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Abstract: Rainfall–runoff models are crucial tools for managing water resources. The
absence of reliable rainfall data in many regions of the world is a major limitation for
these models, notably in many African countries, although some recent global rainfall
products can effectively monitor rainfall from space. In Algeria, to identify a relevant
modeling approach using this new source of rainfall information, the present research
aims to (i) compare a conceptual model (GR4J) and seven machine learning algorithms
(FFNN, ELM, LSTM, LSTM2, GRU, SVM, and GPR) and (ii) compare different types of
precipitation inputs, including four satellite products (CHIRPS, SM2RAIN, GPM, and
PERSIANN), one reanalysis product (ERA5), and observed precipitation, to assess which
combination of models and precipitation data provides the optimal performance for river
discharge simulation. The results show that the ELM, FFNN, and LSTM algorithms give the
best performance (NSE > 0.6) for river runoff simulation and provide reliable alternatives
compared to a conceptual hydrological model. The SM2RAIN-ASCAT and ERA5 rainfall
products are as efficient as observed precipitation in this data-scarce context. Consequently,
this work is the first step towards the implementation of these tools for the operational
monitoring of surface water resources in Algeria.

Keywords: Algeria; machine learning; hydrologic models; rainfall–runoff simulation;
satellite rainfall

1. Introduction
For effective planning and management of water resources, rainfall–runoff modeling

is a key tool. This relationship is based on the fundamental idea that the rain that falls
on a watershed is transformed into river flow. For this reason, it plays a crucial role in
the assessment of the risk of natural disasters such as flooding and it helps to maintain
sustainable water use. It also allows us to better understand the hydrological functioning
of the basin, which is influenced by basin geomorphology, vegetation, land use, and the
hydraulic properties of the hydrographic network [1,2].

Various approaches have been developed to represent the main characteristics of
the rainfall–runoff relationship: nonlinearity, non-stationarity, and persistence. Models
can be classified into three main groups: (i) physically based distributed hydrological
models, which require more detailed knowledge of the watershed’s physical processes [3,4];
(ii) conceptual models, in which the watershed is schematized as a reservoir to present
the flow, infiltration, and storage processes in the watershed [5,6]; and (iii) empirical or
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black-box models and data-driven models, which are used when the hydrological processes
are complex and data access is limited [7–9]. Empirical models are often the most widely
used because of their simplicity and accuracy [10,11] compared with other models which
require several data types with topographical, vegetation, hydrological, and climatological
data, and a calibration that can be time-consuming and difficult to apply.

Recently, with the development of computer science, research has been directed
towards the use of artificial intelligence techniques in the field of hydrology, which have
demonstrated their effectiveness in simulating flow using rainfall as input data, notably,
their ability to represent the complexity of the rainfall–runoff relationship, and the flexibility
to process large datasets to provide accurate and reliable predictions [12,13]. Among the
techniques that have established a good track record are artificial neural networks (ANNs),
which predict flows using a structure inspired by the workings of the human brain, such
as FFNN and ELM [8,14]. There are also Support Vector Machines (SVMs), which can be
useful for classifying hydrological events [15,16]. Recurrent neural networks can predict
flows or detect anomalies using their memory cells, such as LSTM and GRU [17,18]. Despite
their beneficial impact on various hydrological contexts and the importance of developing
these tools, very few studies have been carried out in Algeria on rainfall–runoff modeling,
the majority of which have used traditional hydrological models such as GR, HEC HMS,
SCS-CN, and others [19], while the application of machine learning tools has not been
applied previously. Only very few studies [20] have used these methods and produced
reliable results in the Algerian or North African region.

Different types of data are required for rainfall–runoff modeling, including river flow,
the variables required to estimate evapotranspiration, such as air temperature, and most
importantly, precipitation. The latter can be provided by rain gauges in watersheds, as
well as radar and satellite sources. Unfortunately, some countries suffer from a lack of
in situ hydrometeorological measurements due to poor monitoring networks and poor
data accuracy and reliability, not to mention the low spatial coverage of rain gauges, as in
North Africa. In recent years, some research has turned to the use of satellite products in
the field of hydrological modeling [21–23] given their high spatial and temporal resolution
and their availability of data globally, which has made them very easy to obtain. Table 1
summarizes some of the scientific research evaluating satellite products. However, little
research has been carried out in the Maghreb [2,24,25] and especially in Algeria to assess
the usefulness of satellite rainfall and assess the reliability of these products in terms of the
rainfall–runoff relationship. Satellite rainfall is of great benefit to water balance [26] or water
quality modeling [27]. Among the products commonly used and evaluated by the studies
cited above are the Tropical Rainfall Measuring Mission (TRMM), Global Precipitation
Measurement (GPM), Climate Hazards Group Infrared Precipitation with Station data
(CHIRPS), and Precipitation Estimation from Remote Sensed Information using Artificial
Neural Networks (PERSIANN), which have shown a high degree of concordance with
ground rainfall measurements and to simulate the river discharge.

This research aims to accomplish the following:

1. Compare four different satellite rainfall products with high spatial and temporal
resolution: Global Precipitation Measurement Integrated Multi-Satellite Retrievals
(GPM-IMERGs), Climate Hazards Group Infrared Precipitation with Station data
(CHIRPS), Precipitation Estimation from Remote Sensed Information using Artificial
Neural Networks (PERSIANN), Soil Moisture to Rain (SM2RAIN-ASCAT), and a
reanalysis product (ERA5).

2. Simulate river discharge from satellite rainfall and evaluate the performance of eight
types of models: the 4-Parameter Daily Rural Engineering model (GR4J), feed-forward
neural networks (FFNNs), extreme machine learning (ELM), long short-term memory
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(LSTM), LSTM2, gated recurrent unit (GRU), Gaussian process regression (GPR), and
Support Vector Machine (SVM).

Table 1. Evaluation of satellite products in various scientific studies.

Products
Evaluated Study Region Approach Used Main Results and

Performance
Best Performing

Product Reference

ERA5, soil
moisture
products

Morocco Flood modeling

ERA5 and
SM2RAIN-ASCAT

provide a better estimate
of soil moisture conditions

for flood prediction.

ERA5 and ASCAT El Khalki et al.
(2020) [2]

GPM, CHIRPS India Deep Learning
modeling

Deep learning approaches
improve rainfall–runoff

simulation. GPM
(R2 = 0.84,

RMSE = 10.5 mm) and
CHIRPS (R2 = 0.80,

RMSE = 11.8 mm) offer
good spatialization.

CHIRPS Yeditha et al.
(2021) [23]

EUMETSAT H
SAF, SM2RAIN-
ASCAT, IMERG

Morocco Rainfall–runoff
simulation

SM2RAIN-ASCAT shows
a strong correlation,

particularly in basins with
high interannual

variability.

SM2RAIN-ASCAT Tramblay et al.
(2023) [24]

SM2RAIN, rain
gauges South Asia Comparison with

observations

SM2RAIN-ASCAT offers
precision compared with
the other SM2RAIN and

rain gauges.

SM2RAIN-ASCAT Satgé et al. (2021)
[28]

GPM-IMERG,
CMORPH,

TRMM
Tibetan Plateau Hydrological

assessment

The GPM-IMERG
products show robust

results for the evaluation
of precipitation in relation

to the TRMM and
CMORPH.

GPM-IMERG Alazzy et al.
(2017) [29]

PERSIANN,
ERA5, GPM,

TRMM, merged
products, etc.

Turkey Statistical
comparison

ERA5 shows robust
results for precipitation

assessment, but merging
the products increases

accuracy.

ERA5
Akbaş and

Ozdemir (2024)
[30]

CHIRPS,
SM2RAIN-

ASCAT,
PERSIANN

Pakistan Multi-criteria
assessment

CHIRPS and
SM2RAIN-ASCAT
faithfully track the

spatio-temporal variability
of rainfall observed in the

subtropical semi-arid
region.

CHIRPS and
SM2RAIN-ASCAT

Anjum et al.
(2022) [31]

PERSIANN,
ERA5,

SM2RAIN-
ASCAT

Morocco Drought
assessment

ERA5 performs well for
drought analysis, while

SM2RAIN-ASCAT shows
good reliability for rainfall

characterization.

ERA5 Najmi et al.
(2023) [32]
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The goal is to provide a comparative study between the different rainfall products and
models to determine the best combination for the region. The study comprises four main
sections: The first covers the area and all the data (ground rainfall, satellite products, flow,
and humidity) used in the study. The second deals with the various techniques used in this
work. The third summarizes the results obtained. And at the end, conclusions are drawn
and some future recommendations are described.

2. Materials and Methods
2.1. Study Area

The availability, quality, and size of the climatological data play an important role in
the choice of the selected watersheds. According to these criteria, five watersheds located in
the northern part of Algeria were selected in our case (Figure 1), which are the Aissi, Zddine,
Malah, Isser, and Boukdir catchments. These basins are characterized by a semi-arid climate
with high evapotranspiration combined with low annual precipitation, as is the case for the
basins of North Africa with zero flows during summer months. Table 2 shows the main
properties of these basins. Two basins are influenced by the presence of dams, which is
the dam of Koudiat Acerdoune upstream of the Isser basin and the Ouled Mellouk dam
in the downstream part of the Zddine basin. The presence of Koudiat Acerdoune has a
weak influence on the flow of water because it is considered one of the perennial rivers in
Algeria with important flows, unlike Ouled Mellouk which influences a lot of river runoff,
and this will be represented in the Section 3.
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Table 2. Watershed characteristics.

Bassin Boukdir Isser Zddine Malah Est Aissi

Area [km2]
Annual rainfall [mm]

Annual temperature [◦C]

76 3615 418 274 431
642.4 660 461 467.2 910
17.6 34 22 16.4 20

Perimeter [km]
Code

95.3 442 295 320.2 109.15
020331 090501 011905 090905 021715

Station
X [km]
Y [km]

PERIOD

MESDOUR LAKHDARIA BIR OULED
TAHAR BENI SLIMANE RN30

461,000 579,100 432,000 557,000 628,000
355,000 368,750 312,000 322,000 372,000

1993–2014 1986–2018 1990–2015 1985–2015 1986–2015

2.2. Datasets

The series of climatological data used in this study over a period of 10 years (2005–2015)
is summarized in daily maximum and minimum temperatures, daily streamflow, and daily
precipitation, except for SM2RAIN with only the period 2007–2015 available. Table 3
represents the characteristics of 15 rain gauge stations available for the present study
during the time period 2005–2015. The daily maximum and minimum temperatures are
extracted from the ERA5 product due to the lack of complete meteorological station data
to calculate the evapotranspiration in the different basins. Observed daily river discharge
was obtained at 4 hydrometric stations from the National Agency of Hydraulic Resources
(ANRH) of Algeria. Table 1 summarizes the characteristics of the hydrometric stations.

Table 3. Characteristics of the rain gauge stations.

Catchment Code Station X [km] Y [km] PERIOD

Zddine
011901 EL TOUAIGIA 430.85 313.35 1972–2018

011903 TOUTIA
ELHASSANIA 429.95 294.45 1927–2018

011904 ROUINA MAIRE 419.8 327.3 1972–2018

Boukdir
020303 MENCEUR 458.25 354.45 1972–2019
020304 IAZABENE 462.35 352.15 1972–2012

Aissi

021705 LARBAA
NTHIRATHEN 634.9 370.8 1972–2012

021712 BENI YENNI 635 365.25 1972–2019
021716 AIT OUABANE 643.3 354.7 1988–2017
021717 AIT DJEMAA 621.45 356.85 1988–2018

Malah Est
090301 DJOUAB 566.95 315.55 1972–2019
090302 BNI SLIMANE 557.2 322.65 1972–2019
090314 DECHMYA 578.5 316.35 1974–2019

Isser 090502 LAKHDARIA
GORGES 579.3 370 1972–2018

2.2.1. Global Precipitation Products

Different sources of global daily precipitation data are used in this work, including
GPM, SM2RAIN, PERSIANN, and CHIRPS from satellite observations and the rainfall
from the ERA5 reanalysis; their characteristics are in Table 4.
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Table 4. Satellite rainfall dataset characteristics.

Rainfall
Product

Spatial
Resolution

Spatial
Coverage

Temporal
Resolution

Time Period
Availability Data Sources

GPM 0.1◦ 60 S/60 N 30 min 2000–present (https://gpm.nasa.gov, accessed on
5 February 2025)

SM2RAIN 0.125◦ 60 S/60 N Daily 2007–2020 (https://zenodo.org/record/6136294,
accessed on 5 February 2025)

PERSIANN-
CCS-CDR 0.04◦ 60 S/60 N Every 3 h 1983–present

(https://www.ncei.noaa.gov/data/
precipitation-persiann/access/,

accessed on 5 February 2025)

CHIRPS 0.05◦ 50 S/50 N Daily 1981–present (https://chc.ucsb.edu/data/chirp,
accessed on 5 February 2025)

ERA5 0.33◦ 60 S/60 N 1 h 1950–2022

(https:
//www.ecmwf.int/en/forecasts/

dataset/ecmwf-reanalysis-v5,
accessed on 5 February 2025)

GPM-IMERG

After the great success achieved by the Tropical Rainfall Measuring Mission (TRMM)
satellite product founded by cooperation between two space agencies, the National Aero-
nautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency
(JAXA) in 1997 for 17 years, an advanced successor of TRMM was launched in February
2014 called The Global Precipitation Measurement (GPM) spacecraft; the GPM microwave
imager powered by NASA and the JAXA-provided dual-frequency precipitation radar are
the primary sensors of GPM, and these sensors play the role of observers of rainfall and
snowfall structure and intensity [33].

These merged satellite precipitation data showed 30 min temporal resolution,
0.1◦ × 0.1◦ spatial resolution, and near-global coverage (65◦ N to 65◦ S). The extended
capability to measure light rainfall (<0.5 mm), solid precipitation, and microphysical prop-
erties of precipitating particles highlights MOC over TRMM. The Integrated Multi-satellitE
Retrievals for GPM (IMERG) algorithm has enabled the collection of rain and snow pre-
cipitation from space for more than 20 years from NASA’s TRMM and GPM missions
by merging early precipitation estimates collected between 2000 and 2015 during TRMM
satellite operations with more recent (2014–present) precipitation estimates collected during
GPM satellite operations.

SM2RAIN-ASCAT

Due to the lack of consistency and scarcity of in situ observations of precipitation, a
recent approach, called SM2RAIN, based on the inversion of the soil–water equilibrium
equation, more precisely the water balance, uses soil moisture variations to estimate
precipitation using the SM2RAIN (Soil Moisture to Rain) algorithm [34,35]. In our case,
satellite-derived SM data derived from the Advanced SCATterometer (ASCAT), provided
by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)
Satellite Application Service on Operational Hydrology and Water Management Support
(H SAF), with a daily time step and a spatial resolution of 12.5 km, were exploited. The
product covers the period 2007–2021. Several studies have adopted this satellite product in
semi-arid regions and it has proven to be effective [24,28,36].

PERSIANN-CCS-CDR

The PERSIANN-CCS-CDR (Precipitation Estimation from Remotely Sensed Informa-
tion using Artificial Neural Networks–Cloud Classification System–Climate Data Record)
product was developed by the Center for Hydrometeorology and Remote Sensing (CHRS)

https://gpm.nasa.gov
https://zenodo.org/record/6136294
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://chc.ucsb.edu/data/chirp
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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at the University of California, Irvine (UCI), and provides precipitation estimates at spa-
tial resolutions of 0.04◦ and temporal resolutions of 3 h from 1983 to the present over
the global domain of 60◦ S to 60◦ N. As its name implies, PERSIANN applies artificial
neural network (ANN) technology to determine the relationship between precipitation
rates and remotely sensed cloud top temperatures measured by longwave infrared (IR)
sensors on GEO satellites. PERSIANN-CCS-CDR is the latest version of the PERSIANN
family of products, combining the algorithms that were used to develop PERSIANN-CCS
and PERSIANN-CDR and exploiting GEO satellite information as input to provide a fine
spatial–temporal precipitation dataset with a long record period. Additional details on the
PERSIANN product, its origin, and characteristics can be found in [37,38].

CHIRPS

CHIRPS (Climate Hazards Group Infrared Precipitation with Station data) is a re-
cent database that has been available since early 2014; it is a result of the collaboration of
the Climate Hazards Group (CHG) of the University of California and the United States
Geological Survey (USGS) [39,40]. It joins various information sources, such as satellite
estimates, global rainfall climatology, and in situ observations, which is why it belongs, in
part, to the family of the “satellite corrected by rain gauge” category. For more accuracy,
it includes the monthly precipitation climatology CHPClim (Climate Hazards Group Pre-
cipitation Climatology), the Tropical Rainfall Measuring Mission (TRMM) product 3B42,
the near-global observations from the geostationary thermal infrared satellite GEO and the
MODIS satellite, the precipitation fields from the NOAA CFS (Climate Forecast System)
atmospheric models, and precipitation observations from various sources [41]. CHIRPS
has been available since 1981 up until today, with a spatial resolution of 0.05◦ and at daily
time resolution scales, covering 50◦ S–50◦ N (and all longitudes).

ERA5

In the framework of the Copernicus Climate Change Service (C3S), the European
Centre for Medium-Range Weather Forecasts (ECMWF) released its fifth generation of ERA-
5 reanalysis in February 2019. ERA5 combines large amounts of historical observations into
global estimates using advanced modeling and data assimilation systems. These systems
are based on the 4D-Var data assimilation system with a modern global atmospheric model
(cycle 41r2 of the Integrated Forecasting System (IFS)), which was operational at ECMWF in
2016, to integrate measurements from different observing systems (station measurements,
upper air soundings, satellite radiances, etc.). This product has a spatial resolution of 31 km
and an hourly temporal resolution and the period covered will be extended to 1950 in the
future. ERA5 has been applied in many recent studies [2] for hydrological modeling. A
more detailed review of the ERA5 configuration and how it was produced is presented
in [42,43].

2.2.2. Evapotranspiration Data

In the rainfall–runoff simulation, hydrological models need other climatological pa-
rameters besides precipitation, such as temperature and potential evapotranspiration (PET).
In our work, PET is calculated using the Hargreaves–Samani equation based on minimum
and maximum daily temperature values extracted from the ERA5 reanalysis product. In
this study, the Hargreaves–Samani equation to estimate potential evapotranspiration was
chosen for its suitability to the available data and the semi-arid context of the catchments
studied, particularly in regions where climatic data are limited. This method offers a simple
and effective alternative and its applicability has been demonstrated in several semi-arid
basins, both in Algeria and semi-arid regions [24,44,45].
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2.3. Methods

The aim of this study is to assess the ability of satellite products to predict river flow
and to estimate the performance of various new modeling techniques in semi-arid regions.
Hydrological validation is used to, firstly, evaluate these products by comparing the river
flows estimated from satellite precipitation with the observed flows, and secondly, estimate
the performance of these models by comparing the simulated flows from the models used
with the observed precipitation with the flows measured at gauging stations. Figure 2
shows the different steps followed in this research. The time periods with data gaps have
not been included in our analysis in order to avoid any bias linked to the processing of
missing data or to a reconstruction likely to compromise the robustness of the results. We
have therefore opted for the 2005–2015 period, during which the hydrometric records are
complete and show minimal gaps. This period was specifically chosen to guarantee the
reliability and continuity of the time series used in the modeling of rainfall and runoff,
except for SM2RAIN which we used over a period from 2007 to 2015 with 85% of the data
for calibration and the remaining 15% for validation.
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The approach adopted is based on the calibration–validation of 8 models belonging to
two different families that are conceptual (GR4J and machine learning (FFNN, ELM, LSTM,
LSTM2, GRU, SVM, and GPR)) with the satellite products (CHIRPS, ERA5, PERSIANN,
SM2RAIN, and GPM) mentioned in the background as inputs.

2.3.1. Analysis of Catchment Response Time

When simulating the river discharge, the use of rainfall data matching the timing of
river flow did not give satisfactory results in our preliminary experiments. This result is
strongly linked to the way river flows are observed in these basins. These are manual stage
measurements, recorded on a daily basis with a 24 h aggregation time step, which may
differ from the aggregation method used for global precipitation products such as those
used in the present study. In addition, the climate context of these basins in Algeria is semi-
arid, with very strong modulation of river discharge during the day and the occurrence of
flash floods; therefore, data at the daily time step are not the best suited to accurately report
the timing of these events. This is why we have introduced a time lag between rainfall
and flow to take into account these issues. Usually, the time lag is a hydrological model
parameter that represents the time taken for rainwater to reach its outlet in the catchment
area by passing through the hydrological system following a rainfall event, which directly
affects hydrological dynamics and flow behavior. It is indeed a key parameter to improve
the accuracy of hydrological forecasts. In this study, it is important to not introduce a
bias in the estimation of this parameter for the reasons aforementioned, so we first used
an empirical approach based on the analysis of time lags between rainfall and flows to
estimate the best time lag between the time series of river discharge and rainfall.

2.3.2. Conceptual Hydrological Model (GR4J)

The “Génie Rural à 4 Paramètres Journalier” (GR4J) is one of the most widely used
conceptual models in the world developed by [46] and requires 4 parameters. Two impor-
tant inputs are used in this model: daily precipitation (P) and evapotranspiration (E). It
is a reservoir-based model because it schematizes the watershed as a reservoir. The first
reservoir is used to simulate the water balance of the soil and fills the ground reservoir.
The second reservoir is used to transfer the water to the output using the routing function.
This last action is divided into two parts: the 1st part is made by the 1st unit hydrograph
(UH1) of an amount of 90%, and the remaining 10% of the direct runoff is made by the
2nd unit hydrograph (UH2). The simulated flow is the sum of the flows generated by UH1
and UH2.

2.3.3. Machine Learning Models
Feed-Forward Neural Network (FFNN)

The feed-forward neural network (FFNN), also called the multi-layer perceptron, is
the most used architecture for artificial neural networks to manage various problems such
as the forecast of a hydrological time series. The structure of this technique contains three
main layers: an input layer, a hidden layer, and an output layer. To generate the desired
output, first, the input data (xi) and weights (wij) are summed with the bias (bi) according
to Equation (1):

s =
(
∑n

i=1 wij.xi

)
+ bi (1)

Second, the transfer function is applied to the result obtained by Equation (1) at the
level of the hidden layer; from Equation (2), we obtain the desired output:

F(s) = F
[(

∑n
i=1 wij.xi

)
+ bj

]
(2)
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Before the learning procedure, the number of neurons in the hidden layer and the
length of the input sequence must be fixed. During learning, the weights and biases are
adjusted through the back-propagation (BP) algorithm [47]. To improve the performance of
output estimates, the error between the estimated measurements and the measured values
reaches predefined thresholds by an iterative task [48,49].

Extreme Learning Machine (ELM)

This recent algorithm belongs to the group of feed-forward neural networks developed
by [50,51]. This method, which is extreme machine learning (ELM), is characterized by
its simple structure consisting of three layers, an input, output, and a single hidden layer,
unlike the feed-forward network, which uses several hidden layers. In order to generate the
final output of the model, first, ELM chooses the input weights and the biases of the hidden
layer in a random way; then, with the help of the least square method, we calculate the
weights of the output layer instead of the iterative setting; and finally, we apply Equation (3)
to obtain the final result:

yj = ∑n
i=1 βig

(
wi.xj + bi

)
, (j = 1, 2, ......, N) (3)

We note that N is the number of neurons, g(xj) is the activation function used in the
model, (bi) is the bias associated with the hidden neurons, (wi) is the weight that connects
the input layer and the hidden layer, (βi) is the weight that connects the hidden layer and
the output layer, and finally, xj and yj are the inputs and outputs, respectively, of the model.

Long Short-Term Memory (LSTM)

LSTM or long short-term memory is one of the most used neural network architectures
(RNNs) in the field of deep learning [52]. This model has been improved to solve the
concern of gradient vanishing or gradient exploding of the error slope in the case of a
too-long time sequence encountered in RNNs, which first appeared in [53]. This structure
is characterized by a memory mechanism of previous entries; its role is to help the model
recognize past data to predict future data sequences. An LSTM unit consists of three gates,
a forget gate, an impute gate, and an output gate, plus a memory cell (cell state) internal
to the unit that serves to save, store, and maintain the outputs of the previous units for a
long time. The steps of LSTM operation are, first, at the forget gate, it receives new input
information xt and previous hidden data ht−1 and it decides which information will be
deleted from the cell according to Equation (4) ( ft); then, the input gate ht controls which
new information will be stored in the cell state. In this part, two steps are realized: the
first one, which follows Equation (5) (it), uses the sigmoid function (σ) for an update to the
information; the second step, summarized in Equation (6), uses the hypertangent function

(tanh) to create a candidate cell (
∼
Ct) that will be used only when a new cell state is updated.

The next step will combine these two cells to create a memory cell update according to
Equation (7). Finally, the output gate will select the desired output using the sigmoid
function according to Equation (8) which determines which part of the cell state should be
output, and the product of the hypertangent function with the activated cell state (Ct) is
the desired output as shown in Equation (9):

ft = σ
(

W f .[ht−1, xt] + b f

)
(4)

it = σ(Wi.[ht−1, xt] + bi) (5)
∼
Ct = tanh(Wc.[ht−1, xt] + bc) (6)
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Ct = ft ∗ Ct−1 + it ∗
∼
Ct (7)

Ot = σ(Wo.[ht−1, xt] + bo) (8)

ht = tanh(Ct).Ot (9)

where ft, it, and Ot are vectors for the activation values of the forget gate, the input gate,
and the output gate; W f , Wi, Wc, and Wo are the network weights matrices; and b f , bi, bc,
and bo are bias vectors.

Gated Recurrent Unit (GRU)

To speed up the training process and simplify the structure of LSTM, with the same
principle as previous models, the GRU (gated recurrent unit) model has been proposed [54]
in order to unite the three gates of the LSTM into only two gates. The only difference is that
a GRU does not have a remotely separated memory cell or otherwise it exploits a single
hidden state (ht) by merging the hidden state and the cell state (Ct) of the LSTM cell in
order to provide previous information. The operating principle of the GRU is based on
two control gates: the update gate (zt) and the reset gate (rt). On the one hand, the update
gate serves as a tool to determine how much information will be transmitted in the future
according to Equation (12); on the other hand, the reset gate helps the model to decide
which data will be forgotten. In case the 2nd gate is deactivated, the GRU forgets what it
has calculated previously. In order to generate the final output of the model, we go through
these different calculations:

rt = σ(Wr.[ht−1, xt] + br) (10)

zt = σ(Wz.[ht−1, xt] + bz) (11)

ht = (1 − zt) ∗ ht−1 + zt ∗ h′t (12)

h′t = tanh(rt ∗ (Uh.ht−1) + Wh.xt + bh (13)

where xt is the input data; W and U are the network weight matrices; ht, ht−1, and h′t are
the hidden layer of step t, the hidden layer of step t − 1, and the present new state of step t,
respectively; and br, bz and bh are the bias vectors.

Gaussian Process Regression (GPR)

Gaussian process regression belongs to the class of supervised machine learning algo-
rithms that can solve nonlinear regression problems. This approach is non-parametric [55]
and fully Bayesian stochastic which assumes that the probability distribution of the output
is Gaussian [56]; that is, instead of computing the probability distribution of the param-
eterized ones of a specific function, the GPR computes the probability distribution over
all admissible functions that match the data. The two essential functions to handle the
Gaussian process are the mean m(x) and the covariance k(x, x′):

F(x) ≈ GP(m(x), k(x, x′)) (14)

The output measure y of the GPR model is calculated as follows:

y = f (x(k)) + e (15)

where x stands for a measurement of input variables, f is the unknown functional depen-
dence, and e is a Gaussian noise.
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Support Vector Machine (SVM)

This model is also part of a set of non-parametric [57] supervised learning techniques
aimed at eliminating discrimination and regression problems. SVM or wide margin sep-
arator was developed in the 1990s [58]. It uses a method called kernel function which
allows for the use of linear classifiers to solve a nonlinear problem. The version of SVM
that deals with regression is called Support Vector Regression (SVR). The latter is built on
the principle of structural risk minimization, as it also incorporates the alternative loss
function, in order to compute the existing deviations between the fitted values of the null
and non-parametric models.

2.3.4. Hydrological Model Evaluation

In this study, a sequential validation approach was implemented to evaluate the
performance of hydrological models in short-term streamflow prediction. This approach
was divided into two main steps:

- Validation with GR4J

First, the conceptual GR4J model was used. The sequential validation involves daily
recalibration of the model using the available data up to the previous day (t − 1) to predict
the streamflow for the following day (t). For each day in the evaluation period, the model
is recalibrated based on historical data from the beginning of the training period up to i − 1.
The initial conditions of the model are updated using the simulated or observed values
from the previous day before generating the streamflow prediction for day i.

- Validation with Machine Learning Techniques

Next, the same methodology was applied to machine learning techniques, specifically
Extreme Learning Machines (ELMs) and feed-forward neural networks (FFNNs). These
models use, as inputs, precipitation data at different time lags (t, t − 1, t − 2) as well as
observed streamflow from previous days (t − 1 and t − 2) to predict the streamflow for
day t. This strategy allows the models to account for the delayed effects of precipitation on
streamflow, thereby capturing the complex hydrological dynamics of the watershed.

It is important to note that models with memory, such as long short-term memory
(LSTM) and gated recurrent units (GRUs), do not use this methodology. These models
inherently capture temporal dependencies and store past information, making them well
suited for time series forecasting. Due to their memory-based nature, we did not apply the
same sequential recalibration approach used for other machine learning models, as these
models are capable of learning and adapting to the time-dependent relationships in the
data without needing recalibration for each individual time step.

The performance of the GR4J, ELM, and FFNN models was assessed using standard
hydrological metrics such as the Nash–Sutcliffe efficiency (NSE), the Kling–Gupta efficiency
(KGE), and Root Mean Square Error (RMSE). These metrics provide a quantitative evalu-
ation of these models’ ability to accurately reproduce observed streamflow and generate
reliable predictions, which are critical for early warning systems in contexts where real-time
data are limited.

2.3.5. Efficiency Criteria

After collecting the hydrometric data, which will be used for calibration and validation,
the model parameters are adjusted to obtain the best possible agreement with the observed
data. Once the parameters are calibrated or the model is trained, the model simulations
are evaluated using independent validation data to assess its performance. Finely metrics
such as Nash–Sutcliffe efficiency (NSE) and Kling–Gupta efficiency (KGE) are calculated to
quantify the accuracy and performance of the model compared to observations.
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Several criteria help to evaluate the predictive efficiency of the models. For our study,
we used four criteria, which are Root Mean Square Error (RMSE), NSE, coefficient of
determination (R2), and KGE, with Equations (16)–(19) shown below:

RMSE =

√
1
n∑n

i=1

(
Qoi − Qpi)2 (16)

NSE = 1 −
[

∑n
i=1

(
Qoi − Qpi)

2

∑n
i=1(Qoi − Q̄0)

]
(17)

R2 =

[
∑n

i=1 (Qoi − Q0).(Qpi − Qp)
]

∑n
i=1 (Qoi − Q0).∑n

i=1 (Qpi − Qp)

2

(18)

KGE = 1 −
√
(r − 1)2 + (β − 1)2 + (α − 1)2 (19)

with

r =
cov

(
Q0 − Qp

)
σ2

Q0
σ2

QP

(20)

β =
Qs

Q0
(21)

α =
σQs

σQ0

; α =
σQs

σQ0

; (22)

where Qoi and Qpi are, respectively, the observed and predicted streamflow, n is the data
sample size, Qp and Qo are the means of observed and predicted streamflow, respectively,
r is the Pearson correlation coefficient, β is the bias between observed and simulated flows,
and γ is the variability ratio.

Nash–Sutcliffe efficiency (NSE) [59] is the most used criterion in the field of hydrology,
when the agreement between observed and predicted values is good, its values tend to be
close to 1. Root Mean Square Error (RMSE) represents the difference between measured
and simulated outcomes, and the tendency of RMSE to be close to 0 means a perfect fit; if
its value increases, it means that the model is less efficient. The coefficient of determination
(R2) represents the measure of the degree of reproduction of the results by the model,
which is in the range of [−∞, 1]; to say that a prediction is optimal, R2 must be close to 1.
And finally, the Kling–Gupta efficiency (KGE) [60,61] is a linear combination of the three
parameters of modeling errors mentioned in this section. These scores were computed only
for discharge values above zero to remove the influence of intermittency and the presence
of zero-flow days in the record.

2.3.6. Taylor Diagram

The Taylor diagram is a mathematical diagram whose purpose is to indicate graphi-
cally which of the different models or techniques used to model the hydrological process
of the basin is the most realistic and also facilitates the comparative evaluation between
the different models. Its representation is based on two shapes: the semi-circle represents
positive and negative correlations and the quadrant indicates positive correlations only.
The diagram is essentially based on two parameters: the correlation coefficient between
the observed and simulated data and the standard deviation. A reference point (red dot)
is used to indicate the accuracy of the model as a function of the position of its point; any
model close to the reference point is more appropriate and more realistic.
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3. Results
3.1. Impact of Time Lag Between Rainfall and Runoff on Hydrological Forecast Accuracy

In our case, we tested several delays between one and five days (t, t − 1, t − 2, t − 3,
t − 4, and t − 5) with the different rainfall inputs with the FFNN and ELM models to
find out the most realistic time lag. By using the rainfall of the previous days, the model
takes this delay into account and produces more accurate flow forecasts. Figure 3 shows
the results obtained from the different lag times used. We have seen that the best results
obtained from the observed rainfall are with the lag of the previous day (t − 1). This is
most likely due to different daily data computation procedures between rainfall and river
flow data. For satellite products, the best results vary between lag times t − 1 and t − 2, so
we drew the black curve in Figure 3 which represents the average between the different
satellite products for the different lag times. The majority of the curves show that the best
results are achieved with a lag time of two days (t − 2). Consequently, we set the time lag
to two days for the remainder of the study.
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3.2. Which Global Rainfall Product Is the Most Effective?

We obtained satisfactory results and significant correlations during the calibration
stage, which entails adjusting the models so that they are as realistic as possible with regard
to the learning information. The best KGE values recorded between Qobs and Qsim are
obtained with the reanalysis product ERA5 and SM2RAIN, followed by GPM-IMERG and
CHIRPS, while the least reliable product is PERSIANN, as shown in Figure 4. A good
consistency of results is observed between the different basins studied, with ERA5 and
SM2RAIN outperforming the others with NSE values (>0.7) only in the Zddine basin
with NSE values between 0.2 and 0.4 with the FFNN, ELM, LSTM, LSTM2, GRU, SVM,
GPR, CHIRPS, and GPM-IMERG ranked second with the same models with values of
0.8 ÷ 0.4 and PERSIANN ranked last with low scores in all basins. GR4J, SM2RAIN,
and ERA5 demonstrated superior results to other products. In some cases, hydrological
model configurations may differently represent the sequences of high or low river runoff.
This highlights the need to use a variety of hydrological models when comparing different
precipitation datasets in order to identify the most appropriate model to accurately illustrate
local hydrographic processes. Overall, the validation process shows a slight change in
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scores compared with the calibration process, which is in line with expectations (Figure 4).
Despite a slight decrease in correlations in some basins (such as basin 5), the performance
of models such as GRU, LSTM, and FFNN remained stable between the calibration and
validation stages. This indicates that these models generalized relatively well on an unseen
sample of data. The validation performances of the different products used indicate that
SM2RAIN and ERA5 provide the best KGE scores (0.9–0.5), with all machine learning
techniques estimating runoff realistically and not underestimating it, as is the case with the
other models (Figure 4). However, the initial conclusions of the evaluation suggest that
the products exploiting satellite observations of soil moisture (SM2RAIN) and reanalysis
products (ERA5) are proving to be very effective in detecting precipitation events in
the context of near-real-time monitoring for the basins considered and that the results
produced by the different inputs are not strongly influenced by the specific structures of
the hydrological models used.
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Observed rainfall (Pobs) is the most reliable data source, with correlations between
Qobs and Qsim often greater than 0.7 for most models even with GR4J (Figure 4), both
in calibration and validation. This demonstrates that the locally observed data accurately
depict the dynamics of precipitation in the basins. In our case, we used Pobs as reference
data, which show very small differences with the simulations obtained with SM2RAIN and
ERA5. In contrast, other PPSs (CHIRPS, GPM, and PERSIANN) have failed to reproduce
river discharge measurements. The effectiveness of SM2RAIN and ERA5 provides a sound
alternative to rain gauge data capable of replacing observed rainfall for the catchment
considered in the present study.

3.3. The Most Effective Model Structure

In order to determine which type of model is the most efficient and which structure
is the most realistic to reproduce river runoff, Figure 5 shows the distribution of Nash
values for the calibration and validation phases, respectively, obtained with the different
models used for the five catchments listed in Table 1. The ELM, FFNN, LSTM, LSTM2, and
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GRU models generally have high correlations (>0.6), both in calibration and validation,
particularly with observed rainfall and ERA5 and SM2RAIN reanalysis data. This shows
that these machine learning models are able to simulate river runoff when reliable data
(such as Pobs and ERA5) are used, except for the Zddine basin, where mediocre results
are observed. SVM and GPR show mixed results, with moderate correlations with certain
data sources, such as Pobs (around 0.7 to 0.8). However, their performance deteriorates
more in validation than in some other models, particularly with precipitation data from
GPM and CHIRPS. In general, the ELM, FFNN, LSTM, LSTM2, and GRU models show
significant correlations (>0.6) for both calibration and validation, particularly in relation
to direct precipitation observations (Pobs) and ERA5 and SM2RAIN reanalysis results.
This shows that these machine learning models can efficiently reproduce observed river
discharge with some rainfall inputs (such as Pobs and ERA5), except for the Zddine basin,
where poor results are observed. The SVM and GPR results are mixed, showing moderate
correlations with various data sources such as Pobs (around 0.5 to 0.7). Nevertheless, its
validation results are poorer than those of other models, particularly with sources such as
GPM and CHIRPS. The GR4J hydrological model shows poor performance compared with
the machine learning models, varying between 0.1 and 0.6 in validation. This may indicate
that this model is not well suited to the specific conditions of these basins, particularly
for representing river intermittency, or to these types of data, especially when tested
in validation.
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Figures 6–10 shows the relationship between the flows simulated by the various
models and the observed flow. There is a very good overlap with ELM, FFNN, LSTM,
LSTM2, and GRU. These models capture the different peaks well, unlike GR4J, which
does not manage to capture the different peaks nor the periods with very low to no runoff.
Figure 7 represents all the results obtained in order to see the effectiveness of the different
techniques used. This Taylor diagram (Figure 11) shows that the FFNN, ELM, LSTM,
LSTM2, and GRU models perform best, as their points are closer to the reference, indicating
a higher level of agreement between calculated and observed values. These observations
are generalized to all the basins and all the SPs simulated with FFNN, ELM, LSTM, LSTM2,
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and GRU. For techniques based on basic structures (SVM and GPR), the points are between
0.4 and 0.6, unlike the results obtained with GR4j, where we notice that the points are
between 0.1 and 0.4 in most instances. These observations indicate that the use of methods
based on artificial intelligence makes it possible to simulate flows more realistically and
accurately in the semi-arid zone. Overall, machine learning models (FFNN, ELM, LSTM,
and GRU) outperform traditional hydrological models such as GR4J in their ability to
capture complex precipitation dynamics and their transformation into surface runoff in
these semi-arid basins.
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4. Discussion
In this study, a hydrological evaluation was carried out for different types of pre-

cipitation data: SM2RAIN, ERA5, CHIRPS, GPM-IMERG, and PERSIANN-CCS-CDR,
considering rain gauges as a reference. The objective of this comparison was to identify
which product is the most suitable for the region. We also evaluated the performance of
different models representing the rainfall–runoff relationship and compared the results
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to determine which of them (FFNN, ELM, LSTM, LSTM2, GRU, SVM, GPR, or GR4J)
performed best for our region. Our study results show that SM2RAIN and ERA5 rainfall
products, when combined with the ELM, FFNN, LSTM, LSTM2, and GRU models, show
the best performance and consistency for calibration and validation periods.

The results presented in this study can be compared to the previous studies shown
in Table 1, presented in the Section 1, which summarizes the results of recent studies
evaluating the performance of satellite products in various regional and hydrological
contexts. It provides an overview of the products studied, the methodological approaches
adopted, and the performances obtained, with particular emphasis on their effectiveness in
different regions and climatic conditions similar to Algeria. For example, products such
as CHIRPS-2.0 and SM2RAIN-ASCAT stand out for their ability to accurately capture the
spatio-temporal variability of precipitation in semi-arid environments, such as Pakisan and
Morocco, with correlation coefficients above 0.8. In tropical zones, such as the Amazon,
GPM excels in estimating intense precipitation, while SM2RAIN is highly effective for
wet soils. Previous simulation tests on the evaluation of satellite products in other semi-
arid regions [31,32] have also shown that PERSIANN-CCS-CDR shows the worst overall
performance. Other studies in Morocco [2,24] show that SM2RAIN represents the most
efficient product for this region, probably due to the low vegetation cover in this region,
allowing a good satellite retrieval of soil moisture. These studies also show that the accuracy
of GPM, CHIRPS, and ERA5 is higher than PERSIANN-CCS-CDR in these semi-arid regions.
The integration of merged data, combining satellite observations and in situ measurements,
significantly improves the performance of rainfall–runoff models, as shown by studies
carried out in Turkey [30] and other regions. This picture highlights the need to choose
products adapted to regional specificities and to adopt hybrid approaches to optimize
rainfall estimates and hydrological modeling. The results of our research confirm that the
ERA5 and SM2RAIN products offer the best performance, particularly in semi-arid regions
such as the basins studied in Algeria. Their high accuracy in capturing the spatio-temporal
variability in precipitation and soil moisture conditions places them at the forefront of
rainfall–runoff modeling tools in these contexts. PERSIANN-CCS-CDR, on the other hand,
performs less well, underlining the importance of selecting products adapted to the region
and its specific hydrological characteristics.

Comparison with previous studies in various regions of the world [8,23,62] confirms
the robustness of some of the AI models. These studies show that LSTM outperforms
FFNN and is similar to ELM, which is the opposite in our case: LSTM performs worse than
FFNN. Unfortunately, there is no other published research conducted with such models
in Algeria for comparison purposes, so the present research aims to fill this knowledge
gap. LSTMs undoubtedly work better in wetter areas (Asia and the USA), with a realistic
simulation of base flow and seasonal dynamics notably related to snowmelt processes,
whereas our basins are mostly semi-arid and intermittent (no flow during summer). Other
analyses in semi-arid basins [25] have also revealed the difficulties of the GR4J model in
reproducing intermittent hydrographs and the cessation of river runoff during extended
periods. It should also be noted that this phenomenon of river intermittence has become
more frequent in the region in recent years as a result of the temporary drying up caused
by global climate change inducing higher temperatures and evapotranspiration rates, or
by human activities increasing water withdrawals. This intermittency has a direct impact
on the availability, quality, and quantity of observed data, as it causes gaps in the series
during the drying period, which complicates model calibration and validation. It also
leads to significantly increased temporal variability in flows, which makes it difficult to
reproduce flow and dry periods accurately, and it can modify hydrological processes such
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as evaporation, infiltration, and runoff so that models lose their ability to represent these
processes realistically in order to predict flows.

An important limitation of any hydrological modeling study in the Maghreb region
is the human influence on the hydrological cycle. The presence of dams and irrigation
systems means that the streamflow data used in the models are often strongly influenced
by human activities. Indeed, we can distinguish between large dams, which are often
well identified and for which we can estimate withdrawals [63], and, above all, the very
large number of small-scale structures [64], notably from traditional irrigation systems [65],
which can also withdraw significant quantities of water but are not well documented. For
example, it has been shown that almost half of the surface flows from the Atlas Mountains
can be derived from these ancestral systems [66]. Thus, representing the quantities of
water withdrawn in the absence of reliable data enabling them to be measured remains a
challenge [67].

5. Conclusions
This study provided the first evaluation of a machine learning algorithm together

with global precipitation products for river discharge simulations over several catchments
of Algeria. The aim of this study was to (1) evaluate eight models, ELM, FFNN, LSTM,
LSTM2, GRU, SVM, GPR, and GR4J, in order to identify the most efficient and robust
structure in North Algeria, and (2) evaluate the satellite products (SM2RAIN, GPM-IMERG,
CHIRPS, and PERSIANN) and the ERA5 reanalysis product for hydrological simulation.
This analysis was carried out using the hydrological validation method and compared
simulated flows with observed flows. The results show that combining the ELM, FFNN,
LSTM, LSTM2, and GRU models with the SM2RAIN and ERA5 products provided the
most reliable and consistent calibration and validation scores, and that machine learning
techniques are able to reproduce reliable and realistic river flows in Algerian basins. In
addition, the use of satellite products or reanalysis data has a beneficial effect, given the
small difference in the performance of certain products with rain gauges, especially with
SM2RAIN-ASCAT and ERA5. Observed rainfall, SM2RAIN, and ERA5 give Nash values
greater than 0.7, and it can be said that these products provide a good opportunity to
complete rain gauge data due to the lack of measurements and the absence of monitoring
networks in large parts of Algeria, and North Africa more generally, which directly affects
model performance. Recent advances in flood risk forecasting and flow simulation have led
to the development of hybrid models [68–70] combining conceptual models and machine
learning that could be considered in further studies. These models demonstrate their
effectiveness and encourage future research to make use of satellite products to improve
the monitoring of river discharge for a better management of water resources.
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