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ABSTRACT
Devastating flood events are recurrently impacting West Africa. To mitigate flood impacts and reduce the vulnerability of popu-
lations, a better knowledge on the frequency of these events is crucial. The lack of reliable hydrometric datasets has hitherto been 
a major limitation in flood frequency analysis at the scale of West Africa. Utilising a recently developed African database, we 
perform a flood frequency analysis on the annual maximum flow (AMF) time series, covering 246 river basins in West Africa, 
between 1975 and 2018. Generalized extreme value (GEV) and Gumbel probability distributions were compared to fit AMF time 
series with the L-moments, Maximum Likelihood (MLE) and Generalized Maximum Likelihood (GMLE) methods. Results indi-
cated that the GEV distribution with the GMLE method provided the best results. Regional envelope curves covering the entire 
West African region with unprecedented data coverage have been generated for the first-time providing insights for the estima-
tion in flood quantiles for ungauged basins. The correlation between flood quantiles and watershed properties shows significant 
correlations with catchment area, groundwater storage, altitude and topographic wetness index. The findings from this study are 
useful for a better flood risk assessment and the design of hydraulic infrastructures in this region, and are a first step prior to the 
development of regional approaches to transfer the information from gauged sites to ungauged catchments.

1   |   Introduction

West Africa is highly vulnerable to climate change. The region 
is expected to experience unprecedented changes in both tem-
perature and extreme precipitation patterns (IPCC 2014; Niang 
et al. 2014; Gautier, Denis, and Locatelli 2016; Sylla et al. 2016; 
Serdeczny et al. 2017; Adefisan 2018; Ahokpossi 2018; Akinseye 
et  al.  2020; Ilori and Ajayi  2020; Muthoni  2020; Opoku 
et al. 2021). This vulnerability stems from West African coun-
tries limited economic and institutional capacities to cope with 
and adapt to climate variability (Roudier et al. 2011; Sultan and 
Gaetani 2016; Zougmoré et al. 2016; Lalou et al. 2019; Fitzpatrick 
et  al.  2020). Climate variability accentuates the frequency, in-
tensity and impact of extreme events, such as storms, floods 
and droughts (Kunkel 2003). In particular, catastrophic floods 

have hit many West African countries in recent years and there 
is a concern about a potential increase in flood hazard in this 
region (Di Baldassarre et al. 2010; Hounkpè et al. 2015; Chun 
et al. 2021; Tramblay, Rouché, et al. 2021; World Bank 2021).

Acquiring comprehensive insights into the frequency of ex-
treme events is crucial for climate change adaptation and risk 
management (Katz, Parlange, and Naveau 2002). Frequency 
analysis involves estimating the occurrence probability of an 
extreme event using probability distributions (Cunnane 1988; 
Hosking and Wallis  1997; Rahman et  al.  2013; Hamed and 
Rao  2019; Faulkner et  al.  2020; Chahraoui, Touaibïa, and 
Habibi  2021; Malik and Pal  2021; Gogoi and Patnaik  2023). 
It is a widely used engineering method in fields where risk 
assessment and management are critical (Gaume 2018). It is 
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commonly used in hydrology to evaluate flood risk, including 
assessing the likelihood of flood events and determining the 
feasibility and cost-effectiveness of hydraulic infrastructure 
like dams, bridges and dikes (Dalrymple 1960; Farquharson, 
Meigh, and Sutcliffe 1992; Castellarin, Burn, and Brath 2001; 
Reis and Stedinger 2005; Kidson and Richards 2005; Newman 
et al. 2021; Yan et al. 2021). Hydraulic infrastructures are in-
deed designed based on the magnitude and exceedance prob-
ability of extreme events, such as a 100-year flood, to mitigate 
the associated risks (Pan and Rahman 2022). Thus, flood fre-
quency analysis involves identifying a statistical model capa-
ble of estimating the exceedance probability of flood events 
at a specific location (Meylan, Favre, and Musy  2008; Hu 
et al. 2020). However, in Africa, observed discharge time se-
ries rarely span the design flood return period used in hydro-
logic engineering (Tramblay, Rouché, et al. 2021). According 
to the USGS Bulletin 17C Guidelines (England Jr et al. 2019), 
a minimum record of 10 years is required to perform flood fre-
quency analysis. Thus, estimating flood quantiles with long 
return periods often requires a certain degree of extrapolation 
(Kidson and Richards  2005; Rahman et  al.  2013; Ibeje and 
Ekwueme 2020; Lawrence 2020; Zhou et al. 2021). However, 
uncertainties arise in extrapolation due to several factors, 
such as sample size, choice of the probability distribution, 
parameter estimation algorithm and non-stationarity. The 
longer the extrapolation period, the greater the uncertainties 
(Wilcox et al. 2018), hence the need to quantify these uncer-
tainties (Shimizu, Yamada, and Yamada 2020).

Due to the significant economic and environmental impacts of 
flood hazards (Wadsworth 1999; Wang, Jiang, and Chen 1999; 
ICHARM  2009; CRED  2012; EM-DAT  2015; Tramblay, 
Villarini, and Zhang 2020; UNDRR 2020, 2023; Buchenrieder, 
Brandl, and Balgah 2021; Tanoue et al. 2021; Balgah et al. 2023; 
Dossoumou et al. 2023; Lawanson, Proverbs, and Ibrahim 2023), 
flood frequency analysis (FFA) has become a major concern 
and interest among hydrologists in recent decades (Bobée and 
Rasmussen 1995; Ahmed et al. 2023). FFA is based on extreme 
value theory (EVT) (Fisher and Tippett  1928; Embrechts, 
Klüppelberg, and Mikosch  1997; Coles  2001), which suggests 
that the extremes of a random variable are asymptotically close 
to one of three types of extreme value distributions (EVD): the 
Gumbel (Gumbel  1958), Fréchet (Fréchet  1927) and Weibull 
(Weibull 1951) distributions. Two methods are commonly used 
to construct a series of extreme values (Salas, Obeysekera, 
and Vogel  2018; Sarailidis and Tsiougkos  2018): Peaks-Over-
Threshold (POT) (Hosking and Wallis  1997; Lang, Ouarda, 
and Bobée  1999) and Block-Maxima (BM) (Gumbel  1958). 
The POT approach involves isolating extreme values from the 
rest of the observations using a threshold (Kumar, Sharif, and 
Ahmed 2020; Shimizu, Yamada, and Yamada 2020). However, 
setting an appropriate threshold and ensuring the independence 
of sampled values are major limitations of the POT method 
(Bezak, Brilly, and Šraj  2014; Guru and Jha  2015). The BM 
approach is comparatively easier to implement due to its sim-
plicity (Pan and Rahman 2022). With the BM method, the ob-
servation period is divided into non-overlapping intervals of 
equal length, from which the maximum value is extracted for 
each block (Engeland, Hisdal, and Frigessi 2004; Ferreira and 
de Haan 2015). The sampled maxima are treated as independent 

random variables as the BM approach considers only one ex-
treme event per block (Caissie et al. 2022). General distributions 
that include all of the three limiting distributions mentioned 
above are available (Papalexiou and Koutsoyiannis  2013): 
the General Extreme Value (GEV) distribution for the Block-
Maxima approach and the Generalized Pareto (GP) distribution 
(Arnold 2008) for POT.

Stationarity is one of the underlying assumptions of fre-
quency analysis; in a stationary context, the variable of in-
terest has a time-invariant probability density function 
(PDF) (Milly et  al.  2008). However, in the context of global 
warming-driven environmental changes (Lee et  al.  2023), 
the stationarity assumption needs to be verified (Milly 
et  al.  2008; Debele, Strupczewski, and Bogdanowicz  2017; 
Salas, Obeysekera, and Vogel 2018). The most usual approach 
to check for non-stationarity is to use a probability distri-
bution whose parameters are not constant but instead vary 
based on one or several covariates (Cunderlik and Burn 2003; 
Rigby and Stasinopoulos  2005; Serinaldi and Kilsby  2015; 
Marra et al. 2019). Most often, a linear relationship between 
the location parameter of the distribution with time, or other 
covariates, is typically employed to account for the non-
stationary behaviour of time series in flood frequency analy-
sis (Coles 2001; López and Francés 2013; Hounkpè et al. 2015; 
Lu et  al.  2020; Chen, Papadikis, and Jun  2021; Anzolin 
et al. 2023; Bossa et al. 2023). Very few studies have focused 
on non-stationary flood frequency analysis in West Africa 
(Tramblay et al. 2014; Hounkpè et al. 2015; Dègan et al. 2017; 
Bossa et  al.  2023), compared to the South African region 
where several studies have introduced non-stationary proba-
bilistic modelling to improve flood frequency analysis in this 
region (Johnson, Smithers, and Schulze 2021; Mukansi 2024).

In developing countries, including West Africa, hydroclimatic 
data are typically very scattered (Xu and Singh 1998; Amoussou 
et  al.  2014; Bodian, Dezetter, and Dacosta  2015; Aryee 
et al. 2018; Bodian et al. 2020; Tramblay, Villarini, et al. 2021). 
Consequently, most studies on flood frequency analysis in West 
Africa are limited to the catchment scales with a small number 
of basins, where data could be collected. Some of these studies 
focus on local frequency analysis at a few locations (Amoussou 
et al. 2014; Ehiorobo and Uso 2014; Olukemi et al. 2014; Hounkpè 
et al. 2015; Ntajal et al. 2016; Wilcox et al. 2018; Ibeje 2020; Osei 
et al. 2021; Bossa et al. 2023), while others explore regionaliza-
tion (Komi et  al.  2016; Faye  2019; Ekeu-Wei, Blackburn, and 
Giovannettone 2020; Ibeje and Ekwueme 2020). The common 
limitations of these studies lie in the relatively small number 
of stations used, with small study areas. Local hydrographic 
variability can be masked by these limitations, leading to inac-
curate results and limiting regional applications. The main ob-
jective of this study is to apply local frequency analysis to a large 
set of catchments in West Africa, using the recently developed 
ADHI database (Tramblay, Villarini, et  al.  2021). After a de-
scription of the study area and data used in Section 2, Section 3 
details the methodology employed, including trend and auto-
correlation tests, fitting of candidate probability distributions 
and correlation analysis. Results and discussions are presented 
in Section 4. Finally, conclusions and perspectives are given in 
Section 5.
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2   |   Study Area and Data

2.1   |   Study Area

West Africa extends from the Atlantic coast of Senegal (18° W) 
to the east of Chad (25° E) and from the Gulf of Guinea (4° N) 
to the north of the Sahel (25° N), covering about one-fifth (1/5) 
of the African continent (Satgé et al.  2020). It covers a wide 
range of ecosystems, bioclimatic regions and habitats, from 
deserts in the north to tropical rainforests in the south (Le 
Houérou, Evenari, and Goodall 1986; Bocksberger et al. 2016; 
Merem et al. 2017; Nicholson 2018; Couvreur et al. 2021). West 
Africa can be divided into three climatic zones according to 
the seasonal oscillation of the Inter-Tropical Convergence 
Zone (ITCZ) (Nicholson  2008, 2009; Akinsanola et  al.  2015; 
Mul et al. 2015; Sule and Odekunle 2016; Biasutti 2019; Gbode 
et al. 2023): (i) the Sahelian zone, characterized by an average 
annual rainfall of 150–600 mm; (ii) the Sudanian zone, which 
forms a broad belt south of the Sahel, with average annual 
rainfall ranging from 600 to 1200 mm; and (iii) the Guinean 
zone, characterized by an average annual rainfall ranging 
from 1200 to 2200 mm. Except for the southern regions of the 
coastal countries stretching from Liberia to Nigeria, which 
experience two rainy seasons (a lengthy one followed by a 
shorter one), much of West Africa exhibits a bimodal rainfall 
pattern, with a wet season and a dry season, influenced by 
the West African monsoon (Rodríguez-Fonseca et  al.  2015; 
Nicholson 2018). Almost half of the African continental wa-
tersheds, including 11 major transboundary river basins, are 
located in West Africa (Niasse 2004).

2.2   |   Data

The data was obtained from the African Database of 
Hydrometric Indices (ADHI) built by Tramblay, Villarini, 
et  al.  (2021). This database provides hydrological indices 
computed from different data sources including 1466 hydro-
metric stations with daily discharge time series that span at 
least 10 years between 1950 and 2018. The ADHI database also 
contains several physiographic features describing the water-
sheds. Table  1 provides names, abbreviations and references 
for these watershed properties. For West Africa, the ADHI 
database includes 441 stations located in different countries. 
The area of the West African catchments in the database var-
ies from 95 to 2,150,000 km2, and the daily discharge series 
exceeds 44 years of record for some stations, with an average 
length of 19 years. The block-maximum (BM) approach was 
used to create data series used in flood frequency analysis. 
Annual maximum flow (AMF) was extracted from the daily 
streamflow records for the period from 1975 to 2018. To handle 
challenges posed by the missing data in the ADHI database, 
we have carefully examined the hydrographs at each station 
year-by-year. If values were missing near the flood peak, we 
excluded that year from the analysis, as the missing data could 
have included the Annual Maximum Flow (AMF) for that year. 
This approach follows the sampling method outlined by Wilcox 
et al. (2018). This check has enabled us to ensure that no AMF 
was extracted during a period with a lot of missing data. The 
selection of watersheds was based on three main criteria: (i) 
the length of the available time series, (ii) the regulation of 

catchments (Figure  S1) and (iii) the size of watershed areas. 
Watersheds not influenced by dams, with a minimum record 
length of 10 years, and an area less than 150,000 km2 were con-
sidered. Applying these criteria, a total of 246 stations were se-
lected from the West Africa ADHI database. The AMF series 
of retained stations have an average temporal depth of 23 years, 

TABLE 1    |    Catchment properties.

Description Abbr. References

Curve number CN (Ross et al. 2018)
https://​doi.​org/​10.​
1038/​sdata.​2018.​91

Available water 
capacity

AWC (Wieder 2014)
https://​doi.​org/​

10.​3334/​ORNLD​
AAC/​1247

Bulk density BD

% Clay Clay

% Gravel Gravel

% Sand Sand

% Silt Silt

Groundwater depth GD (MacDonald 
et al. 2012)

https://​doi.​org/​
10.​1088/​1748-​

9326/7/​2/​024009

Groundwater 
productivity

GP

Groundwater storage GS

Maximum altitude MA (Lehner and 
Grill 2013)

https://​doi.​org/​10.​
1002/​hyp.​9740

Mean slope Slope

Mean altitude Altitude

Topographic Wetness 
Index

TWI (Sørensen, Zinko, 
and Seibert 2006)

https://​doi.​
org/​10.​5194/​

hess-​10-​101-​2006

% Forest Forest ESA CCI LandCover
http://​www.​esa-​

landc​over-​cci.​org/​
% Urban Urban

% Cropland Cropland

% Cropland irrigated CI

% Grassland Grassland

% Shrubland Shrubland

% Sparse Sparse

% Bare land BL

Area Area

Mean annual 
precipitation

Prec (Harris et al. 2020)
https://​doi.​org/​
10.​1038/​s4159​
7-​020-​0453-​3

Mean annual 
temperature

Temp

Mean annual 
potential 
evapotranspiration

PET

https://doi.org/10.1038/sdata.2018.91
https://doi.org/10.1038/sdata.2018.91
https://doi.org/10.3334/ORNLDAAC/1247
https://doi.org/10.3334/ORNLDAAC/1247
https://doi.org/10.3334/ORNLDAAC/1247
https://doi.org/10.1088/1748-9326/7/2/024009
https://doi.org/10.1088/1748-9326/7/2/024009
https://doi.org/10.1088/1748-9326/7/2/024009
https://doi.org/10.1002/hyp.9740
https://doi.org/10.1002/hyp.9740
https://doi.org/10.5194/hess-10-101-2006
https://doi.org/10.5194/hess-10-101-2006
https://doi.org/10.5194/hess-10-101-2006
http://www.esa-landcover-cci.org/
http://www.esa-landcover-cci.org/
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1038/s41597-020-0453-3
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with the longest series spanning 43 years. Figure 1 shows the 
spatial distribution of the selected stations, with 63% of them 
located in the Guinean zone. The Sudanian and Sahelian zones 
account for 27% and 10% of selected stations, respectively. Most 

selected basins (70%) have an area of less than 10,000 km2. 
Figure 2 shows the number of hydrometric stations according 
to the number of data points available, providing an overview 
of the temporal coverage of hydrometric data in West Africa.

FIGURE 1    |    Location of 246 ADHI watersheds selected for the study, the blue lines represent isohyets delimiting West Africa climatic regions, and 
the grey lines indicate the borders of West African countries.

FIGURE 2    |    Distribution of hydrometric stations selected based on the number of years of available data. Stations are classified into three catego-
ries according to AMF record length: 10–19 years (red), 20–29 years (yellow) and at least 30 years (blue).
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3   |   Methodology

Flood frequency analysis is applied through a six-step process 
(Meylan, Favre, and Musy 2008): (i) construction of a series of 
extreme values, (ii) verification of the assumptions underlying 
frequency analysis through the application of statistical tests on 
the sample of extreme values, (iii) selection of several extreme 
value distributions to fit the data series, (iv) estimation of the dis-
tributions' parameters, (v) comparison of the distributions based 
on goodness-of-fit (GOF) tests (Takara and Takasao 1988) and 
(vi) estimation of flood quantiles.

3.1   |   Independence and Homogeneity Tests

Two statistical tests were applied to the annual maximum 
discharge time series at 0.05 significance level. The Wald-
Wolfowitz independence test (Wald and Wolfowitz  1940) 
was used to detect autocorrelation in the annual maximum 
series, while the non-parametric Mann–Kendall trend test 
(Mann  1945; Kendall  1975) was employed to assess the sta-
tionarity assumption. However, the results of simultane-
ous multiple tests should be interpreted globally, to account 
for the presence of spatial cross-correlations or spatial clus-
ters in the data, which increase the number of rejections of 
the null hypothesis than expected by the significance level 
(Farris et al. 2021). To assess the significance of the detected 
local trends by the Mann-Kendall test on a regional level, 
the False Discovery Rate (FDR) procedure (Hochberg and 
Benjamini 1995) was implemented. The FDR procedure aims 
to reduce the proportion of false positives among the null hy-
pothesis local rejections (Wilks 2006). Given the p-values for 
each grid point, the FDR test rejects the local null hypothesis 
at sites where the corresponding p-value is below a regional 
significance level (αglobal, set at 0.05 for consistency with 
local trend analysis). If at least the null hypothesis is rejected 
at one grid point, trends detected are regionally significant 
(Wilks 2016).

3.2   |   Candidate Probability Distributions

Two extreme value distributions were assessed: the GEV 
(Generalized Extreme Value) and the Gumbel. The GEV dis-
tribution is a three-parameter model, whereas the Gumbel 
distribution has two parameters. These two distributions are 
selected since they are the most commonly used for flood fre-
quency analysis. It is worth noting that when the shape pa-
rameter (ξ) of the GEV equals 0, it becomes identical to the 
Gumbel distribution (Martins and Stedinger  2000; Smirnov, 
Ma, and Volchenkov 2020). Equations (1) and (2) present the 
cumulative distribution functions (CDFs) of the two prob-
ability distributions. Some studies have argued that both 
the location and scale parameters should be varied propor-
tionally to capture the impact of climate change (Stedinger 
and Griffis  2011; Prosdocimi and Kjeldsen  2021; Jayaweera 
et  al.  2023). However, researchers often opt to model only 
the location parameter as a covariate-dependent function, 
as this added complexity could significantly complicate the 
model parameters estimation process and would require large 

datasets for reliable parameter estimates (Coles 2001; Cheng 
et al. 2014; C. Zhang et al. 2023). Furthermore, previous re-
search has indicated that estimating the GEV shape parameter 
(ξ) is challenging, especially in a stationary context (Martins 
and Stedinger  2000; Papalexiou and Koutsoyiannis  2013; 
Carney 2016; Ragulina and Reitan 2017). Therefore, it is im-
practical to assume smooth variation of shape parameters over 
time or as a function of covariates in non-stationary models 
(Coles  2001; Rohmer, Thieblemont, and Le Cozannet  2021). 
Thus, to account for non-stationarity in flood frequency anal-
ysis here in, we have expressed the location parameter (μ) of 
the two distributions as a linear function of time, denoted as 
μ(t), leaving the other parameters constant.

where x, u, � and � are the data, location, scale and shape param-
eters, respectively, and (u + 𝛼∕𝜉) ≤ x < ∞ if 𝜉 < 0; − ∞ < x < ∞ 
if � = 0; − ∞ < x ≤ (u + 𝛼∕𝜉) if 𝜅 > 0.

3.3   |   Fit of Probability Distributions

Three parameter estimation methods were used to fit probability 
distributions to AMF series: L-moments (LM) (Hosking 1990), 
Maximum Likelihood (MLE) (Fisher  1992) and Generalized 
(Penalized) MLE (GMLE) (Martins and Stedinger  2000). The 
fitting was carried out in the R environment (R Core Team 2022) 
using the extRemes v2.0 library (Gilleland and Katz 2016). This 
package implements the three fitting methods mentioned above 
and also allows the integration of covariates in a non-stationary 
context. According to Martins and Stedinger  (2000), the MLE 
method is unstable in estimating GEV parameters for small 
samples. They recommend the use of a Bayesian prior distribu-
tion, to constrain the GEV shape parameter within a reasonable 
range of values. They used a beta distribution (with shape pa-
rameters p = 6 and q = 9) as a prior, which constrains the val-
ues of the shape parameter in the interval [−0.5, +0.5]. This 
restriction results in the GMLE method. However, the authors 
recommend improving this prior when regional information is 
available to develop a more informative prior distribution. This 
improvement was successfully applied in the United Kingdom 
(Howard 2022) and North Africa (Tramblay et al. 2024). In this 
work, a normal prior distribution is adopted to develop a more in-
formative prior for the shape parameter of the GEV distribution.

3.4   |   Assessing Goodness-of-Fit (GOF) 
of Probability Distributions

To compare the probability distributions, the Akaike infor-
mation criterion (AIC) (Akaike  1974) and the Bayesian in-
formation criterion (BIC) (Schwarz  1978) were used. The 
mathematical expressions for these criteria are provided 
in Equations  (3) and (4). The joint use of these performance 

(1)F(x;u, �, �) = exp

{

−

[

1−�
(x−u)

�

]1∕�
}

� ≠ 0

(2)F(x; �, �) = exp

{

− exp

[

−
(x − u)

�

]}

� = 0
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metrics to find models favoured by both criteria makes 
model selection more efficient (Kuha 2004; Phillips, Samadi, 
and Meadows  2018; Cheng, Du, and Ji  2020; Lu et  al.  2020; 
Razmkhah, Fararouie, and Ravari  2022). In addition to the 
AIC and BIC criteria, the models were also compared based 
on uncertainties associated with the estimation of flood quan-
tiles. A normalised uncertainty range, defined as the ratio of 
the difference between the upper (97.5%) and lower (2.5%) 
bounds of the confidence interval and the estimated quantile 
was computed (Metzger et  al.  2020; Tramblay et  al.  2024). 
Confidence intervals were computed using the bootstrap per-
centile method (Ialongo 2019), implemented in the R-extRemes 
(v2.0) library (Gilleland and Katz 2016; Gilleland 2020). This 
method is easy to apply, regardless of the complexity of the 
model, and is based strictly on available information, with 
no underlying assumptions about data distribution (Serinaldi 
and Kilsby 2015).

where k is the number of free parameters in the model, L is the 
maximum likelihood, and N is the sample size.

3.5   |   Correlation Between Flood Quantiles 
and Catchment Properties

Understanding the relationship between flood quantiles and 
catchment properties provides valuable information for flood 
risk management and forecasting (Stein et  al.  2021; Titley 
et  al.  2021). Such an analysis helps identify key catchment 
properties (e.g., area, slope, soil type) that significantly impact 
flood behaviour. Incorporating these factors into predictive 
models improves their accuracy, leading to better flood fore-
casts and more targeted flood mitigation strategies (Filipova 
et al. 2022). In this work, we focused on the 20-year flood and 
the maxima of the AMF series for the correlation analysis. 
The 20-year flood is chosen here as it balances the rarity of 
extreme events (considering data length limitations) with the 
uncertainty of estimated return periods, making it a reliable 
metric for comparative studies (Dawson et al. 2005; Tramblay 
and Somot  2018; Slater et  al.  2021; Griffin et  al.  2022; Han 
et al. 2022). The Spearman's correlation coefficient was used 
to investigate the relationship between flood quantiles and 
catchment properties. Spearman's correlation is the non-
parametric equivalent of Pearson's correlation, which is based 
on the assumption of normality of observations (Hauke and 
Kossowski 2011; de Winter, Gosling, and Potter 2016). Thus, 
it is more suitable for hydrological data, which often exhibit 
skewed distributions. A principal component analysis (PCA) 
(Greenacre et al. 2022) was also carried out to analyse the cor-
relation between the different physiographic characteristics of 
watersheds. PCA is a dimensionality-reduction (DR) approach 
that is used to condense a multivariate dataset while preserv-
ing most of its variance (Bharadiya 2023; Krzyśko et al. 2024). 
This reduction is done by transforming the original variables 
into a new set of variables known as principal components 
(PCs) (Liu et  al.  2023; Dorabiala, Aravkin, and Kutz  2024). 
PCs are linear combinations of the original variables and are 
ranked according to the amount of variance they explain in 

the data. The first principal component (PC-1) is the linear 
combination of variables that captures the greatest amount of 
variation in the data.

4   |   Results and Discussion

4.1   |   Independence and Homogeneity Tests

Testing for autocorrelation and trends in AMF time series is 
crucial for ensuring the reliability of flood frequency analysis 
results. The proportion of stations where the assumptions of 
independence or homogeneity are rejected for each climatic 
zone and each statistical significance level is given in Table S1. 
Autocorrelation is detected in 17 AMF series at 0.05 level. 
Such series are excluded from the remainder of the analysis. 
Figure 3 shows the spatial distribution of trends detected by 
the Mann–Kendall test. A significant trend is detected in the 
AMF series of 29 out of 234 independent time series (at 0.05 
level), with 17 downward trends and 12 positive trends. Thus, 
non-stationary frequency models have been applied for these 
29 AMF series. Figure 3 reveals no discernible spatial pattern 
in the identified trends, even though the study area features 
three different climatic zones. To assess the regional signifi-
cance of trends detected by the Mann–Kendall test, the FDR 
procedure was implemented with global significance thresh-
olds of 0.05, for consistency with local trend analysis. Among 
29 significant local trends, only 5 are field significant at 0.05 
level. These results suggest that the local significant trends 
detected are not spurious trends or artefacts of multiple tests 
but reflect real hydrological changes in West Africa. The find-
ings from the study of Tramblay, Villarini, and Zhang (2020) 
indicate statistically significant increasing trends in flood 
occurrences in Africa between 1950 and 2010, particularly in 
the western and southern regions. As the AMF series we have 
used falls within the period 1975–2018, our results are con-
sistent with those of Tramblay, Villarini, and Zhang  (2020), 
using a much longer period, starting in 1950, to analyse trends 
and change points in floods across Africa. The results of Ekolu 
et al. (2022) also show significant decadal variability of floods 
in sub-Saharan Africa, explaining aperiodic upward and 
downward trends.

4.2   |   Fitting of Frequency Models in a Stationary 
Context

Martins and Stedinger (2000) recommend improving the prior 
distribution of the GEV shape parameter in the GMLE method 
when regional information is available. As depicted in Figure 4, 
the original prior from Martins and Stedinger  (2000) is inap-
propriate for West Africa. Thus, a normal distribution, fitted to 
the GEV shape parameter values estimated by the L-moments 
method (Hosking  1990) on 98 AMF series spanning at least 
20 years, is employed as a prior distribution for the GMLE 
method in this study. Figure  3 shows that the distribution of 
shape parameter values obtained with the new regional prior 
using a normal distribution (with a mean of −0.24 and a stan-
dard deviation of 0.16) is more similar to that obtained with the 
L-moments. The new regional normal prior was used for the re-
mainder of the analysis.

(3)AIC = − 2log(L) + 2k

(4)BIC = − 2log(L) + k ⋅ log(N)
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To select the probability distribution that fits best at each site, the 
goodness-of-fit of the GEV and Gumbel distributions are com-
pared based on the AIC and BIC criteria. Figure 5 displays the best 
distribution in each station according to the AIC and BIC criteria 
for each parameter estimation method (LM, MLE and GMLE). 
Our evaluation of the frequency models shows that, overall, in a 
stationary context, the GEV is the model that best fits the AMF 
series in the study area. The GEV obtained the lowest AIC and 
BIC values at 90% of stations when fitted with the GMLE method, 
whatever the criterion considered (Figure 5a,d). BIC scores were 
also more favourable for the GEV model when fitted with the LM 
(L-moments) method at 92% of stations (Figure  5f). However, 

according to the AIC criterion, the Gumbel model fits best at 
60% of stations using the same method (Figure 5c). AIC and BIC 
scores are fairly balanced between the two distributions with the 
MLE method (Figure  5b,e). In terms of statistical methodology, 
these results are consistent with those of Rahman et al. (2013) in 
Australia, who evaluated 15 probability distributions fitted with 
several parameter estimation methods, including the GEV and 
Gumbel, over 127 watersheds with at least 40 years of annual max-
ima discharges. Their results show that the GEV fits better than 
the Gumbel distribution according to the AIC and BIC criteria. 
The results of Beskow et al. (2015) and Back and Bonfante (2021) 
in Brazil, who applied frequency analysis to more than 200 series 

FIGURE 3    |    Spatial distribution of trends detected by Mann–Kendall test at 0.05 statistical significance level in West Africa. The red (blue) up-
ward (downward) triangles represent significant positive (negative) trends and the grey points represent no trend. The grey lines indicate the borders 
of West African countries.

FIGURE 4    |    Histograms shape parameter values of the GEV distribution fitted with (a) MLE and (b) LM methods to the series of annual maxima 
from 96 stations with more than 20 years of data, with the Martins and Stedinger (2000) prior distribution (dashed line) and the new regional prior 
(solid line).
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of annual precipitation maxima, also show a predominance of the 
GEV at most stations.

To assess the robustness of the frequency models, a normalised 
uncertainty range, defined as the ratio of the difference be-
tween the upper (97.5%) and lower (2.5%) bounds of the confi-
dence interval and the estimated quantile was computed. Due 
to data availability challenges, flood quantiles for return peri-
ods up to 20 years are estimated for stations with record length 
falling between 10 and 29 years, and the 50-year flood quan-
tile is computed only for stations with at least 30 data points. 

Figure 6 shows the comparison of model uncertainties in sta-
tionary flood quantiles estimation. Considering the GMLE 
method, the GEV distribution produces the lowest estimation 
bias for all return periods. For the MLE method, the Gumbel 
distribution becomes more robust than the GEV as the return 
period increases from the 10-year return period. Model perfor-
mances are fairly balanced when considering the LM method, 
with highly variable uncertainties depending on the return pe-
riod. The differences in performance between the GMLE and 
MLE methods can probably be explained by the improvement 
of GMLE initial prior with regional information (Martins and 

FIGURE 5    |    Best distribution in each station according to AIC and BIC criteria and parameter estimation methods (GMLE, LM and MLE) in a 
stationary context. The pie charts show the proportion of sites where each distribution is selected. Panels (a), (b) and (c) show the selection of dis-
tributions based on the AIC criterion, and panels (d), (e) and (f) show the selection of distributions based on the BIC criterion. The blue and orange 
points respectively represent stations for which the GEV and Gumbel distribution are best suited. The grey lines indicate the borders of West African 
countries.

FIGURE 6    |    Uncertainties in stationary flood quantile estimation for various return periods: (a) 2-year, (b) 5-year, (c) 10-year and (d) 20-year, 
using both GEV and Gumbel distributions, fitted with the LM, MLE and GMLE methods. The blue and orange boxplots represent respectively the 
normalized uncertainty distributions for the GEV and Gumbel distributions.
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Stedinger 2000). The GMLE method might be preferred to MLE 
in situations where the sample size is relatively small, as it can 
provide more stable parameter estimates by incorporating ad-
ditional information in estimating the GEV shape parameter.

The relationship between record lengths and mean normalised 
uncertainty was investigated, to analyse the impact of sample 
size on the robustness of the fitted distributions. Figure 7 shows 

that whatever the parameter estimation method considered (LM, 
MLE and GMLE), uncertainty in quantile estimation decreases 
for all distributions as the sample size increases. For the GMLE 
method, for example, considering the 20-year return period, 
when the length of the AMF series increases from 11 to 43 years, 
the normalised uncertainty falls from 0.52 to 0.17 and from 
0.63 to 0.22 for the GEV and Gumbel distributions, respectively. 
An analysis of the slopes of the linear fitting lines (Table  S2) 

FIGURE 7    |    Scatter plot of AMF series lengths and normalized uncertainty range for 2-, 5-, 10-, 20- and 50-year floods, computed with six models: 
(a) GEV-GMLE, (b) GEV-MLE, (c) GEV-LM, (d) Gumbel-GMLE, (e) Gumbel-MLE and (f) Gumbel-LM. The thin continuous lines represent a linear 
fit between normalized uncertainty and AMF series lengths, illustrating the general trend in the relationship between the two variables.

FIGURE 8    |    Best distribution in each station according to AIC and BIC criteria and parameter estimation methods (GMLE and MLE) in a non-
stationary context. The pie charts show the proportion of sites where each distribution is selected. Panels (a) and (b) show the selection of distributions 
based on the AIC criterion, and panels (c) and (d) show the selection of distributions based on the BIC criterion. The blue and orange points respec-
tively represent stations for which the GEV and Gumbel distribution are best suited. The grey lines indicate the borders of West African countries.
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shows that of the three parameter estimation methods, the MLE 
method is the most sensitive to record length, particularly with 
the GEV distribution (Figure 7b). For instance, considering the 
20-year flood as an illustration, the slopes for the GEV distribu-
tion are −0.869, −1.788 and −0.881 for the GMLE, MLE and LM 
methods, respectively. Similarly, for the Gumbel distribution, the 
slopes are −0.975, −0.997 and −0.802 for the GMLE, MLE and
LM methods, respectively. There are subtle differences between
the slopes obtained using the GMLE and LM methods. These re-
sults demonstrate the impact of sample size in the estimation of
frequency model parameters (Hosking and Wallis 1997; Martins 
and Stedinger 2000; Moretti and Mendes 2003; Papalexiou and
Koutsoyiannis 2013; Serinaldi and Kilsby 2015; Hu et al. 2020;
Metzger et al. 2020), and hence in the estimation of design val-
ues (Marra et al. 2019).

4.3   |   Fitting of Frequency Models in 
Non-Stationary Context

Fitting frequency models in a non-stationary context can be 
challenging but is essential to determine whether non-stationary 
distributions do provide more reliable forecasts of hydrological 
variables (Serinaldi and Kilsby 2015). The Mann–Kendall trend 
test, applied at the 0.05 significance level, detected significant 
trends in 29 AMF time series (Figure 2). A comparison between 
non-stationary GEV and Gumbel distributions, fitted with the 
MLE and GMLE methods is shown in Figure 8. According to 
the AIC and BIC criteria, the GEV-GMLE model (Figure 8a,c) 
fits best at 86% of the stations with trend-dependent AMF series. 

With the MLE method, the AIC score is balanced between the 
two distributions (Figure 8b), and Gumbel distribution is more 
adequate at 62% of the stations according to the BIC criterion 
(Figure  8d). However, whether non-stationary quantiles and, 
in particular, at the end of the records, are statistically different 
from the stationary quantiles is an important question to address. 
Figure S2 shows the results of the comparison between station-
ary and non-stationary models, by overlapping confidence in-
terval ranges of flood quantiles, calculated using the bootstrap 
percentile method. We find confidence intervals overlap in most 
stations, suggesting no significant difference between stationary 
and non-stationary quantiles. Such results are consistent with 
previous studies testing the uncertainties in quantile estima-
tion in stationary and non-stationary contexts (Serinaldi and 
Kilsby 2015). Therefore, the stationary GEV distribution, fitted 
with the GMLE method, is here identified as the best frequency 
model for estimating flood quantiles in West Africa.

4.4   |   Quantiles and Return Periods of Annual 
Peak Flood

4.4.1   |   Spatial Distribution of Flood Quantiles

If a stationary model yields confidence intervals that overlap with 
those produced by non-stationary models, the added complexity 
of non-stationary models becomes less relevant (Serinaldi and 
Kilsby  2015). Thus, we have identified the stationary GEV dis-
tribution, fitted with the GMLE method, as the best frequency 
model for estimating flood quantiles in West Africa. However, the 

FIGURE 9    |    Spatial distribution of (a) 2-year flood, (b) 5-year flood, (c) 10-year flood, (d) 20-year flood and (e) 50-year flood quantiles in West 
Africa. Quantiles were estimated using the GEV distribution fitted with the GMLE method and normalised by catchment area. The grey lines indi-
cate the borders of West African countries.
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choice of the stationary GEV to compute flood quantiles in the re-
gion does not preclude the use of the non-stationary GEV for spe-
cific cases where one would like to account for the trend in AMF 
time series. After the selection of the best-suited probability dis-
tribution, the main aim of flood frequency analysis is to estimate 
flood quantiles and return periods. The spatial distribution of 
flood quantiles in West Africa is shown in Figure 9. The quantiles 
were estimated using the GEV-GMLE model and normalised by 
catchment area to allow comparison of flood magnitudes across 
watersheds. For AMF series with significant trends, we have se-
lected the flood quantile from the last year (Figure S8) of the fit-
ting period (Faulkner et al. 2020; Xavier et al. 2020; Hesarkazzazi 
et al. 2021), to avoid the underestimation of the true magnitude 
of floods due to improper handling of positive trends in the data 
(Faulkner et al. 2020; Hecht et al. 2022). As shown in Figure 9, 
there are no distinct spatial patterns in flood quantiles distribu-
tion in West Africa, consistent with the high regional climatic di-
versity (Emetere 2016; Ilori and Ajayi 2020; Muthoni 2020; Gbode 
et al. 2023). However, the highest specific discharges are mostly 
concentrated in the western part of the region and the basins 
located in Benin. These results suggest that flood quantiles are 
rather a function of the physiographic properties of catchments 
than spatial proximity.

4.4.2   |   Regional Envelope Curves (RECs)

Knowledge of flood quantiles is essential in hydrologic engi-
neering to design infrastructure and manage associated risks 
(Herschy 1998; Li, Wang, and Li 2013). However, this knowledge 
is a major challenge in ungauged sites. The development of em-
pirical regional envelope curves (RECs) is a traditional approach 
to flood estimation in ungauged catchments (Castellarin 2007; 
Rodier and Roche 1984). A regional envelope curve (REC) rep-
resents the upper limit of floods observed in a region (Castellarin, 
Vogel, and Matalas 2005). It is obtained by plotting, in a log–log 
space, a scatterplot of specific discharge against the catchment 
area. The REC represents the line encompassing all observations 
within the scatterplot (Padi, Baldassarre, and Castellarin 2011). 
Regional envelope curves have been developed for the whole 
world (Rodier and Roche  1984), for Africa (Padi, Baldassarre, 

and Castellarin  2011), and for some specific African regions 
(Farquharson, Meigh, and Sutcliffe 1992; Tramblay et al. 2024). 
However, no regional envelope curve has been developed for 
the entire West African region with a set of stations representa-
tive of the region. Figure 10 shows the regional envelope curves 
for maxima of the AMF series (Figure 10a) and 20-year flood 
(Figure 10b) for the entire West Africa region, with the corre-
sponding equations for each curve. It is completed by Figure S3, 
which shows the regional envelope curves developed for the 10-
year flood (Figure S3a), 20-year flood (Figure S3b) and 50-year 
flood (Figure S3c). These RECs provide a robust, efficient and 
straightforward tool for flood forecasting in West Africa given 
the scarcity of gauging stations in most catchments, contribut-
ing to improved resilience and safety in vulnerable communi-
ties. However, the high variability of the scatter plots suggests 
uncertainties associated with inferring peak flows based solely 
on watershed area. This variability can be potentially attributed 
to differences in the physiographic characteristics of the water-
sheds (rainfall variability, land use, slope, shape of the water-
shed, etc.), that affect runoff generation and peak discharge.

On the envelope curves shown in Figure 10, it is important to 
highlight the particularity of the Katsina-Ala at Katsina-Ala 
(ADHI-325) and Agbla (ADHI-641) watersheds. These stations 
are the two that intersect the envelope curve. The areas of these 
catchments are approximately 17,000 and 480 km2, respectively 
for the Katsina-Ala at Katsina and Agbla bassins. The high spe-
cific discharges of these watersheds can be explained by their 
location s in the Guinean zone, which receives abundant rain-
fall throughout the year, with an annual average between 1200 
and 2200 mm (ECOWREX  2018; Ilori and Ajayi  2020; Gbode 
et al. 2023). This region is also known for its rugged terrain with 
steep slopes (Orange 1990), which have a significant influence 
on flooding. To investigate whether this behaviour could be ex-
plained by the presence of outliers or the presence of isolated 
very extreme events, Figures S5 and S6 show the details of the 
fitting of the GEV distribution to the AMF series of these sta-
tions using L-moments (LM), with four diagnostic plots (two 
Q–Q plots, a return level plot and a density plot). These diag-
nostic plots show that there are no outliers in the AMF series of 

FIGURE 10    |    Regional envelope curve (REC) of maximum specific discharge in West Africa: (a) maxima of the AMF series and (b) 20-year flood. 
The black points represent scatterplots of specific discharge against the catchment area and the red lines represent RECs.
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the two watersheds, and they also show a good fit of the GEV 
distribution in both stations. This suggests that the high specific 
discharges observed in both watersheds represent a typical hy-
drological response that may be influenced by the geographical 
and climatic conditions of the Guinea region, highlighting the 
importance of considering regional characteristics when analys-
ing hydrological data.

4.4.3   |   Correlation Between Flood Quantiles 
and Catchment Properties

To examine the potential drivers of spatial variations in flood 
quantiles, a Spearman rank correlation was performed. As 
shown in Figure  11, the strongest correlation (significant at 
0.05 level) is noted with catchment area (ρ = 0.73), followed by 
maximum altitude (MA), topographic witness index (TWI) and 
geological properties (GD and GP), which have a correlation co-
efficient (ρ) greater than 0.5. These results are consistent with 
those of Tramblay et al. (2024), who performed the same correla-
tion analysis in North Africa. Their results show that overall, 
correlations with flood quantiles are stronger with physiographic 
and geological properties (GD, GP and GS) of watersheds, than 
with climatic variables (precipitation, temperature, evapotrans-
piration). Ahn and Merwade (2016) also investigated the relation-
ship between flooding and geomorphic characteristics in Indiana 
(United States) and found that geomorphic factors, particularly 
watershed length, significantly influence the severity of flooding. 
As the geology of a watershed determines the quantity of water 
in groundwater and influences both the runoff and the ground-
water flow, this can explain the strong correlation between flood 
quantiles and geological properties. Principal component analy-
sis (PCA) was also carried out to examine the correlations be-
tween watershed properties. The results, as shown in Figure S4, 
reveal that variables with a strong correlation with flood quan-
tiles are also highly correlated with each other. For instance, 

some land cover types (cropland and grassland) and soil prop-
erties (sand, bulk density and porosity) are also correlated with 
temperature (Temp) and evapotranspiration (PET). Land use 
impacts significantly the absorption of solar radiation, surface 
temperature, evaporation rates, soil heat transmission, and so 
on, that could explain these dependencies (Pal and Ziaul 2017; 
Hua and Ping 2018). For instance, transforming vegetative cover 
into other land uses such as cropland could lead to higher sur-
face temperatures (Y. Zhang, Odeh, and Ramadan 2013; Sahana, 
Ahmed, and Sajjad  2016; Akomolafe and Rosazlina  2022). 
Changes in land use categories could be also significant factors 
affecting flood dynamics (Teklay et al. 2019; Wang et al. 2020).

5   |   Conclusions

Local frequency analysis was applied to annual maxima flow 
series from 246 hydrometric stations across West Africa, thus 
providing the largest flood frequency analysis in this region. 
The trend analysis, performed using the non-parametric 
Mann–Kendall test, revealed some local significant trends, al-
beit without any strong discernible spatial pattern for the time 
period considered. The GEV and Gumbel distributions were 
fitted to the AMF series using three parameter estimation 
methods: L-moments, Maximum Likelihood and Generalized 
(Penalized) Maximum Likelihood. The original prior distribu-
tion of the GMLE method was adjusted as recommended by 
Martins and Stedinger (2000), to develop a more informative 
prior distribution adapted to the West African context. Thus, a 
normal distribution with a mean of −0.24 and a standard de-
viation of 0.16 was used as a new prior distribution of the GEV 
shape parameter in the GMLE method. The GEV distribution 
fitted with the GMLE method was selected as the best distri-
bution in most stations based on the AIC and BIC evaluation 
criteria. In addition, stationary and non-stationary quantiles 
computed for stations with trend-dependent AMF series have 

FIGURE 11    |    Correlations between watershed properties and flood quantiles. The blue and orange bars represent respectively the 20-year flood 
and maximum of AMF series for each station.
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fairly comparable and overlapping confidence intervals, sug-
gesting that there is no significant difference between them. 
However, further analysis is necessary to explore and evaluate 
various non-stationary models in greater detail for this region. 
Flood quantiles (2-year, 5-year, 10-year, 20-year and 50-year) 
were then estimated, and regional envelope curves have been 
proposed for West Africa, to estimate maximum floods as a 
function of watershed area. Regional envelope curves are a 
simple and robust tool for the design of hydraulic infrastruc-
ture that are notably useful for engineering purposes. They 
offer a comprehensive framework for estimating maximum 
floods based on watershed area.

The Block-Maxima approach to sample floods that have been 
applied in the present work can produce short sample sizes 
when the data records are not long enough. However, it is 
well known that record length influences the robustness of 
model parameters and quantiles estimation (Martins and 
Stedinger  2000; Moretti and Mendes  2003; Papalexiou and 
Koutsoyiannis 2013; Serinaldi and Kilsby 2015; Hu et al. 2020; 
Metzger et al. 2020). This increases the uncertainty in design 
value estimation in areas where data are scattered (Marra, 
Amponsah, and Papalexiou 2023). Yet, in the context of West 
Africa, access to hydrometric data remains an issue and sev-
eral gauges have been removed and, in many cases, only old 
records are available. Recent studies about non-asymptotic 
probability distributions suggested that they provide a sound 
alternative to block maxima sampling to maximise the in-
formation used and reduce uncertainties in model inference 
(Miniussi, Marani, and Villarini 2020; Mushtaq et al. 2022; Hu 
et al. 2023). Furthermore, flood frequency analysis at ungauged 
sites is crucial for water resources and risk management. The 
regional envelope curve is a simple and robust tool, but it only 
gives a general overview of the maximum flood observed in a 
region, taking into account the differences in catchment size 
(Rodier and Roche 1984). In addition, the envelope curve only 
determines maximum floods for a given catchment area and 
not their probability of occurrence (Castellarin, Vogel, and 
Matalas 2005). Regional flood frequency analysis (RFFA) is a 
methodology frequently used to estimate flood quantiles at un-
gauged sites (Desai and Ouarda 2021; Pan et al. 2023). It would 
therefore be interesting to perform RFFA in West Africa, using 
the correlations observed between watershed properties and 
flood quantiles (Figure 11) as a basis, to develop a regional ap-
proach for flood quantiles estimation in ungauged catchments.
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