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Abstract: This study investigates teleconnections between rainfall in the Ogooué River
Basin (ORB) and sea surface temperature (SST) in the tropical ocean basins. The Maximum
Covariance Analysis (MCA) is used to determine coupled patterns of SST in the tropical
oceans and rainfall in the ORB, depicting regions and modes of SST dynamics that influence
rainfall in the ORB. The application of MCA to rainfall and SST fields results in three
coupled patterns with squared covariance fractions of 84.5%, 76.5%, and 77.5% for the
Atlantic, Pacific, and Indian tropical basins, respectively. Computation of the correlations
of the Savitzky–Golay-filtered resulting expansion coefficients reached 0.65, 0.5 and 0.72,
respectively. The SST variation modes identified in this study can be related to the Atlantic
Meridional Mode for the tropical Atlantic and the El Niño Southern Oscillation for the
tropical Pacific. Over the Indian Ocean, it is a homogeneous mode over the entire basin,
instead of the popular dipole mode. Then, the time-dependent correlation method is used
to remove any ambiguity on the relationships established from the MCA.

Keywords: Atlantic meridional mode; coupled patterns; El Niño Southern oscillation;
maximum covariance analysis; moving correlation; rainfall in the Ogooué river basin;
teleconnection

1. Introduction
Teleconnection in meteorology and climatology revolves around the idea that weather

patterns in seemingly unrelated regions on Earth’s surface could be interconnected [1–3].
These at-a-distance connections refer to long-distance relationships involving large, per-
sistent atmospheric patterns like pressure systems, jet stream circulation, and oceanic
circulation patterns [2,4–6]. Generally, changes in these patterns in one region is likely to
trigger a chain reaction, influencing weather parameters like temperature, rainfall, storm
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tracks, and even the intensity of jets in distant locations [7–9]. The timescales of these
connections typically range from weeks to decades [2]. A famous example of teleconnection
is linking Sea Surface Temperatures (SST) in the Pacific based on the El Niño Southern
Oscillation (ENSO) with global weather patterns [10,11]. Numerous recent studies delved
into how ENSO phases (El Niño, La Niña, and neutral) affect precipitation patterns across
continents [3,5,12–14].

Instead of random coincidences, climate teleconnections are rather fascinating rela-
tionships between weather anomalies in apparently far-flung regions of the Earth resulting
in large-scale atmospheric and oceanic movements that redistribute heat and energy across
the globe [1,15,16]. Thus, climate teleconnections hold immense importance for various
aspects of human lives and the planet’s health [9,17–19]. Studying teleconnections helps
scientists understand how different parts of the climate system interact and how they might
respond to global warming and induced climate change [10,20]. It is crucial knowledge for
developing accurate climate models and predicting future climate scenarios in a situation
where the scientific community is finding it increasingly difficult to improve the quality of
these models [21,22].

Understanding climate teleconnections is essential for developing a holistic approach
to climate change mitigation and adaptation strategies. Knowing how these links might
influence extreme weather events can help with identifying areas at risk of floods, droughts,
heat waves, or cold snaps [23,24]. This knowledge allows for better disaster preparedness
measures and mitigation strategies, potentially saving lives and minimizing damage. Also,
water resource management and informed agriculture decisions must not be left on the
sidelines. Teleconnected weather patterns significantly impact water availability in differ-
ent regions, and their understanding is crucial for effective water resource management
strategies, ensuring sustainable water use in the face of potential droughts or floods [25].
Farmers can leverage knowledge of climate teleconnections to make informed choices about
planting schedules, irrigation needs, and harvest times. This allows them to adapt their
practices to anticipate potential changes in temperature and precipitation patterns [26].

Despite progress in climate teleconnection studies and its integration into climate
analysis and applications, major gaps still exist in understanding these fascinating connec-
tions [27,28]. In Central Africa, a data-scarce region compared to other parts of the world,
limited weather stations and observational data can hinder the study of teleconnections.
Yet, climate teleconnections significantly shape the region’s rainfall patterns and overall
regional climate variability. For example, rainfall in Central Africa is heavily influenced by
variations in SSTs in distant parts of the oceans [29–31]. The Atlantic Ocean plays a major
role, with the state of the Atlantic Meridional Overturning Circulation (AMOC) and the
Tropical Atlantic SSTs influencing precipitation [32]. The Indian Ocean Dipole (IOD) also
affects Central Africa’s rainfall, particularly during the May-to-November period [33–35].

Central Africa is known for its high rainfall heterogeneity, meaning rainfall amounts
can vary significantly across short distances [28]. The interplay between the large-scale
atmospheric patterns (Intertropical Convergence Zone (ITCZ), Hadley Cell) and local
factors (topography, land cover) creates a complex web of influences [36–38]. Mountains
can disrupt wind patterns, leading to areas of heavier precipitation on windward slopes and
rain shadows on leeward slopes [39]. These factors give rise to issues related to the region’s
climate and raise the need to improve observation networks with more weather stations,
satellite missions, and advanced modeling techniques for predicting rainfall patterns.
Studies of local rainfall teleconnections at spatial scales such as small and medium-sized
catchments are one such requirement.

This study investigates regions of the tropical oceans where SST variations influence
rainfall variability in the Ogooué River basin (ORB), with the aim of improving our un-
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derstanding of regional climate dynamics and their potential impacts. By identifying
key teleconnections between SST and ORB rainfall, this research can contribute to en-
hanced rainfall predictions, which are crucial for water resource management, agricultural
planning, and mitigating the risks of droughts and floods. Using Maximum Covariance
analysis (MCA) [40–42], the authors examine teleconnections between ORB rainfall and
SST anomalies across major tropical ocean basins. Following this introduction, Section 2
provides a detailed description of the ORB. Section 3 outlines the geophysical datasets and
statistical methodology employed. The results of the MCA are presented in Section 4, and
a comprehensive discussion of these findings is provided in Section 5.

2. Materials and Methods
2.1. Study Area

The ORB is located in Central Africa and benefits from an equatorial climate (see
Figure 1), characterized by year-round hot and humid temperatures and abundant rain-
fall. Average annual temperatures oscillate between 21 ◦C and 28 ◦C, with little seasonal
variation. Coastal areas and the southwest of the country are generally cooler than the
interior. Average annual precipitation varies between 1600 and 2200 mm, depending on
the region [43]. Two distinct rainy seasons are distinguished: a long season from March to
June and a short season from October to mid-December [44]. Relative humidity is high all
year round, often reaching 90% or more. The rainy seasons extend from March to June and
from October to mid-December, with frequent and intense rains, especially in the southern
and eastern regions. The dry seasons cover the periods from June to September and from
mid-December to February, with less precipitation and slightly cooler temperatures [44].

Figure 1. Location map of the ORB with some details on the hydrographic network and topography.

Thanks to its hot and humid equatorial climate, the Ogooué basin boasts a rich and
diverse array of vegetation. It features a variety of ecosystems, including forests, savannas,
and wetlands, each with distinct plant characteristics [45]. Tropical rainforests cover most
of the basin and are characterized by a great diversity of trees, lianas, epiphytes, and
understory plants [46]. There are also swamp forests that develop along rivers and flood
zones, with trees adapted to these humid conditions. Mountain forests are also found
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in the mountainous reliefs of the basin, with specific flora adapted to higher altitudes.
The savannas of the Ogooué basin are either grassy in the dry areas of the basin, with
tall grass and scattered trees, such as acacias, or wooded with greater tree cover than the
grassy savannas, with trees such as baobabs [47]. Basin wetlands are marshes common
in low-lying, flooded areas, with aquatic and semiaquatic vegetation. Flooded meadows
develop in areas prone to seasonal flooding, with grasses adapted to these conditions.

The topography of the Ogooué basin is characterized by varied relief, influenced by
the geological history of the region [48]. There are plateaus, mountain ranges, plains, and
valleys shaped by millions of years of erosion and tectonic activities. The plateaus cover a
large part of the basin, with altitudes generally around 450 m above sea level (masl) [49].
They are formed of ancient rocks and are often covered by dense forests. The basin is home
to several mountain ranges, the most important of which are the Chaillu to the east and the
Cristal Mountains to the west [50]. These massifs rise to more than 1000 masl and feature
steep landscapes and mountain forests. In the basin, there are alluvial plains along the
major rivers, notably the Ogooué and its main tributaries. These plains are generally fertile
and are often occupied by agricultural areas.

2.2. Data Sets
2.2.1. Rainfall Data

Given the almost total unavailability of carefully acquired field data at adequate
temporal and spatial resolutions in Central Africa, local researchers rely on recent de-
velopments in some major research centers of multisource grid-interpolated data [51,52].
Among this family of precipitation data, Multi-Source Weighted-Ensemble Precipitation
(MSWEP) provide reliable estimates in many low-monitored or unmonitored regions of the
world [53,54]. MSWEP is a global precipitation dataset providing rainfall estimates at fine
spatial and temporal resolution [55,56]. It is valuable for climate studies, water resources
management, and agriculture. MSWEP data combines satellite data, climate models, and
ground weather stations to obtain reliable precipitation estimates. Combining multiple
data sources improved the accuracy and reliability of precipitation estimates. The version
used in this study, MSWEP V2, is a full global coverage monthly precipitation dataset at
0.1◦ × 0.1◦ spatial resolution spanning the period 1979 to 2018 [54,57].

2.2.2. Sea Surface Temperature Data

SST data is a 1◦ × 1◦ gridded dataset at a monthly frequency, spanning the global
tropical oceans from 30◦ S to 30◦ N. This dataset comes from TropFlux, a project that
provides data on air–sea interactions in the tropics. These SST data were developed under
a collaboration between the Laboratoire d’Océanographie: Expérimentation et Approches
Numériques (LOCEAN) from Institut Pierre Simon Laplace, France, and the National
Institute of Oceanography/CSIR, India, and distributed through Indian National Centre
for Ocean Information Services, India. TropFlux SST data combine satellite-derived and
reanalysis ERA-I data with improved accuracy based on bias corrections [58]. This TropFlux
data component is available for the period from 1979 to 2018.

2.3. Methods
2.3.1. Maximum Covariance Analysis

MCA is a statistical approach used to identify pairs of spatial patterns that have the
maximum covariance [42,59,60]. This robust technique goes beyond simply looking at
correlations between individual variables and focuses on finding pairs of spatial patterns
that co-vary the most using Singular Value Decomposition (SVD) on the covariance matrix
between both involved datasets [40,61,62]. Given two datasets, denoted by X (size m × n)
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and Y (size p × n), where n is the number of samples (times) and m and q are, respec-
tively, the numbers of X and Y measurements at each time. Let u and v be two arbitrary
unit columns m-vector representing the two patterns of x field and y field, respectively.
Assuming that the time series of their projection onto the data are the 1 × n row vectors,

a = uTX (1)

b = vTY (2)

Next, the MCA searches for optimal patterns u and v that maximize their covariance

c = cov[a, b] (3)

c = uTCxyv (4)

where Cxy = 1
n−1 XYT is the covariance matrix between x and y, whose i, j′th element is the

covariance of xi(t) with yj(t).
Each obtained mode explains an amount of the overall squared covariance in Cxy. The

importance of an MCA mode is determined by its Squared Covariance Fraction (SCF), which
represents the percentage of the total squared covariance explained by that mode. A higher
SCF indicates a more dominant and influential mode. Also, for each MCA mode, there
is a corresponding pair of Time Expansion Coefficients (TECs), one for each field. These
TECs quantify the strength and influence of the associated spatial patterns at each point
in time. These TECs are calculated by projecting the original data for each field onto the
corresponding spatial patterns obtained from the MCA. A significant correlation between
the TECs of SST and rainfall for a given MCA mode indicates that the corresponding spatial
patterns in SST and rainfall are varying together in a coordinated way over time. This
provides strong evidence for a teleconnection between the two fields.

While SVD is a powerful statistical tool, its application can introduce spurious patterns
into the analysis, potentially compromising the robustness of the MCA [42]. In fact, as a fun-
damentally linear method, SVD, like many matrix decomposition techniques, decomposes
data into orthogonal modes, capturing linear co-variation between fields. Consequently,
SVD may not accurately represent strongly non-linear relationships, such as those po-
tentially existing between SST and rainfall in this study. To remove any ambiguity from
the MCA results, this study uses time-dependent correlation analysis to investigate the
relationships determined by the MCA.

2.3.2. Savitzky–Golay Filter

Climate teleconnections refer to the relationships between climate patterns or anoma-
lies in geographically distant regions. These connections are often characterized by their
intermittent nature, meaning that their strength, or even their existence, can fluctuate
significantly over time. A prominent teleconnection during one period may weaken or
completely disappear in another. This variability is due to the dynamic complexity of the
climate system, where interactions between components such as the atmosphere, oceans,
and land can evolve. The data filtering technique, specifically the Savitzky–Golay fil-
ter, plays a crucial role in this study by allowing the analysis of teleconnections through
smoothing high-frequency noise in the time series of temporal expansion coefficients (TEC)
derived from MCA. This smoothing enhances our ability to discern underlying long-term
variations, including those reflected in the TECs.
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2.3.3. Moving Correlation

Moving correlation, often referred to as rolling correlation, is a statistical method used
to measure the correlation between two time series over a specific subset of the data that
moves over time [63]. This technique allows for the examination of how the relationship
between the two time series changes over time. This time-dependent correlation estimation
method is particularly useful to study the time-varying relationships between variables in
numerous scientific fields like finance, economics, ecology, climate change, etc. [64–66]. In
the present study, the moving correlation technique is used to compute dynamic correlations
characterizing the relationships between rainfall in the ORB and SST in the tropical oceans.

3. Results
3.1. Rainfall Variability in the ORB

Precipitation variability in the ORB is a complex phenomenon that requires a multidis-
ciplinary approach to be better understood. The principal component analysis (PCA) is a
powerful statistical technique used to reduce the dimensionality of a dataset while retaining
as much information as possible [67]. In the context of precipitation, it makes it possible
to transform a large number of rainfall variables (monthly rainfall at each node of a grid,
for example) into a smaller number of uncorrelated variables called Principal components
(PCs) [68,69]. The results of PCA in the ORB MSWEP V2 rainfall data over the period from
1979 to 2018 are shown in Figure 2. Only the first three principal components corresponding
to approximately 80% of the total variance of these rainfall data are presented by their
Empirical Orthogonal Factors (EOF) and the associated temporal PCs. Furthermore, all
other modes correspond to explained variances around 1 or below.
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The PCAs represent the most important modes of variability in the data. The main
mode of rainfall of the ORB represented by EOF 1, which corresponds to 56.74% of the
explained variance, presents a South—North-East gradient of rainfall which opposes the
heavy rains of the South-West of the ORB in its coastal plain, to the northeastern plateau
regions where it rains a little less and suggests a homogeneous inter-annual variability
of rainfall in the ORB as found in previous studies [13,70]. The associated PC1 temporal
component shows bimodal rainfall fluctuations across the basin. The second component,
spatially represented by EOF 2, contrasts the heavy rains of the coast to the west of the basin
with the less rainy east. In the ORB, humidity advected from the Atlantic Ocean abundantly
wets the coastal zone and decreases as one moves away from the coast towards the interior
of the basin [44]. The third component represents 4.18% of the explained variance. These
components, whose spatial pattern is EOF 3, show the dipole dynamics between the north
and south of the basin on either side of the equator.

3.2. Coupled SST-Rainfall Patterns

This section presents the results of the MCA applied to the monthly MSWEP data from
the ORB and the monthly TropFlux data from the three primary tropical ocean basins—the
Pacific, Atlantic, and Indian Oceans—spanning the period from 1979 to 2018. It is important
to highlight that the use of MCA to identify potential links between two geophysical fields
does not require spatial harmonization of the data representing these fields. The only
requirement is that the temporal extent of the data must be identical, as previously noted
regarding the dimensions of the matrices used in the MCA.

Figure 3 shows the MCA-derived coupled patterns of SST in the Atlantic Ocean and
rainfall in the ORB. The Atlantic SST pattern presents a strong signal along the coastal
eastern equatorial area, with an extension along the Equator. Because of the similarities
with the ENSO phenomenon in the Pacific, this pattern is often referred to as Atlantic
Niño [71–73]. Considering the opposite SST anomalies on the northern part, along the
coasts of Senegal and Mauritania, with a large expansion offshore, the whole tropical
Atlantic pattern is more similar to the Atlantic Meridional Mode (AMM) [74–76]. The ORB
rainfall pattern shows negative anomalies in the entire basin, with strong anomalies in the
coastal region of the basin and decreasing anomalies upstream. These coupled patterns
denoted the co-variation in rainfall in the whole ORB and SST in the tropical Atlantic Ocean,
especially in the southeastern equatorial area. In addition, the squared covariance fraction
for this maximum covariance pattern is 84%, denoting that the link between tropical SST
in the Atlantic Ocean and rainfall in the ORB is almost totally represented in this first
mode. Figure 3c shows the Time Expansion Coefficients (TEC) associated with the two
SST-rainfall patterns. Both time series were filtered based on the Savitzky–Golay filter with
1-year window size to extract high-frequency noises that can hinder the correlation of these
signals [77–79]. The computed Pearson correlation of both TECs is 0.69 (p-values < 0.05),
significant at a 95% confidence level.

Figure 4 shows the coupled patterns resulting in the MCA of rainfall in the ORB and
SST in the tropical Pacific Ocean. The SST pattern shows strong anomalies in the Pacific
Ocean’s central to eastern equatorial area. SST anomalies in this area are usually associated
with El Niño-Southern Oscillation (ENSO) [80–82]. In turn, the rainfall pattern in the
ORB presents positive anomalies across the entire ORB. The most important anomalies
are observed in the savanna zone of southeast ORB along the plateau Batéké. These
anomalies decrease towards the north of the basin, as well as towards the west of the
basin, with the lowest anomalies at the outlet of the basin downstream of Lambaréné.
With a corresponding SCF of about 76.5%, this first mode of MCA between rainfall in
the ORB and SST in the tropical Pacific Ocean represents its essential co-variation. These
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patterns show the common variation in rainfall in the ORB and ENSO in the Pacific Ocean.
Numerous studies pointed out close-dependent variations of rainfall in the ORB and
ENSO [13,30,31,83]. TECs associated with both patterns are shown in Figure 4c. These
TECs were also filtered using the Savitzky–Golay filter with a 1-year window size to extract
high-frequency noises. The Pearson correlation of both TECs is 0.49 (p < 0.05), and it is
significant at a 95% significance level, denoting close co-variation in rainfall in the ORB
and ENSO.
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Figure 3. Primary mode of co-variability identified by MCA between monthly precipitation in the
ORB and monthly sea SST in the tropical Atlantic Ocean. Maps (a,b) depict the coupled spatial
patterns of SST and precipitation anomalies associated with this mode. Graphs (c) show the temporal
evolution of the time expansion coefficients associated with these patterns, indicating their relative
importance over time.

Figure 5 shows coupled patterns of SST in the tropical Indian Ocean and rainfall in the
ORB. The associated Indian Ocean SST presents positive SST anomalies in almost the entire
tropical Indian Ocean, with slightly stronger SST anomalies to the southeast of the ocean
basin. Inversely, the associated ORB rainfall pattern shows positive (negative) anomalies
in the east (west) of the ORB. This result is in agreement with those of other authors who
have shown that variations in spring and autumn rainfall on the west coast of equatorial
Africa, including the ORB, are influenced by SST throughout the whole tropical Indian
Ocean [30,31]. Both patterns denote increasing (decreasing) rainfall in the east (west) of the
ORB, related to positive SST anomalies in the tropical Indian Ocean. This first MCA mode
between rainfall in the ORB and SST in the tropical Indian Ocean almost embeds the overall
co-variation in these two geophysical fields, as its SCF is 77%. The TECs associated with
these coupled patterns were filtered using the Savitzky–Golay filter with a 1-year window
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size and represented in Figure 5c. The computed Pearson correlation of both of these TECs
resulted in 0.73 (p-value < 0.05), significant at a 95% significance level.
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Figure 4. Primary mode of co-variability identified by MCA between monthly precipitation in
the ORB and monthly sea SST in the tropical Pacific Ocean. Maps (a,b) depict the coupled spatial
patterns of SST and precipitation anomalies associated with this mode. Graphs (c) show the temporal
evolution of the time expansion coefficients associated with these patterns, indicating their relative
importance over time.

3.3. Relationships Between Rainfall in the ORB and SST in Tropical Oceans

The results of the time-dependent correlation analysis between the first PCs of the
ORB rainfall and the climate indices whose links with rainfall were established from the
MCA between the first of the ORB rainfall and the SST in the tropical ocean basins are
presented in Figures 6–8 below. The blue solid curves show the variations of the 1-year
rolling window time-dependent correlation values as a function of time and the gray points
indicate the times when the correlations are significant at the 95% confidence level. Overall,
we note that these correlations very often oscillate between positive and negative values
whatever the climate index or the mode of variation in rainfall considered in the ORB.
These fluctuations between positive and negative correlations indicate that the climate
index’s influence on ORB precipitation varies over time. During certain periods, the index
may create conditions that enhance rainfall (e.g., by increasing moisture convergence over
the ORB). Conversely, at other times, it may contribute to a reduction in precipitation (e.g.,
by suppressing convection or shifting storm tracks) [13,83]. However, understanding the
actual mechanisms that control the relationship between climate indices and rainfall in
the ORB, as well as in the broader Central African region, remains a complex research
challenge due to the multitude of factors influencing precipitation in this area [27,28].
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Figure 6 illustrates the dynamic relationships over time between the Atlantic Merid-
ional Mode (AMM) index and the dominant modes of rainfall in the ORB region, using
time-dependent correlations. This representation highlights periods where correlations
are stronger, both positive and negative, with values greater than 0.5 and less than −0.5,
respectively. There are gray dots placed on the graph indicating statistically significant
correlations, verified at the 95% confidence level. These significant correlations reflect a
marked co-variability between SST associated with the AMM mode and the main modes
of rainfall in the ORB region. In particular, the rolling correlation with the first principal
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component (PC1), which explains 57% of the variance in ORB rainfall, shows significant
periods, mainly concentrated in the last three decades of the study. This suggests the
increasing influence of this mode over time.

Although less frequent, significant correlations with the second (PC2) and third princi-
pal component (PC3) are also observed over the entire study period, but these relationships
remain globally less marked than those of PC1. This observation suggests that the inter-
action between AMM-related SST and the other precipitation modes, while significant,
do not reach the same intensity or regularity as that observed with PC1. These results
highlight a trend towards a greater influence of AMM on rainfall variations in the ORB
region, particularly in recent decades, which could be related to regional climate change or
other environmental phenomena affecting rainfall variability [45].

Figure 7 explores the dynamic relationship between the El Niño-Southern Oscillation
(ENSO), represented by the Niño 3.4 index, and the principal components (PCs) of rainfall
variability in the Ogooué River Basin (ORB). The figure displays rolling correlations, reveal-
ing substantial fluctuations between periods of strong correlation and decorrelation. This is
evidenced by the abundance of gray dots, which denote statistically significant correlations
at the 95% confidence level. The magnitude of these correlation values underscores their
significance. The consistent presence of significant correlations, particularly with PC1,
strongly suggests that the dominant mode of ORB rainfall variation is heavily influenced
by ENSO activity in the tropical Pacific. While the rolling correlations between the Niño
3.4 index and PC2 and PC3 exhibit slightly fewer instances of statistical significance com-
pared to PC1, the periods of notable correlation remain substantial. Crucially, the presence
of both significant positive and negative correlations indicates that ENSO’s strong influence
on ORB rainfall variability manifests during both the warm (El Niño) and cold (La Niña)
phases of the oscillation. This suggests a complex and multifaceted interaction, where
both El Niño and La Niña events can significantly modulate rainfall patterns in the ORB,
albeit potentially in different ways. Further investigation is needed to fully characterize the
specific impacts of each ENSO phase on ORB rainfall dynamics [13,29–31,44,83,84].

Figure 8 provides a detailed representation of the estimated rolling correlations be-
tween IDM index and the first three PCs of ORB rainfall variability. In contrast to the
consistently significant correlations observed with ENSO index throughout most of the
study period, the gray dots, which represent significant correlations, appear scattered for
the IDM index. While the AMM and ENSO index exhibit significant correlations that
are largely concentrated within specific periods, the significant correlations between IDM
and ORB rainfall are more evenly distributed throughout the entire study duration. This
suggests that the Indian Ocean Dipole (IOD) has an ongoing and more persistent influ-
ence on ORB rainfall, occurring across a broad range of years rather than being limited to
isolated intervals.

Notably, these significant correlations, which manifest in distinct phases approximately
every five years, highlight the periodic nature of the IOD’s influence on ORB rainfall
variability. The recurring cycles, with frequencies of less than five within the study period,
underscore the intermittent but notable impact of the IOD on the regional climate system.
The positive and negative correlations shown in Figure 8 further reveal that the influence
of the IDM on ORB rainfall is bidirectional—meaning that it exerts an effect during both
its positive and negative phases. This dynamic interaction between the IDM and ORB
rainfall underscores the complexity of the underlying mechanisms driving regional climate
variability, and the findings suggest that the IOD plays a crucial role in shaping ORB rainfall
patterns over extended periods [12,30,31].
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4. Discussion
Some past studies have initiated this work of identifying the factors that influence

rainfall in the ORB or larger areas, including the basin [13,29–31,44,83,84]. These studies
were carried out using different statistical approaches, ranging from simple correlations to
more complex techniques such as EOT and cross-wavelet analysis. This made it possible
to highlight links between ORB rainfall and SST variations in the oceans, and many other
factors. In the continuity, the present study uses the MCA to highlight the SST patterns in
the tropical oceans, which influence the rainfall variations in the ORB. Improving upon
previous studies, the use of MCA made it possible to determine the main modes of SST
variability in the three large tropical ocean basins, which strongly influence the variability
of most of the ORB. It should especially be noted that the first SST modes of the tropical
oceans, which were coupled to the rainfall patterns in the ORB through the MCA, present
squared covariance fractions that are close to 80%. This statistical metric is widely used in
the domain of coupled geophysical fields to provide the measurement of the variability
shared between two variables [60,85,86]. The tremendous values of the SCF guarantee
very strong co-variations in the determined coupled patterns and do not share them with
more than the 500 pairs of remaining patterns, explaining why the other modes are not
considered in this study.

Another very important metric for understanding the relationships between the pat-
terns obtained from the MCA is the correlation of the TECs associated with each mode [86].
It must be said that, even if the MCA makes it possible to highlight the dynamic modes
with the most shared variance over time, the direct correlation of the TECs associated with
each of the modes obtained is not guaranteed. In the application of MCA, TECs represent
the temporal dynamics of modes individually and are not necessarily the direct relationship
between them [42,86]. Thus, one often observes weak correlations or even decorrelations.
In the present case, the correlations obtained from the TECs were relatively weak, although
they are significant at the 95% confidence level as shown in Table 1. On the other hand, the
application of the Savitzky–Golay filter on the TECs, which made it possible to reduce the
high-frequency fluctuations of the latter, made more use of the shared co-variation while
significantly improving the correlations as shown in Table 1 [86,87]. This supports the
nonlinear relationships between the variations of the SST in the tropical oceans and rainfall
variations in the ORB highlighted in the literature, as found in previous studies [13,83].

Table 1. Correlations of TECs.

TECs Before Savitzky–Golay Filter After Savitzky–Golay Filter

Atlantic Ocean 0.4 0.65

Pacific Ocean 0.23 0.5

Indian Ocean 0.43 0.72

The use of time-dependent correlation analysis in this study has helped to highlight
all the co-variations shared by the main modes of SST variations in the tropical oceans and
those of rainfall in the ORB. Given the non-linearity of links highlighted with the MCA,
and to remove any ambiguity in the interpretation of the teleconnections determined in this
study, it was necessary to do better than the traditional correlation analysis which offers
a single value representing the overall strength and direction of the relationship studied.
Time-dependent correlation analysis is a technique that goes beyond this, offering a more
detailed overview of the relationships between the variables studied. The periodically
significant correlations shown in Figure 7 demonstrate the intermittent links between
rainfall in the ORB and SST variations in the tropical Pacific Ocean through ENSO, which
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is the main mode of SST variability in this area [13,83]. In contrast, the idea generally put
forward of a direct and permanent link between rainfall on the equatorial Atlantic coast of
Africa and the tropical Atlantic Ocean, notably through its SST, the correlation between the
AMM and ORB rainfall is intermittent, as can be seen in Figure 6, where the correlation is
only significant at certain periods and, even then, irregularly. Given the MCA result with
an SCF of 84% between tropical Atlantic and ORB rainfall, it is reasonable to assume that
the link between both variables is also intermittent as with ENSO [36,72].

Inversely, even with MCA resulting in an SCF of 77.5% and a TEC correlation of 0.72,
which indicates a strong link between tropical Indian Ocean SST variation and rainfall
in the ORB, the Indian Ocean SST pattern shown in Figure 5a does not display the east–
west contrast characteristic of the IDM [88]. This result is completely at odds with many
previous studies on rainfall in central equatorial Africa which often consider IDM as the
main mode of variability in the Indian Ocean and, above all, with a major influence on
rainfall variability in equatorial Africa up to the western Atlantic coast [7,12,34,51,52,89].
Time-dependent correction analysis shows in Figure 8 that there is a clear link between
rainfall in the ORB and IDM; although, as with the tropical basins of the Atlantic and
Pacific Oceans, this link is only valid during specific periods. On the other hand, the
periodically significant correlations demonstrate the non-linear nature of the links found
above and go some way to justify the low correlations obtained from the TECs without the
Savitzky–Golay filter, as shown in Table 1 and previously in [13,83].

The ORB rainfall regime is shaped by a complex interplay of climatic drivers, notably
including sea surface temperatures (SSTs) in the tropical oceans. These SSTs primarily exert
influence by modulating large-scale atmospheric circulation patterns, which subsequently
govern moisture transport and precipitation over the basin and surrounding areas [29,90,91].
While the Atlantic, Indian, and Pacific Oceans all contribute to the ORB’s rainfall dynamics,
their influences are distinct and multifaceted. These influences are further modulated by
larger-scale climate systems, such as ENSO in the Pacific, IOD in the Indian, and AMM in
the Atlantic. The interconnected nature of these systems means their fluctuations can either
constructively interfere (amplifying rainfall variations) or destructively interfere (mitigating
them), depending on the phase of each oscillation [91,92]. Despite the differing physical
characteristics of each ocean basin, they can drive similar atmospheric responses through
teleconnections. SST anomalies in one basin can trigger changes in global atmospheric
circulation, with downstream effects impacting multiple regions, including the ORB. For
example, Pacific Ocean SST anomalies associated with ENSO can influence the position and
intensity of the Intertropical Convergence Zone (ITCZ), a key driver of seasonal rainfall
in Central Africa, including the ORB [93]. Furthermore, Indian Ocean SST anomalies
can influence the strength of the African Easterly Jet, affecting moisture transport from
the Indian Ocean. Similarly, the AMM in the Atlantic can influence the strength of the
West African Monsoon, which also affects the ORB’s rainfall [90,94]. Disentangling these
complex interactions and quantifying the relative contributions of each ocean basin remains
a significant challenge in understanding ORB rainfall variability.

5. Conclusions
This study investigated teleconnections between SSTs in the three major tropical ocean

basins (Pacific, Atlantic, and Indian) and rainfall in the ORB using MCA. MCA revealed
three coupled patterns between SSTs and ORB rainfall, exhibiting strong teleconnections
evidenced by substantial SCFs of 76.5%, 77.5%, and 84% (all near 80%). Applying a
Savitzky–Golay filter to the time series enhanced the clarity of these relationships, revealing
strong correlations between the TECs of the identified coupled patterns. These correlations,
with values exceeding 0.5 (0.5 for the Pacific, 0.7 for the Atlantic, and 0.73 for the Indian
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Ocean), are particularly noteworthy given the complex and often non-linear nature of
teleconnections.

While MCA effectively highlighted coupled patterns and strong correlations, its in-
herent limitations should be acknowledged. MCA is a linear technique and, as such, may
not fully capture the potentially non-linear dynamics of the teleconnections between SSTs
and ORB rainfall. Furthermore, while the time-dependent correlation analysis provided
additional support for these connections, particularly highlighting the influence of the
AMM, ENSO, and the IDM, the MCA failed to adequately represent the IDM itself. Al-
though time-dependent analysis suggests a periodic influence of the IDM on ORB rainfall,
the linear nature of MCA may have limited its ability to resolve this complex relationship.
Additionally, this study focused on identifying coupled patterns but did not quantify
the relative contribution of each ocean basin to ORB rainfall variability. Future research
employing more sophisticated methodologies, such as non-linear techniques, and poten-
tially incorporating other relevant climate variables, could address this gap and provide
a more comprehensive understanding of the complex interplay between tropical ocean
SSTs and ORB rainfall. Despite these limitations, this study provides valuable insights
into the teleconnection patterns influencing ORB rainfall and lays a foundation for further
investigation.
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AMOC Atlantic Meridional Overturning Circulation
ENSO El Nino Southern Oscillation
EOF Empirical Orthogonal Function
EOT Empirical Orthogonal Teleconnection
IDM Indian Dipole Mode
IOD Indian Ocean Dipole
MCA Maximum Covariance Analysis
MSWEP Multi-Source Weighted-Ensemble Precipitation
ORB Ogooué River Basin
PC Principal component
PCA Principal Component Analysis
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SCF Squared Covariance Fraction
SST Sea Surface Temperature
SVD Singular Value Decomposition
TEC Time Expansion Coefficient

References
1. Lau, K.-M.; Lim, H. On the Dynamics of Equatorial Forcing of Climate Teleconnections. J. Atmos. Sci. 1984, 41, 161–176. [CrossRef]
2. Burnett, A. Teleconnections. In Encyclopedia of World Climatology; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005;

pp. 707–711, ISBN 9781402032660.
3. An, S.-I.; Wang, C.; Mechoso, C.R. Teleconnections in the Atmosphere. In Interacting Climates of Ocean Basins: Observations,

Mechanisms, Predictability, and Impacts; Cambridge University Press: Cambridge, UK, 2020; pp. 54–88.
4. Van den Dool, H.M.; Saha, S.; Johansson, Å. Empirical Orthogonal Teleconnections. J. Clim. 2000, 13, 1421–1435. [CrossRef]
5. Amirudin, A.A.; Salimun, E.; Tangang, F.; Juneng, L.; Zuhairi, M. Differential Influences of Teleconnections from the Indian and

Pacific Oceans on Rainfall Variability in Southeast Asia. Atmosphere 2020, 11, 886. [CrossRef]
6. Eabry, M.D.; Taschetto, A.S.; Maharaj, A.M.; Sen Gupta, A. What Determines the Lagged ENSO Response in the South-west

Indian Ocean? Geophys. Res. Lett. 2021, 48, e2020GL091958. [CrossRef]
7. Farnsworth, A.; White, E.; Williams, C.J.R.; Black, E.; Kniveton, D.R. Understanding the Large Scale Driving Mechanisms of

Rainfall Variability over Central Africa. In African Climate and Climate Change: Physical, Social and Political Perspectives; Williams,
C.J.R., Kniveton, D.R., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 101–122, ISBN 9789048138425.

8. Adarsh, S.; Janga Reddy, M. Links Between Global Climate Teleconnections and Indian Monsoon Rainfall. In Climate Change
Signals and Response: A Strategic Knowledge Compendium for India; Venkataraman, C., Mishra, T., Ghosh, S., Karmakar, S., Eds.;
Springer: Singapore, 2019; pp. 61–72, ISBN 9789811302800.

9. Cardil, A.; Rodrigues, M.; Tapia, M.; Barbero, R.; Ramírez, J.; Stoof, C.R.; Silva, C.A.; Mohan, M.; de-Miguel, S. Climate
Teleconnections Modulate Global Burned Area. Nat. Commun. 2023, 14, 427. [CrossRef]

10. Alizadeh, O. A Review of ENSO Teleconnections at Present and under Future Global Warming. Wiley Interdiscip. Rev. Clim.
Change 2024, 15, e861. [CrossRef]

11. Beniche, M.; Vialard, J.; Lengaigne, M.; Voldoire, A.; Srinivas, G.; Hall, N.M.J. A Distinct and Reproducible Teleconnection Pattern
over North America during Extreme El Niño Events. Sci. Rep. 2024, 14, 2457. [CrossRef]

12. Jiang, Y.; Zhou, L.; Roundy, P.E.; Hua, W.; Raghavendra, A. Increasing Influence of Indian Ocean Dipole on Precipitation over
Central Equatorial Africa. Geophys. Res. Lett. 2021, 48, e2020GL092370. [CrossRef]

13. Bogning, S.; Frappart, F.; Mahé, G.; Paris, A.; Onguene, R.; Blarel, F.; Niño, F.; Etame, J.; Braun, J.-J. Investigating Links between
Rainfall Variations in the Ogooué River Basin and ENSO in the Pacific Ocean over the Period 1940–1999. Proc. Int. Assoc. Hydrol.
Sci. 2021, 384, 181–186. [CrossRef]

14. Silva, F.N.; Vega-Oliveros, D.A.; Yan, X.; Flammini, A.; Menczer, F.; Radicchi, F.; Kravitz, B.; Fortunato, S. Detecting Climate
Teleconnections with Granger Causality. Geophys. Res. Lett. 2021, 48, e2021GL094707. [CrossRef]

15. Döös, K.; Kjellsson, J.; Zika, J.; Laliberté, F.; Brodeau, L.; Campino, A.A. The Coupled Ocean–Atmosphere Hydrothermohaline
Circulation. J. Clim. 2017, 30, 631–647. [CrossRef]

16. Trenberth, K.E. Poleward Heat Transports by the Atmosphere and Ocean. In The Changing Flow of Energy Through the Climate
System; Cambridge University Press: Cambridge, UK, 2022; pp. 121–139.

17. Tsonis, A.A.; Swanson, K.L.; Wang, G. On the Role of Atmospheric Teleconnections in Climate. J. Clim. 2008, 21, 2990–3001.
[CrossRef]

18. Bonner, S.J.; Newlands, N.K.; Heckman, N.E. Modeling Regional Impacts of Climate Teleconnections Using Functional Data
Analysis. Environ. Ecol. Stat. 2014, 21, 1–26. [CrossRef]

19. Liu, T.; Chen, D.; Yang, L.; Meng, J.; Wang, Z.; Ludescher, J.; Fan, J.; Yang, S.; Chen, D.; Kurths, J.; et al. Teleconnections among
Tipping Elements in the Earth System. Nat. Clim. Change 2023, 13, 67–74. [CrossRef]

20. Rezaei, A.; Karami, K.; Tilmes, S.; Moore, J.C. Changes in Global Teleconnection Patterns under Global Warming and Stratospheric
Aerosol Intervention Scenarios. Atmos. Chem. Phys. 2023, 23, 5835–5850. [CrossRef]

21. Hausfather, Z.; Marvel, K.; Schmidt, G.A.; Nielsen-Gammon, J.W.; Zelinka, M. Climate Simulations: Recognize the “Hot Model”
Problem. Nature 2022, 605, 26–29. [CrossRef]

22. Schmidt, G. Climate Models Can’t Explain 2023’s Huge Heat Anomaly—We Could Be in Uncharted Territory. Nature 2024, 627,
467. [CrossRef]

23. Gutiérrez, O.; Panario, D.; Nagy, G.J.; Bidegain, M.; Montes, C. Climate Teleconnections and Indicators of Coastal Systems
Response. Ocean Coast. Manag. 2016, 122, 64–76. [CrossRef]

24. Steptoe, H.; Jones, S.E.O.; Fox, H. Correlations between Extreme Atmospheric Hazards and Global Teleconnections: Implications
for Multihazard Resilience. Rev. Geophys. 2018, 56, 50–78. [CrossRef]

https://doi.org/10.1175/1520-0469(1984)041%3C0161:OTDOEF%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013%3C1421:EOT%3E2.0.CO;2
https://doi.org/10.3390/atmos11090886
https://doi.org/10.1029/2020GL091958
https://doi.org/10.1038/s41467-023-36052-8
https://doi.org/10.1002/wcc.861
https://doi.org/10.1038/s41598-024-52580-9
https://doi.org/10.1029/2020GL092370
https://doi.org/10.5194/piahs-384-181-2021
https://doi.org/10.1029/2021GL094707
https://doi.org/10.1175/JCLI-D-15-0759.1
https://doi.org/10.1175/2007JCLI1907.1
https://doi.org/10.1007/s10651-013-0241-8
https://doi.org/10.1038/s41558-022-01558-4
https://doi.org/10.5194/acp-23-5835-2023
https://doi.org/10.1038/d41586-022-01192-2
https://doi.org/10.1038/d41586-024-00816-z
https://doi.org/10.1016/j.ocecoaman.2016.01.009
https://doi.org/10.1002/2017RG000567


Water 2025, 17, 753 17 of 19

25. Abtew, W.; Melesse, A.M. Climate Teleconnections and Water Management. In Nile River Basin: Ecohydrological Challenges, Climate
Change and Hydropolitics; Melesse, A.M., Abtew, W., Setegn, S.G., Eds.; Springer International Publishing: Cham, Switzerland,
2014; pp. 685–705, ISBN 9783319027203.

26. Craig, P.M.; Allan, R.P. The Role of Teleconnection Patterns in the Variability and Trends of Growing Season Indices across Europe.
Int. J. Climatol. 2022, 42, 1072–1091. [CrossRef]

27. Alsdorf, D.; Beighley, E.; Laraque, A.; Lee, H.; Tshimanga, R.; O’Loughlin, F.; Mahé, G.; Dinga, B.; Moukandi, G.; Spencer, R.G.M.
Opportunities for Hydrologic Research in the Congo Basin. Rev. Geophys. 2016, 54, 378–409. [CrossRef]

28. Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall over the African Continent from the 19th through the 21st Century. Glob. Planet.
Change 2018, 165, 114–127. [CrossRef]

29. Balas, N.; Nicholson, S.E.; Klotter, D. The Relationship of Rainfall Variability in West Central Africa to Sea-Surface Temperature
Fluctuations. Int. J. Climatol. 2007, 27, 1335–1349. [CrossRef]

30. Dezfuli, A.K.; Nicholson, S.E. The Relationship of Rainfall Variability in Western Equatorial Africa to the Tropical Oceans and
Atmospheric Circulation. Part II: The Boreal Autumn. J. Clim. 2013, 26, 66–84. [CrossRef]

31. Nicholson, S.E.; Dezfuli, A.K. The Relationship of Rainfall Variability in Western Equatorial Africa to the Tropical Oceans and
Atmospheric Circulation. Part I: The Boreal Spring. J. Clim. 2013, 26, 45–65. [CrossRef]

32. Longandjo, G.-N.; Rouault, M. Revisiting the Seasonal Cycle of Rainfall over Central Africa. J. Clim. 2024, 37, 1015–1032.
[CrossRef]

33. Balas, N. Climatic Variability in Central Africa and Its Link to Sea Surface Temperature and the El Nino/la Nina. 2003. Available
online: https://repository.lib.fsu.edu/islandora/object/fsu:169208 (accessed on 27 February 2025).

34. Moihamette, F.; Pokam, W.M.; Diallo, I.; Washington, R. Extreme Indian Ocean Dipole and Rainfall Variability over Central Africa.
Int. J. Climatol. 2022, 42, 5255–5272. [CrossRef]

35. Moihamette, F.; Pokam, W.M.; Diallo, I.; Washington, R. Response of Regional Circulation Features to the Indian Ocean Dipole
and Influence on Central Africa Climate. Clim. Dyn. 2024, 62, 1–21. [CrossRef]

36. Lüdecke, H.-J.; Müller-Plath, G.; Wallace, M.G.; Lüning, S. Decadal and Multidecadal Natural Variability of African Rainfall. J.
Hydrol. Reg. Stud. 2021, 34, 100795. [CrossRef]

37. Ebodé, V.B. Analysis of the Spatio-Temporal Rainfall Variability in Cameroon over the Period 1950 to 2019. Atmosphere 2022, 13,
1769. [CrossRef]

38. Wamba Tchinda, C.; Tchakoutio Sandjon, A.; Djiotang Tchotchou, A.L.; Nzeudeu Siwe, A.; Vondou, D.A.; Nzeukou, A. The
Influence of Intraseasonal Oscillations on Rainfall Variability over Central Africa: Case of the 25–70 Days Variability. Sci. Rep.
2023, 13, 19842. [CrossRef] [PubMed]

39. Raghavendra, A.; Xia, G.; Zhou, L.; Jiang, Y. Orographic Enhancement of Rainfall over the Congo Basin. Atmos. Sci. Lett. 2022, 23,
e1079. [CrossRef]

40. Wallace, J.M.; Smith, C.; Bretherton, C.S. Singular Value Decomposition of Wintertime Sea Surface Temperature and 500-Mb
Height Anomalies. J. Clim. 1992, 5, 561–576. [CrossRef]

41. Cherry, S. Singular Value Decomposition Analysis and Canonical Correlation Analysis. J. Clim. 1996, 9, 2003–2009. [CrossRef]
42. Cherry, S. Some Comments on Singular Value Decomposition Analysis. J. Clim. 1997, 10, 1759–1761. [CrossRef]
43. Mignard, S.L.-A.; Mulder, T.; Martinez, P.; Charlier, K.; Rossignol, L.; Garlan, T. Deep-Sea Terrigenous Organic Carbon Transfer

and Accumulation: Impact of Sea-Level Variations and Sedimentation Processes off the Ogooue River (Gabon). Mar. Pet. Geol.
2017, 85, 35–53. [CrossRef]

44. Mahé, G.; Lerique, J.; Olivry, J.-C. Le Fleuve Ogooué au Gabon: Reconstitution des Débits Manquants et Mise en Évidence de
Variations Climatiques à L’Équateur. 1990. Available online: https://agris.fao.org/search/en/providers/122415/records/647368
a92c1d629bc9805563 (accessed on 27 February 2025).

45. Bogning, S.; Frappart, F.; Mahé, G.; Niño, F.; Paris, A.; Sihon, J.; Ghomsi, F.; Blarel, F.; Bricquet, J.-P.; Onguene, R.; et al. Long-term
Hydrological Variations of the Ogooué River Basin. In Congo Basin Hydrology, Climate, and Biogeochemistry; Wiley: Hoboken, NJ,
USA, 2022; pp. 367–389.

46. Bedigian, D. Gamba, Gabon: Biodiversité D’une Forêt équatoriale Africane [Gamba, Gamboa: Biodiversity of an Equatorial
African Rainforest. Econ. Bot. 2007, 61, 104.

47. Nieto-Quintano, P.; Mitchard, E.T.A.; Odende, R.; Batsa Mouwembe, M.A.; Rayden, T.; Ryan, C.M. The Mesic Savannas of the
Bateke Plateau: Carbon Stocks and Floristic Composition. Biotropica 2018, 50, 868–880. [CrossRef]

48. Martin, D.; Chatelin, Y.; Collinet, J.; Guichard, E.; Sala, G.-H.; Le Rouget, G. Les Sols du Gabon: Pédogenèse, Répartition et Aptitudes:
Cartes à 1:2.000.000; ORSTOM: Paris, France, 1981; ISBN 9782709906142.

49. Kittel, C.M.M.; Nielsen, K.; Tøttrup, C.; Bauer-Gottwein, P. Informing a Hydrological Model of the Ogooué with Multi-Mission
Remote Sensing Data. Hydrol. Earth Syst. Sci. 2018, 22, 1453–1472. [CrossRef]

50. Giresse, P. Esquisse Géologique de l’Afrique Centrale Occidentale. In Paysages Quaternaires de l’Afrique Centrale Occidentale;
ORSTOM: Paris, France, 1990; pp. 15–19, ISBN 9782709910224.

https://doi.org/10.1002/joc.7290
https://doi.org/10.1002/2016RG000517
https://doi.org/10.1016/j.gloplacha.2017.12.014
https://doi.org/10.1002/joc.1456
https://doi.org/10.1175/JCLI-D-11-00686.1
https://doi.org/10.1175/JCLI-D-11-00653.1
https://doi.org/10.1175/JCLI-D-23-0281.1
https://repository.lib.fsu.edu/islandora/object/fsu:169208
https://doi.org/10.1002/joc.7531
https://doi.org/10.1007/s00382-024-07251-w
https://doi.org/10.1016/j.ejrh.2021.100795
https://doi.org/10.3390/atmos13111769
https://doi.org/10.1038/s41598-023-46346-y
https://www.ncbi.nlm.nih.gov/pubmed/37963963
https://doi.org/10.1002/asl.1079
https://doi.org/10.1175/1520-0442(1992)005%3C0561:SVDOWS%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009%3C2003:SVDAAC%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010%3C1759:SCOSVD%3E2.0.CO;2
https://doi.org/10.1016/j.marpetgeo.2017.04.009
https://agris.fao.org/search/en/providers/122415/records/647368a92c1d629bc9805563
https://agris.fao.org/search/en/providers/122415/records/647368a92c1d629bc9805563
https://doi.org/10.1111/btp.12606
https://doi.org/10.5194/hess-22-1453-2018


Water 2025, 17, 753 18 of 19

51. Hua, W.; Zhou, L.; Chen, H.; Nicholson, S.E.; Raghavendra, A.; Jiang, Y. Possible Causes of the Central Equatorial African
Long-Term Drought. Environ. Res. Lett. 2016, 11, 124002. [CrossRef]

52. Diem, J.E.; Salerno, J.D.; Palace, M.W.; Bailey, K.; Hartter, J. Teleconnections between Rainfall in Equatorial Africa and Tropical
Sea Surface Temperatures: A Focus on Western Uganda. J. Appl. Meteorol. Climatol. 2021, 60, 967–979. [CrossRef]

53. Swain, S.; Patel, P.; Nandi, S. Application of SPI, EDI and PNPI Using MSWEP Precipitation Data over Marathwada, India. In
Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28
July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5505–5507.

54. Satgé, F.; Defrance, D.; Sultan, B.; Bonnet, M.-P.; Seyler, F.; Rouché, N.; Pierron, F.; Paturel, J.-E. Evaluation of 23 Gridded
Precipitation Datasets across West Africa. J. Hydrol. 2020, 581, 124412. [CrossRef]

55. Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-Hourly 0.25◦ Global
Gridded Precipitation (1979–2015) by Merging Gauge, Satellite, and Reanalysis Data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615.
[CrossRef]

56. Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.I.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly
0.1 Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [CrossRef]

57. Aniley, E.; Gashaw, T.; Abraham, T.; Demessie, S.F.; Bayabil, H.K.; Worqlul, A.W.; van Oel, P.R.; Dile, Y.T.; Chukalla, A.D.;
Haileslassie, A.; et al. Evaluating the Performances of Gridded Satellite/reanalysis Products in Representing the Rainfall
Climatology of Ethiopia. Geocarto Int. 2023, 38, 2278329. [CrossRef]

58. Praveen Kumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J. TropFlux: Air-Sea Fluxes for the Global Tropical
Oceans—Description and Evaluation. Clim. Dyn. 2012, 38, 1521–1543. [CrossRef]

59. Frankignoul, C.; Chouaib, N.; Liu, Z. Estimating the Observed Atmospheric Response to SST Anomalies: Maximum Covariance
Analysis, Generalized Equilibrium Feedback Assessment, and Maximum Response Estimation. J. Clim. 2011, 24, 2523–2539.
[CrossRef]

60. Barreto, N.J.C.; Mesquita, M.d.S.; Mendes, D.; Spyrides, M.H.C.; Pedra, G.U.; Lucio, P.S. Maximum Covariance Analysis to
Identify Intraseasonal Oscillations over Tropical Brazil. Clim. Dyn. 2017, 49, 1583–1596. [CrossRef]

61. Bretherton, C.S.; Smith, C.; Wallace, J.M. An Intercomparison of Methods for Finding Coupled Patterns in Climate Data. J. Clim.
1992, 5, 541–560. [CrossRef]

62. Levine, R.C.; Turner, A.G.; Marathayil, D.; Martin, G.M. The Role of Northern Arabian Sea Surface Temperature Biases in CMIP5
Model Simulations and Future Projections of Indian Summer Monsoon Rainfall. Clim. Dyn. 2013, 41, 155–172. [CrossRef]

63. Polanco-Martínez, J.M.; López-Martínez, J.L. NonParRolCor: An R Package for Estimating Rolling Correlation for Two Regular
Time Series. SoftwareX 2023, 22, 101353. [CrossRef]

64. McMillan, D.G. The Time-Varying Relation between Stock Returns and Monetary Variables. J. Risk Financ. Manag. 2021, 15, 9.
[CrossRef]

65. Litzow, M.A.; Ciannelli, L.; Puerta, P.; Wettstein, J.J.; Rykaczewski, R.R.; Opiekun, M. Nonstationary Environmental and
Community Relationships in the North Pacific Ocean. Ecology 2019, 100, e02760. [CrossRef] [PubMed]

66. Rahman, M.; Islam, M.; Wernicke, J.; Bräuning, A. Changes in Sensitivity of Tree-Ring Widths to Climate in a Tropical Moist
Forest Tree in Bangladesh. Forests 2018, 9, 761. [CrossRef]

67. Salem, N.; Hussein, S. Data Dimensional Reduction and Principal Components Analysis. Procedia Comput. Sci. 2019, 163, 292–299.
[CrossRef]

68. Singh, C.V. Pattern Characteristics of Indian Monsoon Rainfall Using Principal Component Analysis (PCA). Atmos. Res. 2006, 79,
317–326. [CrossRef]

69. Cerón, W.L.; Molina-Carpio, J.; Ayes Rivera, I.; Andreoli, R.V.; Kayano, M.T.; Canchala, T. A Principal Component Analysis
Approach to Assess CHIRPS Precipitation Dataset for the Study of Climate Variability of the La Plata Basin, Southern South
America. Nat. Hazards 2020, 103, 767–783. [CrossRef]

70. Lienou, G.; Mahe, G.; Paturel, J.E.; Servat, E.; Sighomnou, D.; Ekodeck, G.E.; Dezetter, A.; Dieulin, C. Evolution Des Régimes
Hydrologiques En Région équatoriale Camerounaise: Un Impact de La Variabilité Climatique En Afrique équatoriale? Hydrol. Sci.
J. 2008, 53, 789–801. [CrossRef]

71. Lübbecke, J.F.; Böning, C.W.; Keenlyside, N.S.; Xie, S.-P. On the Connection between Benguela and Equatorial Atlantic Niños and
the Role of the South Atlantic Anticyclone. J. Geophys. Res. 2010, 115, 2293. [CrossRef]

72. Lutz, K.; Rathmann, J.; Jacobeit, J. Classification of Warm and Cold Water Events in the Eastern Tropical Atlantic Ocean. Atmos.
Sci. Lett. 2013, 14, 102–106. [CrossRef]

73. Lübbecke, J.F.; McPhaden, M.J. Symmetry of the Atlantic Niño Mode. Geophys. Res. Lett. 2017, 44, 965–973. [CrossRef]
74. Xia, F.; Zuo, J.; Sun, C.; Liu, A. The Atlantic Meridional Mode and Associated Wind–SST Relationship in the CMIP6 Models.

Atmosphere 2023, 14, 359. [CrossRef]
75. Hari, V.; Rakovec, O.; Zhang, W.; Koppa, A.; Collins, M.; Kumar, R. On the Role of the Atlantic Meridional Mode in Eastern

European Temperature Variability. Atmos. Res. 2024, 297, 107082. [CrossRef]

https://doi.org/10.1088/1748-9326/11/12/124002
https://doi.org/10.1175/JAMC-D-21-0057.1
https://doi.org/10.1016/j.jhydrol.2019.124412
https://doi.org/10.5194/hess-21-589-2017
https://doi.org/10.1175/BAMS-D-17-0138.1
https://doi.org/10.1080/10106049.2023.2278329
https://doi.org/10.1007/s00382-011-1115-0
https://doi.org/10.1175/2010JCLI3696.1
https://doi.org/10.1007/s00382-016-3401-3
https://doi.org/10.1175/1520-0442(1992)005%3C0541:AIOMFF%3E2.0.CO;2
https://doi.org/10.1007/s00382-012-1656-x
https://doi.org/10.1016/j.softx.2023.101353
https://doi.org/10.3390/jrfm15010009
https://doi.org/10.1002/ecy.2760
https://www.ncbi.nlm.nih.gov/pubmed/31127608
https://doi.org/10.3390/f9120761
https://doi.org/10.1016/j.procs.2019.12.111
https://doi.org/10.1016/j.atmosres.2005.05.006
https://doi.org/10.1007/s11069-020-04011-x
https://doi.org/10.1623/hysj.53.4.789
https://doi.org/10.1029/2009JC005964
https://doi.org/10.1002/asl2.424
https://doi.org/10.1002/2016GL071829
https://doi.org/10.3390/atmos14020359
https://doi.org/10.1016/j.atmosres.2023.107082


Water 2025, 17, 753 19 of 19

76. Zhang, Q.; Chang, P.; Fu, D.; Yeager, S.G.; Danabasoglu, G.; Castruccio, F.; Rosenbloom, N. Enhanced Atlantic Meridional Mode
Predictability in a High-Resolution Prediction System. Sci. Adv. 2024, 10, eado6298. [CrossRef]

77. Baba, K.; Bahi, L.; Ouadif, L. Enhancing Geophysical Signals Through the Use of Savitzky-Golay Filtering Method. Geofísica Int.
2014, 53, 399–409. [CrossRef]

78. Liu, Y.; Dang, B.; Li, Y.; Lin, H.; Ma, H. Applications of Savitzky-Golay Filter for Seismic Random Noise Reduction. Acta Geophys.
2016, 64, 101–124. [CrossRef]

79. Roy, I.G. An Optimal Savitzky–Golay Derivative Filter with Geophysical Applications: An Example of Self-potential Data.
Geophys. Prospect. 2020, 68, 1041–1056. [CrossRef]

80. An, S.-I.; Wang, B. Mechanisms of Locking of the El Niño and La Niña Mature Phases to Boreal Winter. J. Clim. 2001, 14, 2164–2176.
[CrossRef]

81. Santoso, A.; Mcphaden, M.J.; Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev.
Geophys. 2017, 55, 1079–1129. [CrossRef]

82. Jiang, S.; Zhu, C.; Jiang, N. Impacts of the Annual Cycle of Background SST in the Tropical Pacific on the Phase and Amplitude of
ENSO. Atmos. Ocean. Sci. Lett. 2025, 18, 100496. [CrossRef]

83. Bogning, S.; Frappart, F.; Paris, A.; Blarel, F.; Niño, F. Hydro-Climatology Study of the Ogooué River Basin Using Hydrological
Modeling and Satellite Altimetry. Adv. Space Res. 2021, 68, 672–690. [CrossRef]

84. Maloba Makanga, J.D. Variabilité Pluviométrique de La Petite Saison Sèche Au Gabon. In Proceedings of the XXVIIIe Colloque
de l’Association Internationale de Climatologie, Liège, Belgium, 1–4 July 2015; Université de Liège: Liège, Belgium, 2015; p. 6.

85. An, S.-I. Conditional Maximum Covariance Analysis and Its Application to the Tropical Indian Ocean SST and Surface Wind
Stress Anomalies. J. Clim. 2003, 16, 2932–2938. [CrossRef]

86. Riaz, S.M.F.; Iqbal, M.J.; Baig, M.J. Influence of Siberian High on Temperature Variability over Northern Areas of South Asia.
Meteorol. Atmos. Phys. 2018, 130, 441–457. [CrossRef]

87. Joetzjer, E.; Douville, H.; Delire, C.; Ciais, P. Present-Day and Future Amazonian Precipitation in Global Climate Models: CMIP5
versus CMIP3. Clim. Dyn. 2013, 41, 2921–2936. [CrossRef]

88. Koesuma, S.; Andriani, R.D.; Legowo, B. Analyzing of the Indian Ocean Dipole (IOD) Phenomena in Relation to Climate Change
in Indonesia: A Review. J. Phys. Conf. Ser. 2021, 1918, 022030. [CrossRef]

89. Jarugula, S.; McPhaden, M.J. Indian Ocean Dipole Affects Eastern Tropical Atlantic Salinity through Congo River Basin Hydrology.
Commun. Earth Environ. 2023, 4, 366. [CrossRef]

90. Izumo, T.; Vialard, J.; Lengaigne, M.; Suresh, I. Relevance of Relative Sea Surface Temperature for Tropical Rainfall Interannual
Variability. Geophys. Res. Lett. 2020, 47, e2019GL086182. [CrossRef]

91. Stuecker, M.F. The Climate Variability Trio: Stochastic Fluctuations, El Niño, and the Seasonal Cycle. Geosci. Lett. 2023, 10, 51.
[CrossRef]

92. Pothapakula, P.K.; Primo, C.; Sørland, S.; Ahrens, B. The Synergistic Impact of ENSO and IOD on the Indian Summer Monsoon
Rainfall in Observations and Climate Simulations—An Information Theory Perspective. Earth Syst. Dyn. Discuss. 2020, 11,
903–923. [CrossRef]

93. Crespo, L.R.; Keenlyside, N.; Koseki, S. The Role of Sea Surface Temperature in the Atmospheric Seasonal Cycle of the Equatorial
Atlantic. Clim. Dyn. 2019, 52, 5927–5946. [CrossRef]

94. Zhang, G.; Chen, J.; Fan, H.; Zhang, L.; Chen, M.; Wang, X.; Wang, D. Unveiling the Role of South Tropical Atlantic in Winter
Atlantic Niño Inducing La Niña. Nat. Commun. 2025, 16, 1612. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1126/sciadv.ado6298
https://doi.org/10.1016/S0016-7169(14)70074-1
https://doi.org/10.1515/acgeo-2015-0062
https://doi.org/10.1111/1365-2478.12892
https://doi.org/10.1175/1520-0442(2001)014%3C2164:MOLOTE%3E2.0.CO;2
https://doi.org/10.1002/2017RG000560
https://doi.org/10.1016/j.aosl.2024.100496
https://doi.org/10.1016/j.asr.2020.03.045
https://doi.org/10.1175/1520-0442(2003)016%3C2932:CMCAAI%3E2.0.CO;2
https://doi.org/10.1007/s00703-017-0531-z
https://doi.org/10.1007/s00382-012-1644-1
https://doi.org/10.1088/1742-6596/1918/2/022030
https://doi.org/10.1038/s43247-023-01027-6
https://doi.org/10.1029/2019GL086182
https://doi.org/10.1186/s40562-023-00305-7
https://doi.org/10.5194/esd-11-903-2020
https://doi.org/10.1007/s00382-018-4489-4
https://doi.org/10.1038/s41467-025-56874-y

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sets 
	Rainfall Data 
	Sea Surface Temperature Data 

	Methods 
	Maximum Covariance Analysis 
	Savitzky–Golay Filter 
	Moving Correlation 


	Results 
	Rainfall Variability in the ORB 
	Coupled SST-Rainfall Patterns 
	Relationships Between Rainfall in the ORB and SST in Tropical Oceans 

	Discussion 
	Conclusions 
	References

