in botanical
research and conservation efforts.

The phenotype of a plant, as it can be visually perceived
through its characteristics, is shaped by the interplay
between genetic expression and environmental influences
(Fan et al., 2022). The automated identification of such
characteristics is challenging in digitized herbarium speci-
mens, and various studies (e.g., Younis et al., 2018) high-
light the need to address this issue. Current methods, such
as cropping, fail to effectively remove these elements and
can sometimes cut off important parts of the specimens.

In the field of segmentation, deep learning techniques
have demonstrated their ability in performing leaf seg-
mentation (Triki et al., 2021; Weaver and Smith, 2023;
Wilde et al., 2023) and plant segmentation (Hussein
et al., 2020; White et al., 2020; Fan et al., 2022; Triki
et al., 2022b; Ariouat et al., 2023), facilitating the separation
of different elements within a specimen image. For instance,
in Fan et al. (2022), two tasks were proposed: plant seg-
mentation to isolate the plant from its background, and leaf
counting. Using UNet++ (Zhou et al., 2018) for segmenta-
tion and a modified ResNet50 (He et al., 2015) model for
leaf counting, the authors analyzed tobacco and Arabidopsis
(L.) Heynh. plants, which are characterized by their rosette‐
like growth. These plants display minimal visual artifacts,
primarily soil, moss, and pots.

Triki et al. (2022b) proposed a segmentation approach
using coarse segmentation in combination with a leaf
reconstruction technique. Similar to the study by Fan et al.
(2022), their method focuses primarily on leaves and does
not explicitly address the preservation of all plant organs. In
their coarse segmentation, Triki et al. (2022a) provided an-
notations for several elements present in specimen sheets.
Bounding boxes were used to identify barcodes, text labels,
and color palettes, and polygons were used to delineate the
plants themselves. The annotations were then converted into
color patches and each class was assigned a specific color. An
encoder/decoder architecture based on a modified VGG16
backbone (Simonyan and Zisserman, 2014) was then used for
segmentation, and the result of the leaf reconstruction seg-
mentation process was used to retrieve images of leaves from
herbarium specimens by means of engineering methods. It is
important to note that the authors' assumption was that all
leaf images from herbarium specimens had transparent
backgrounds. White et al. (2020) introduced a procedure for
segmenting herbarium images, specifically of ferns, which are
distinguished by their specific leaf shapes and the absence of
flowers or fruits. The authors used the Otsu method
(Otsu, 1979) and Photoshop to create masks for training a
segmentation model based on U‐Net (Ronneberger
et al., 2015) with ResNet34 (He et al., 2015); their approach
achieved a Sørensen–Dice coefficient (Dice, 1945;

Sørensen, 1948) of 96%, demonstrating its effectiveness in
segmenting fern specimen images. Hussein et al. (2020)
proposed two models for removing visual noise in digitized
herbarium specimens. In the first model, the authors used
DeepLabv3+ (Chen et al., 2018) with pretrained weights, and
in the second, they developed and trained from scratch a full‐
resolution residual network (FRNN‐A) (Pohlen et al., 2017).
Their results show that FRNN‐A slightly outperformed
DeepLabv3+ , achieving an average intersection over union
(IoU) of 99.2%, compared to 98.1% for DeepLabv3+. The
authors generated their masks using the image labeler in
MATLAB (MathWorks, Natick, Massachusetts, USA), fol-
lowed by a median filtering technique. However, these masks
encompassed only the leaves and stems from various species.

Although recent literature highlights the adaptability of
deep learning models and their ability to manage the
complexity of herbarium images while abstracting extra-
neous visual information, there remains a risk of models
overfitting to visual noise (Leksut et al., 2020; Moayeri
et al., 2022). This overfitting can lead to poor generalization
performance when such elements are absent. The primary
focus of this paper is on herbarium scan segmentation to
separate the plant elements from the background and other
non‐plant elements, a critical task that involves isolating the
plant region within an image by delineating its shape and
constituent organs. To the best of our knowledge, no prior
work has fully leveraged advanced computer vision tech-
niques for the comprehensive segmentation of whole
scanned herbarium specimens, capturing every aspect of the
plant from stems to seeds. This innovation distinguishes our
work from previous efforts, which primarily focused on
segmenting selected plant organs. The novel contributions
of our study are four‐fold as follows:

1. Color interval segmentation pipeline: We developed a
color interval segmentation pipeline (CISP) that removes
non‐plant elements using an object detection algorithm,
a hue‐saturation‐value (HSV) color segmentation algo-
rithm, and a set of morphological transformations to
refine the final masks.

2. Data collection and preparation: We compiled a dataset
of 2277 image–mask pairs, where each image is paired
with its corresponding mask. The masks, generated using
CISP, were manually refined. We then applied a series of
data‐augmentation techniques to enhance the dataset.

3. Plant mask generation approach: Our approach intro-
duces two segmentation models that delineate entire
plants and their individual organs from herbarium scans.
We implemented the U‐Net model (Ronneberger
et al., 2015) through transfer learning, using ResNet101
(He et al., 2015) as the underlying architecture. For the
U‐Net model, we processed two types of masks: one
featuring a white background (WB) and another with a
black background (BB).

4. Identification of plant morphological traits: Using the
segmentation‐generated masks, we created images con-
taining only the plant specimens and then conducted
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experimental studies using two classification models
(ResNet101 [He et al., 2015] and Vision Transformer
[ViT; Dosovitskiy et al., 2021]) to identify five distinct
morphological traits. The results demonstrated a signif-
icant improvement in model performance, with ViT
achieving the best results, increasing accuracy by up to
3% and the F1 score by up to 7%.

METHODS

Dataset collection and preprocessing

The dataset used for image segmentation originates from the
MNHN in Paris (Sklab et al., 2024b) and encompasses 11
different families and genera (Amborella Baill. [91 images],
Castanea Mill. [161 images], Desmodium Desv. [164 images],
Ulmus L. [352 images], Rubus L. [184 images], Litsea Lam.
[199 images], Eugenia L. [219 images], Laurus L. [250
images], Convolvulaceae [177 images], Magnolia L. [162
images], and Monimiaceae [318 images]) reflecting significant

plant diversity within dicotyledons. We compiled a dataset
consisting of 2277 images, each paired with its corresponding
mask (Figure 2). These masks result from the methodology
described in the following section, based on the previously
detailed process by Ariouat et al. (2023). The dataset is
divided into a training set of 1821 images (80%) and a test set
of 456 images (20%). All images are in red‐green‐blue (RGB)
format and have been resized to 1024 × 1024 pixels. To en-
hance the model performance, each resized image is further
partitioned into 16 patches of 256 × 256 pixels. Our experi-
ments show that working with these smaller patches yields
better performance compared to using entire images. The
masks, initially in RGB format, are converted to binary values
for training purposes, i.e., 1 indicates the plant foreground
while 0 indicates the background. Our dataset, including both
the original images and their corresponding masks, is avail-
able on Figshare (Sklab et al., 2024b; see the Data Availability
Statement). To further enhance the dataset, various data
augmentation techniques have been applied for both the black
and the white backgrounds, such as rotations, shifts, flips,
zooming, and shearing (Figure 3).

F IGURE 2 The data preparation pipeline. This pipeline defines a semi‐automated approach for preparing an initial dataset of segmented images to train
deep learning segmentation models. This pipeline builds on the mask generation pipeline (step 1 in Figure 4), which enabled us to build a first dataset of
5000 images, from which we selected 2227 images (step 2) to train the deep learning model. Of these, we had to manually enhance 1500 images (step 3).

F IGURE 3 Examples from the training dataset showing the augmentation techniques applied to the original images (top row), segmented images with a
white background (middle row), and segmented images with a black background (bottom row).
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Segmentation approach

Our segmentation approach is implemented in two distinct
phases. The first phase, color interval segmentation, is used
to create an initial dataset of 9800 images. In the second
phase, 2277 images were carefully selected from the initial
dataset and manually corrected, and then used for deep
learning–based segmentation.

Color interval segmentation

The complete pipeline of the color interval segmentation
(Figure 4) comprises four stages: (i) removal of non‐plant
elements, (ii) HSV color segmentation, (iii) morphological

transformations, and (iv) plant mask generation. It gener-
ates plant tissue masks leveraging the HSV color space's
ability to isolate plant regions, as well as morphological
transformations to enhance the mask's accuracy. The pro-
cess illustrates the step‐by‐step transformation from RGB to
HSV and the application of the defined intervals for green
color extraction (Figure 4).

• Removal of non‐plant elements: In this stage, we focus on
detecting non‐plant elements within specimen images, a
crucial step for isolating plants from potential interfering
elements. To achieve this, we prepared a manually anno-
tated dataset of 950 images, specifically targeting images
containing non‐plant elements such as barcodes, boxes,
stamps, color palettes, and rulers. We used this dataset to

F IGURE 4 The mask generation pipeline. This pipeline defines an automated approach for preparing an initial segmented image dataset to train models
for deep learning segmentation. We were able to build a first dataset of 5000 images, from which we selected 2227 images to train the deep learning model.
Of these, we had to manually enhance 1500 images.
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train a YOLO‐based model (YOLOv7‐ag; Ariouat
et al., 2024) for identifying non‐plant elements. The
YOLOv7‐ag model is distinguished by the integration of
an attention mechanism, which significantly improves the
model's focus on relevant features (Ariouat et al., 2024).
Following the detection process, the outputs from
YOLOv7‐ag undergo post‐processing, which is instru-
mental in distilling the relevant information regarding
non‐plant elements, thereby preparing the images for more
detailed segmentation in the next phase of the pipeline. We
removed all non‐plant elements identified in the object
detection phase by converting their pixel color to black or
white (for black or white background).

• HSV color segmentation: To isolate the plant region, we
utilize the HSV color space, which is better aligned with
human color perception than the RGB color space.
Rather than limiting our scope to green hues alone, we
define specific ranges that capture a broader spectrum of
colors. Specifically, we set the lower HSV bounds to
[0,18,20] and the upper bounds to [88,200,160]. These
intervals are chosen not only to target the green hues
typically associated with plant tissues but also to include a
wider range of colors present in the plant.

• Morphological transformations: We apply morphological
operations, primarily targeting binary images, which
involve the original image and a structuring element. Our
focus is on three operations: opening, closing, and bit-
wise. The opening operation, similar to erosion but less
destructive, preserves regions that match the structuring
element's shape. The closing operation, akin to dilation,
maintains the original boundary shape while enlarging
foreground regions. Both operations involve a sequence
of erosion and dilation with the same structuring
element.

• Plant mask generation: Finally, we apply bitwise opera-
tions on images and their corresponding binary masks.
This technique outlines the plant by assigning a value of 1
to the plant pixels and 0 to the background pixels. We
applied a bitwise ‘AND’ operation between the image and
the mask, retaining only the pixels where both the orig-
inal image and the mask had a value of 1, corresponding
to the plant. All other pixels, representing the background
or non‐plant elements, were set to 0, rendering the
background black. The result is a segmented image in
which only the plant is visible, distinctly isolated from its
surroundings. Next, we convert the segmented image,
initially in blue, green, red (BGR) format, to RGB format,
which is most commonly used in computer vision.

Deep learning segmentation

Our deep learning–based segmentation approach (Figure 5)
is based on the U‐Net architecture, which was originally
introduced by Ronneberger et al. (2015) for precise seg-
mentation of medical images but has also demonstrated
significant effectiveness in domains such as botanical image
processing. Its effectiveness stems from an upsampling
mechanism and the ability to capture multi‐scale features,
allowing it to segment plant elements of varying sizes and
shapes. To further enhance the model's performance, we
employed a strategy using small image patches rather than
entire images. This approach allows the model to better
represent the intricate details and varied characteristics
present in plant images, such as fine granularity and diverse
shapes and sizes. This refinement ensures more detailed and
accurate segmentation, accommodating the unique textural
and structural complexities of diverse plant species.

F IGURE 5 Segmentation approach using the U‐Net architecture with small image patches to enhance the model's ability to accurately identify and
segment plant elements in diverse and challenging botanical datasets.
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For training, we used binary annotations for the masks.
However, this binary setup presents challenges, particularly
because the number of background pixels often far exceeds
the number of plant pixels, resulting in an imbalance in the
binary classification task. This disproportion skews the
model's learning, as it tends to overwhelmingly encounter
and learn from background pixels rather than the relatively
fewer plant pixels. Such an imbalance can potentially
affect the model's ability to accurately identify and segment
plant features, requiring strategies to mitigate this issue for
effective training and accurate segmentation outcomes. To
address this, we combined the binary cross‐entropy (BCE)
loss with the Jaccard loss to guide the learning process. This
combination helps balance the focus between plant and
background pixels. BCE loss ensures accuracy, while Jaccard
loss enhances the overall shape similarity between the pre-
dicted segmentation and the ground truth. By combining
these two losses, the model is better able to accurately
predict object pixels while minimizing overall errors.

The result of the segmentation process is a set of small
binary masks, which are subsequently combined using the
patchify library (https://github.com/dovahcrow/patchify.py).
The combined masks are then overlaid onto the original
image to achieve the pixelation, which involves running
through the acquired masks and substituting zero‐value
pixels with zero in the original image. This approach is
critical for preserving the plant's original pixels, which is of
paramount importance in the context of our study.

RESULTS

Experimental setup

We evaluated our approach by comparing the pixel label pre-
dictions from U‐Net (using both the WB and BB) with the
manually curated ground truth labels for 358 validation images,
covering 11 distinct plant families and genera. The plant phe-
notyping dataset used is detailed in the Methods section (under
“Dataset collection and preprocessing”). Initially, our experi-
mental analysis focused on plant segmentation, comparing the
performance of both the WB and BB models on the test set.
Subsequently, we assessed the performance improvements
achieved by using these models’ outputs in two image classi-
fication networks, namely ResNet101 and ViT.

Implementation details and evaluation protocol

The images in our dataset were divided into two separate
groups: 80% were allocated to the training set and 20% for
validation. Our experiments were conducted on the Ten-
sorFlow platform (Google Brain, Mountain View, California,
USA), leveraging the computational power of four NVIDIA
A100 GPUs, each equipped with 80 GB of memory. To en-
sure efficient and stable convergence during training, we
structured our mini‐batches by randomly selecting samples

of a batch size of 16. The adaptive moment estimation
(Adam) optimizer (Kingma and Ba, 2014) was chosen for its
rapid convergence capabilities, and we trained the model for
300 epochs. This duration was chosen as we observed that
beyond this point, the model's performance plateaued with
no further improvements. The learning rate was maintained
at 0.0001 throughout the training process.

Metrics for segmentation

We used the IoU metric as our primary evaluation bench-
mark, which is commonly used in segmentation tasks. IoU
quantifies the overlap between the segmented plant region
and its actual ground truth. However, given the class
imbalance between our two classes (background and
plants), relying solely on accuracy as an evaluation metric
can be misleading. High accuracy might not fully capture
the model's performance when one class is significantly
more prevalent than the other.

To provide a more comprehensive evaluation, we also
computed precision and recall. Precision measures the
proportion of correctly identified plant pixels among all
pixels predicted as plants, while recall assesses the model's
ability to capture all relevant plant pixels from the ground
truth. Together, these metrics offer a balanced view of the
model's performance, highlighting both false positives and
false negatives.

To evaluate the impact of segmentation on the per-
formance of classification models, we conducted experiments
using ResNet101 and ViT, using another dataset comprising
4005 images that were annotated for the presence or absence
of five distinct plant traits by botanical experts using the Les
herbonautes platform (http://lesherbonautes.mnhn.fr). In
total, the experts annotated 27 traits, but in this paper, we
illustrate the results using only five of these traits: thorns
(sharp structures on branches or stems), fruit, leaves with an
acuminate tip, infructescence (arrangements of elementary
fruits, e.g., grapes), and leaves with an acute base (Figure 6).
These images underwent a segmentation process, resulting in
a dataset of 4005 segmented images. A significant challenge
arose due to the substantial imbalance in trait annotations.
To address this, we created a series of balanced datasets for
each trait, each comprising segmented and unsegmented
images (Table 1).

Performance of deep learning segmentation

Our segmentation model achieved an IoU coefficient of
0.82% for the predicted masks across the entire test set of
358 images, regardless of the background used (WB or BB).
This evaluation extended to each of the 11 plant families
and genera represented in our test data (Table 2), where we
observed that the performance of the two models was
generally similar across these groups. For most taxa, the IoU
coefficient was above 0.90%, indicating high segmentation
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accuracy. However, for some taxa, such as Convolvulaceae
and Desmodium, the IoU coefficients were slightly lower,
with values around 0.82% and 0.87%, respectively. This
slight reduction in IoU might be attributed to the complex
morphology of the plants within these taxa, which include
small leaves, flowers, and slender stems that challenge the
segmentation process.

Overall, while both models performed well, the choice of
background color significantly impacted the segmentation
outcomes. In some cases, the BB model provided better
recall (Table 2), indicating its effectiveness in capturing a
higher number of true positives, especially for lighter or

TABLE 1 The distribution of images in the balanced training and
validation datasets for the five studied traits, derived from the initial
dataset of 4005 images annotated by expert botanists.

Number of images
Trait Train Validation

Thorns 2426 500

Fruits 2776 580

Leaves with acuminate tips 2360 500

Infructescence 2340 480

Leaves with an acute base 2308 500

F IGURE 6 Herbarium specimen examples (left column) showcasing traits (thorns, fruits, leaves with acuminate tips, infructescence, leaves with an
acute base) and their corresponding segmented images with black background (middle column) and white background (right column).
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more intricate plant features. The WB model, on the other
hand, exhibited superior precision, particularly with darker
specimens, suggesting it was better at minimizing false
positives. For example, in Magnolia and Eugenia, the BB
model showed higher recall, which is crucial for ensuring

that all relevant plant features are detected. Conversely, the
WB model showed higher precision, which is essential for
correctly identifying plant features without including non‐
plant pixels. The segmentation results for different images
from the two models are shown in Figure 6.

TABLE 2 Evaluation of the segmentation model in two variants (with white background and black background) across 11 plant families and genera,
using a validation dataset of 358 images to assess four performance metrics: intersection over union (IoU) coefficient, precision, recall, and F1 score.

Metrics
Family No. of images Models IoU coefficient Precision Recall F1 score

Amborella 5 White background 0.94 0.98 0.95 0.97

Black background 0.93 0.94 0.98 0.96

Castanea 61 White background 0.94 0.97 0.96 0.97

Black background 0.94 0.95 0.99 0.97

Convolvulaceae 25 White background 0.82 0.94 0.87 0.90

Black background 0.84 0.86 0.97 0.91

Desmodium 11 White background 0.87 0.98 0.88 0.93

Black background 0.88 0.89 0.98 0.93

Eugenia 40 White background 0.90 0.95 0.94 0.94

Black background 0.90 0.91 0.99 0.95

Laurus 53 White background 0.94 0.97 0.97 0.97

Black background 0.94 0.95 0.99 0.97

Litsea 17 White background 0.91 0.94 0.96 0.95

Black background 0.91 0.92 0.99 0.95

Magnolia 34 White background 0.94 0.97 0.97 0.97

Black background 0.95 0.95 0.99 0.97

Monimiaceae 37 White background 0.92 0.95 0.96 0.96

Black background 0.92 0.93 0.99 0.96

Rubus 22 White background 0.92 0.97 0.95 0.96

Black background 0.94 0.95 0.99 0.97

Ulmus 53 White background 0.91 0.98 0.93 0.95

Black background 0.92 0.93 0.98 0.96

TABLE 3 Performance evaluation of the ViT model on unsegmented images and two segmented image variants (segmented with black backgrounds
[BB] and segmented with white backgrounds [WB]) across five botanical traits.a

Unsegmented Segmented BB Deltab Segmented WB Deltab

Trait Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Thorns 97.00 92.66 95.60 92.59 −01.40 −00.07 94.80 94.26 −2.20 +1.60

Fruits 64.31 63.86 64.66 66.86 +00.35 +03.00 62.93 66.01 −1.38 +2.15

Leaves with acuminate tips 82.00 77.52 83.00 80.23 +01.00 +02.71 80.20 75.32 −1.80 −2.20

Infructescence 70.63 64.98 71.46 72.65 +00.83 +07.67 69.17 70.51 −1.46 +5.53

Leaves with an acute base 71.80 68.22 75.20 75.40 +03.40 +07.18 69.80 70.85 −2.00 +2.63

aThe metrics used for comparison are accuracy (Acc) and F1 score (F1).
bThe delta values represent the performance difference between segmented and unsegmented images for both variants.
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DISCUSSION

In our study, we developed an automated method to extract
herbarium masks using semantic segmentation models, with
the goal of removing the background from herbarium
images and retaining only the plant. This step is crucial for
cleaner preprocessing in subsequent classification models.

Our segmentation process captures various plant compo-
nents, including leaves, stems, flowers, fruits, and seeds, and
the models we employed achieved IoU scores surpassing
96%. The choice between the WB and BB models depends
on the specific characteristics of the plant elements, with the
WB model being more effective for plants with darker
features and the BB model excelling with lighter and finer

TABLE 4 Performance evaluation of the ResNet101 model on unsegmented images and two segmented image variants (segmented with black
backgrounds [BB] and segmented with white backgrounds [WB]) across five botanical traits.a

Unsegmented Segmented BB Deltab Segmented WB Deltab

Trait Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Thorns 94.20 92.86 95.20 93.47 −01.00 −00.60 82.00 80.08 −12.20 −12.78

Fruits 60.17 67.28 64.66 67.22 −04.49 +00.06 52.51 66.67 −07.66 −00.61

Leaves with acuminate tips 79.40 78.88 77.00 73.92 +02.24 +04.96 71.40 69.47 −08.00 −09.41

Infructescence 70.83 72.87 69.37 69.10 +01.46 +03.77 56.04 66.67 −14.79 −06.20

Leaves with an acute base 73.00 72.66 71.40 69.42 +01.60 +03.24 58.20 65.03 −14.80 −07.63

aThe metrics used for comparison are accuracy (Acc) and F1 score (F1).
bThe delta values represent the performance difference between segmented and unsegmented images for both variants.

F IGURE 7 Comparison of the ViT model's performance in two distinct scenarios. (A) The model incorrectly predicted the absence of thorns, likely due
to excessive focus on the background. (B) Corresponding heatmap showing inadequate attention to relevant plant regions. (C) The model accurately
identified the presence of thorns after background removal. (D) Heatmap demonstrating appropriately directed attention on relevant plant features, leading
to correct classification.
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plant details. Our research highlights the effectiveness of the
models on previously unseen images while acknowledging
certain limitations, particularly when dealing with
unfamiliar backgrounds.

The evaluation of the impact of segmentation on the
performance of classification models demonstrates an
improvement in the performance of ViT for four out of five
traits, with increases up to 3% in accuracy and 7% in F1 score
(Table 3) when using segmented images with the BB model.
A similar trend is observed for ResNet101 (Table 4). Con-
versely, when using segmented images with the WB model,
ViT shows lower accuracy compared to using non‐
segmented images, but the F1 score improves for four out
of five traits. As for ResNet101 with the WB model, we
observed a drastic decrease in performance across all traits
and both metrics. This decline can be attributed to the
nature of the images used for classification, which are
predominantly lighter, thus the WB model did not per-
form well, as it is better suited for images with darker plant
specimens, as previously discussed.

Another important aspect is illustrated in the key
regions influencing the predictions made by ViT on both
non‐segmented and segmented images (Figure 7, with BB).
In the first example, ViT inaccurately predicted the absence
of thorns on a plant that, in fact, had thorns (Figure 7A, B).
This error may be attributed to the model's undue focus on
the background rather than on the plant itself. Conversely,
in a second example, ViT correctly identified the presence of
thorns, attributed to the model's appropriate focus on the
plant, leading to an accurate prediction (Figure 7C, D). This
comparison highlights the influence of background removal
on the model's ability to correctly identify essential plant
features, emphasizing the significance of targeted focus for
precise classification in deep learning models. Our study
underlines the critical role of dataset preprocessing in en-
hancing the generalization capabilities of models within the
domain of botanical image classification.

This study clearly demonstrates the potential of deep
learning semantic segmentation as a preprocessing tool to
reduce visual noise in herbarium images before applying
classification models. Looking ahead, our goal is to expand
this research to develop a comprehensive herbarium feature
recognition system, which will include digital reconstruction
of lost or damaged plant parts. Such advances promise not
only to improve the accuracy of plant identification, but also
to make a significant contribution to the preservation and
study of botanical specimens.
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