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Abstract

Since 1976 various species of Ebolavirus have caused a series of zoonotic outbreaks and
public health crises in Africa. Bats have long been hypothesised to function as important
hosts for ebolavirus maintenance, however the transmission ecology for these viruses
remains poorly understood. Several studies have demonstrated rapid seroconversion for
ebolavirus antibodies in young bats, yet paradoxically few PCR studies have confirmed the
identity of the circulating viral species causing these seroconversions. The current study
presents an age-structured epidemiological model that characterises the effects of sea-
sonal birth pulses on ebolavirus transmission within a colony of African straw-coloured
fruit bats (Eidolon helvum). Bayesian calibration is performed using previously published
serological data collected from Cameroon, and age-structure data from Ghana. The model
predicts that annual birth pulses most likely give rise to annual outbreaks, although more
complex dynamic patterns - including skip years, multi-annual cycles and chaos - may be
possible. Weeks 30 to 31 of each year were estimated to be the most likely period for
isolating the circulating virus in Cameroon. The probability that a previous PCR campaign
failed to detect Ebola virus, assuming that it was circulating, was estimated to be one in
two thousand. This raises questions such as (1) what can we actually learn from ebolavirus
serology tests performed without positive controls? (2) are current PCR tests sufficiently
sensitive? (3) are swab samples really appropriate for ebolavirus detection? The current
results provide important insights for the design of future field studies aiming to detect
Ebola viruses from sylvatic hosts, and can contribute to risk assessments concerning the
timing of zoonotic outbreaks.
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Introduction

Bats have been implicated as reservoir hosts to numerous viruses of zoonotic or animal health
importance, including: Hendra virus, Marburg virus, Middle East respiratory coronavirus (MERS-
CoV), Nipah virus, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 and
Swine acute diarrhoea syndrome corona-virus (Letko et al., 2020). This list of bat-borne emerg-
ing viruses is thought to also include filoviruses of the Ebolavirus genus (Caron et al., 2018; Feld-
mann et al., 2020; Leroy et al., 2005). Indeed, the filovirus-like VP35 gene is estimated to have
been maintained in bat genomes for 13.4 million years (Taylor et al., 2011), which provides evo-
lutionary support for the long-term exposure of bats to filoviruses. However, despite numerous
outbreaks of Ebola in equatorial Africa since 1976 - where fatality rates typically fall in the
range of 40-70% (Jacob et al., 2020; Munster et al., 2018) - the hypotheses that (i) bats provide
sylvatic reservoirs for Ebola viruses, and (ii) that these reservoirs contribute to spillover events,
remain unconfirmed. Moreover, the eco-epidemiology of Ebola virus remains poorly understood,
and empirical evidence for bats functioning as primary maintenance reservoirs for Ebola viruses
remains non-conclusive (Olival and Hayman, 2014).

Serological data shows that some bat species express high seroprevalence for Ebola virus
(De Nys et al., 2018; Hayman et al., 2012b). But serology is hard to interpret in bats without
positive controls, and there is a paradoxal discrepancy between serological data and viral detec-
tion (Caron et al., 2018). Indeed, no Ebola virus has ever been isolated from bats, and only a
few individuals of three bat species have tested positive by polymerase chain reaction (PCR) for
Ebola virus (Leroy et al., 2005) - a result that remains to be replicated despite extensive sam-
pling. Recent longitudinal monitoring of a straw-colored fruit bat (Eidolon helvum) population in
Cameroon has shown extensive seroconversion of young (juvenile and sexually immature adult)
bats over a period of a few months, suggesting active Ebola virus circulation - however, no bat
tested positive for Ebola virus by PCR during that study (Djomsi et al., 2022). Another E. helvum
study in Guinea provided similar results, with seroprevalence decreasing over the first months
of life and increasing again in the first years of adult life, but again, no bats were found to be
PCR positive (Champagne et al., 2023).

Modelling is being increasingly used to help understand the interplay between ecological and
epidemiological dynamics in bats (Glennon et al., 2019; Hayman, 2015; Peel et al., 2018). Consid-
erable attention has been paid to the effects of seasonal birth pulses on the pool of susceptible
individuals and subsequent epidemiological consequences (Hranac et al., 2019; Peel et al., 2014).
For example, strong seasonal patterns in the prevalence of rabies in bats have been attributed to
epidemiological consequences of birth pulses (George et al., 2011), and the biannual birth pulses
of some Egyptian fruit bat populations are thought to increase the probability of pathogen main-
tenance (Hayman, 2015). Modelling has also indicated that maternally-derived antibodies can
contribute to viral maintenance (Hayman et al., 2018).

In order to explore the enigmatic discrepancy between Ebola serology and virology data, we
developed an age-structured epidemiological model that included seasonal birth pulses and wan-
ing immunity, and used Bayesian techniques to fit the model to longitudinal E. helvum serology
data from Cameroon (Djomsi et al., 2022). Our three main objectives were as follows. First, to
quantify uncertainty in the parameters and dynamics of the model given the seroprevalence
data of Djomsi et al. (2022). Second, to quantify the probability of not detecting any PCR posi-
tive bats given the sampling scheme of the Djomsi et al. (2022) study. Third, to identify whether
seasonal birthing patterns can help identify optimal time-windows for Ebola virus detection. This
modelling work has identified potentially important biological parameters that can help explain
the observed serology dynamics, and provides insights that can help improve the efficiency of
surveillance strategies for detecting Ebola virus in bats. In particular, these analyses provide in-
sights into practical questions concerning the establishment of adequate sampling efforts for
virus isolation, and raise questions concerning the meaning of positive serological samples from
bats.
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Material and methods

Study site and eco-epidemiological data

Our analyses were based primarily on data from a longitudinal serology survey at an E. helvum
colony in Yaounde, Cameroon (Djomsi et al., 2022). Although various antigens were used for
serological testing in that study, we exclusively used data from the Res1GP.ZEBVKkiss antigenic
test - a test based on the glycoprotein of Zaire Ebola virus. We selected this data-set because,
among all antigenic tests used, the Res1GP.ZEBVKkiss test generated the highest seropositive rate
and the strongest seasonal signal. This data provided information concerning seasonal variation
in the presence of four different age classes: pups (P) - young non-weaned bats that remain
attached to their mothers; juveniles (J) - weaned young, that do not yet display joint ossification;
immature adults (/) - large bats with ossified joints but without any sign of sexual maturity; and
adult bats (A). Pups were not sampled directly, however, lactating females provided a proxy for
their presence. A summary of this data is provided in table 1.

Table 1 - Summary of E. helvum serology and lactation data from Yaounde, Cameroon.
Negative and positive results for the Res1GP.ZEBVkiss antigenic test are shown for cap-
tured bats of three age classes. The number of captured adult female bats either lactating
or not lactating are also shown. Lactation was used as a proxy for inferring seasonality
in the presence of pups. A full description of this data is available in Djomsi et al. (2022).

Juvenile Immature Adult Female Adults

Date Neg Pos Neg Pos Neg Pos | Lactating Not Lactating
2018-12-07 0 0 2 0 10 8 0 8
2019-01-26 0 0 0 0 45 53 0 42
2019-03-03 0 0 0 0 10 7 1 7
2019-04-02 | 12 1 0 0O 50 24 46 9
2019-05-07 | 116 1 0 0O 21 10 20 6
2019-06-16 | 71 1 0 0 4 6 0 3
2019-07-17 | 13 4 67 10 27 11 0 16
2019-09-17 1 0 11 26 3 11 0 3
2019-10-15 0 0O 16 22 15 16 0 11
2019-11-15 0 0O 13 51 31 20 0 24

To help estimate adult mortality rates we used tooth cementum annuli data from 294 adult
bats sampled in Ghana (Peel et al., 2016). Thus, we assume that the age structures at the sampled
colonies in Ghana and Cameroon are equivalent.

Mechanistic model

A system of ordinary differential equations was developed to provide a deterministic char-
acterisation of Ebola transmission in an age-structured E. helvum population. This system is de-
picted graphically in figure 1 and algebraically in equations 1-19. A list of model parameters is
presented in table 2. Age structure in the model was defined using the same four age classes
recorded in the field (see above), namely: pups (P); juveniles (J); immature adults (/); and adult
bats (A). Five epidemiological classes were used: protected by maternal antibodies (M); suscep-
tible (S); infected (/); recovered (R); long-term immunity (L). For simplicity, it was assumed that
each year is exactly 52 weeks long, and weeks are used as our time unit throughout (unless
stated otherwise).

The epidemiological model assumes that susceptible individuals become infected via a den-
sity dependent infection process with homogeneous mixing. Recovered individuals are assumed
to transition to one of two classes - either they loose their immunity and return to being sus-
ceptible, or they enter a state of long-term immunity in which anti-bodies are not expressed
unless they become re-exposed to the virus. Such a long-term immunity class has proved useful
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in modelling other bat-virus systems (Brook et al., 2019), and was included to avoid incompati-
bility between (i) rapid seroconversion among immature adults (and some juveniles), with sero-
prevalence reaching 60-80% in immatures, and (ii) a global seroprevalence of just 43% among
all tested adults (figure 3). It was assumed that bats in the recovered and maternal antibody
classes would express sufficient quantities of antibodies to test seropositive, whereas bats in
all other epidemiological classes would test seronegative. We associated two parameters with
the long-term immunity class: pgro;, the proportion of all individuals leaving the recovered class
(i.e. loosing antibodies) that acquire long-term immunity, as opposed to loosing immunity and
becoming susceptible again; and p;»r, the proportion of exposures to the virus that reinitialise
anti-body production in bats with long-term immunity. Given a lack of evidence for vertical trans-
mission for the related Marburg virus in Egyptian fruit bats (Towner et al., 2009), we assumed
infectious females could only produce susceptible pups. We also assumed that the number of
adult bats still expressing maternal antibodies was negligible, and thus omitted that category to
reduce computation time.

bt)p
mp(t) my (1) my (1)
0 - ~ | Aduts
"y "y "y "a
b(t)p. l?}\‘
v b()p,(Sa I.“lm v v v \
Nspl, - Sl » [Sr|a > (S4l<

s s e Ve

Figure 1 - Schematic diagram of an age-structured MSIRL model used to analyse Ebola
serology dynamics in Eidolon helvum from Yaounde, Cameroon. The total population N is
divided into four age classes - pups (P), juveniles (J), immature adults (/) and adults (A)
- and five epidemiological classes - maternal anti-bodies (M), susceptible (S), infected
(), recovered (R) and long-term immunity (L). Maturation through the age classes is con-
trolled by a series of pulse functions (see annex 1), which lag behind a seasonal birth pulse.
Density dependant mortality rates, 11y and jz4, are specified for first-year and older indi-
viduals respectively. Anti-bodies are assumed detectable in individuals of the M and R
compartments and undetectable for all other compartments. It is assumed that all pups
from recovered mothers (p, Ra) start life with maternal antibodies (Mp), and all other pups
start life susceptible (Sp).

Seasonal demographic dynamics were controlled via four pulse functions, which restrain
when certain birth or maturation processes can or cannot occur. These functions are essentially
smoothed (i.e. continuous) step functions that toggle whether or not a given step in the life cy-
cle can be made at a given time. Each pulse function has three parameters: 1) the pulse start
time; 2) the pulse end time; 3) and the rate at which individuals mature, or give birth, during the
pulse. Nine of the twelve pulse function parameters were estimated as free parameters, whereas
the three maturation pulses were constrained to end two weeks prior to the start date of the
preceding pulse function of the following year (see table 2). This two week buffer ensured that
individuals joining a given age class could not immediately mature to the following age class. A
two week buffer size was chosen so that: 1) the buffer was large enough for overlap between
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the continuous pulse functions to be negligible; 2) each pulse function was wide enough so that
only a negligible number of individuals remained in the age class when the maturation rate re-
turned to zero. Further details of the pulse functions are provided in annex 1.

Table 2 - Parameters, priors and functions used for modelling the dynamics of Ebola virus
circulation in the Eidolon helvum population of Yaounde, Cameroon (see Fig.1). These are
presented in groups corresponding to: the four pulse functions; birth pulse parameters;
maturation pulse parameters; mortality parameters; initial populations; and epidemiolog-
ical parameters. The choice of priors is described in annex 2.

Parameter Description Prior, function or constant
b(t) Birth rate Pulse function
mp(t) Maturation rate, pups Pulse function
my(t) Maturation rate, juveniles Pulse function
m(t) Maturation rate, immature adults Pulse function
bstart Start of birth pulse Gamma(shape=5, scale=2)
dgirth Duration of birth pulse Gamma(shape=5, scale=1)
bstop End of birth pulse bstart + dBirth
PBirth Prop. females contributing to birth pulse Beta(171.5, 8.1)
Po Prop. females in population 0.5
mp Maximum pup maturation rate Gamma(shape=1, scale=-log(0.01)/8)
my Maximum juvenile maturation rate Gamma(shape=1, scale=-log(0.01)/8)
my Maximum immature maturation rate Gamma(shape=1, scale=-log(0.01)/8)
m,s}art Start of pup maturation pulse Uniform(0O, 104)
mSert Start of juvenile maturation pulse Uniform(0, 104)
mytart Start of immature maturation pulse Uniform(0, 104)
>top End of pup maturation pulse bseare + 50
Stop End of juvenile maturation pulse mprt 4 50
;P End of immature maturation pulse mStart + 50
M;1 Baseline adult life expectancy Gamma(mean=10 x 52, sd=4 x 52)
R Survival ratio (young/adult) Beta(4.7, 1.6)
wy Additional mortality in young bats —log(R)/52
K Density dependence parameter 100000
No Population size at ty Gamma(shape=500, scale=1000)
pége Prop. of each age class at t, Dirichlet(0, 0, 1.0, 3.78)
®i10 Prop. of immaturesin M, S, I, R, L at tg Dirichlet(0,1,1,1,1)
® A0 Prop. of adultsin S, I, R, L Dirichlet(1,1,1,1)
B Transmission rate Gamma(shape=1, scale=107?)
p Antibody acquisition (recovery) rate Gamma(shape=1, scale=1)
a;ﬂl Duration of maternal antibodies Uniform(0, 20x52)
a1 Duration of antibody protection Gamma(shape=1, scale=101)
Pros Prob. long-term immunity after antibody loss Beta(1,1)
Pras Prob. loosing immunity after antibody loss 1-p,
PLor Prob. antibodies re-acquired on re-exposure Beta(1,1)
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The transmission of Ebola virus within the E. helvum population of Yaounde, Cameroon, was
modelled using the following system of ordinary differential equations (ODE):

(1) Mp = b(t)Raps — Mp(jiy + mp(t) + a,,)

(2) Sp = b(t)(Sa+ la + La)pe + o,y Mp + app,s Rp — Sp(fiy + mp(t) + Bls)
(3) Ip = BSpls — Ip(fiy + mp(t) + p)

(4) Rp = plp + Bp,plsLp — Rp(fiy + mp(t) + )

(5) Lp = apgy Rp — Lp(fiy + mp(t) + Bpaels)

(6) My = mp(t)Mp — My(fiy + m,(t) + a,,)

(7) Sy = mp(t)Sp + o, M) + ape,s Ry — Sy(fiy + my(t) + Bls)
(8) Iy =mp(t)lp + BSyls — Iy(fiy + my(t) + p)

(9) Ry = mp(t)Rp + ply + Bporlsls — Ry(fiy + my(t) + )
(10) Ly = mp(t)Lp + ape, Ry — Ly(fiy + my(t) + Bpoels)

(11) My = my(t)M; — My(fiy + my(t) + a,,)

(12) Si = my(t)S) + o, My + app,c R — Si(fiy + my(t) + Bls)
(13) Iy = my(t)l; + BSils — i(fiy + mi(t) + p)

(14) Ry = my(t)Ry+ pli + Bpoels L — Ri(fiy + mi(t) + a)

(15) Ly = my(t)Ly + apg, Ri — Li(fiy + mi(t) + Bppls)

(16) Sa = mi(t)(S1 + Mi) + app,s Ra — Salfia + Blx)

(17) In = mi(t)l; + BSals — Ia(fia + p)

(18) Ra = mi(t)Ri + pla+ BpoglsLa — Ra(fia + a)

(19) La = my(t)L) + apg, Ra — La(fia + 8P, s)-

Table 2 provides a summary of model parameters and notation. Note, Is = Ip + 1, + I, + I is
the total density of all infectious bats, and 14 and 1y are density dependant mortality rates for
adult and young bats respectively. Adult mortality was modelled as
~ J+1T+A

(20) HA = NA(l + T)

where 14 is the mortality rate in the absence of competition, K is a density dependant parameter
that contributes to determining the carrying capacity, and J, I and A provide the total population
densities for juveniles, immatures and adults respectively. We assumed that, since pups and
juveniles depend on their mothers, and that immature adults probably make mistakes that mature
adults learn to avoid, then the mortality rates of non-adults should be equivalent to or higher
than that of adults. Therefore, density dependant mortality among young bats was modelled as

(21) Ly = pfia+ fy,

where py is the rate of additional mortality among young bats. Note, since J, / and A vary in time,
so do ju4 and j1y. These density dependant mortality rates could therefore be represented using
the notation iy (t) and f14(t), however, to simplify notation we adopt /iy and fi4 as shorthand
alternative representations.

Let Sa(t) be a survival function that tracks how the survival probability of an adult bat de-
creases in continuous time. This survival function is described by the following differential equa-
tion

(22) Sa = —1aSa

with the initial condition S4(0) = 1. Let S and Sy denote the annual survival probabilities for
adult and young (<1 year) bats respectively (note, different fonts are used for susceptible adults
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(S4), adult survival (S4) and the annual adult survival probability (S 4)). One way to obtain S4
would be to integrate equation 22 over a single 52 week year, i.e.

S = exp (/:) ~fia(t)dt)

where 14(t) is the density dependant adult mortality (equation 20). Similar arguments for young
bats give

52

Sy = exp (/tfo —/jy(t)dt)

(23) = Saexp(—py x 52).

Thus, the additive nature of equation 21 permits us to parameterise py in terms of the ratio of
the annual survival probabilities Syand S 4. In other words
Sy

R = Sa exp(—py X 52)

and .

py =~ log(R).
The advantage of this parameterization is that data were available for an informative prior on R
(see annex 2). In practice: integration of equation 22 was performed concurrently with the nu-
merical integration of equations 1-19; S 4 was obtained using equation 25; and Sy was obtained
using equation 23.

Bayesian inference

A Bayesian approach was used to quantify uncertainty in model parameters, trajectories and
derived metrics. Priors are detailed in table 2 and in annex 2. For each simulation of the ODE sys-
tem performed during model fitting: state variables were initialized at the start of the year 2017;
dynamics were simulated for three years; the ODE solver returned the state variables after each
of 520 evenly spaced time steps per year; and the simulated trajectories were confronted with
observed field data over the period December 2018 to November 2019. Starting the simulations
in 2017 allowed a 23 month pre-data burn-in period in which the proportion of individuals in
each category at time t (¢, ¢ar and ptAge) could converge from the wide range of possibilities
permitted by the uninformative priors towards biologically plausible proportions driven by the
model. The following subsections describe the various likelihood functions and penalties used
for Bayesian inference, and outline how the model was used to address questions relating to (1)
the mismatch between serology and PCR data, and (2) to the optimal timing of virology studies.

Likelihood of age class data.

The age distribution data (table 1) provides information as to when in the year we can expect
to capture juveniles, immatures and lactating females - where the latter was used as a proxy
for pups. It was suspected that between-class heterogeneity in capture rates could bias the
absolute numbers of captures - therefore, the data were not used for calibrating between-class
differences in density. Instead, we used this data to infer how the probability to capture a bat
of a given class changes throughout the duration of the sampling period. Thus, for a given age
class j € {P, J, I}, the likelihood that the total number of captures were distributed across the
various sampling dates as observed in the data was quantified assuming

Ndates

(24) Vit Yj2s -+ Vingaes ~ Multinomial (i1, pia, - Pinguesr 3 Vi
i=1

where ngates is the number of observation dates, yj; is the total number of bats of age class j
captured at the it observation date and pji is the associated set of probabilities. The probabili-
ties to sample a given pup (i.e. lactating female), immature or juvenile on the it" sampling date
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were assumed to be proportional to the population density predicted by the system of ODEs at
sampling time t;, thus,

pp;i xP(t;)

pii ocl(t;)

pJi ocJ(t;)

where Y- 7#e p. = 1 for any given age class j.

Likelihood of tooth data.

Tooth cementum annuli data (Peel et al., 2016) were used to inform estimates of adult mor-
tality rates. Let y; € {1, 2, ... } represent the age of bat / in years. A likelihood for a given bat’s
age was obtained assuming

yi ~ Geometric(1 — Sa)
where 8 4 is the probability for an adult to survive one year. Following each simulation of three
years, the annual adult survival probability was obtained as the ratio of the survival probabilities
at the end of the final and penultimate years
- Sa(t =3 x 52)
~ Sa(t=2x52)’
which is the conditional probability for an adult to survive the third year given that it survived
the second year.

(25) Sa

Likelihood of serology data.

The serology data (table 1) provides information about the number of seropositive individuals
(yj(t)) of ageclass j € {J, I, A} found in a sample of nj(t) individuals at time t. Thus, we assumed
the following likelihood

yj(t) ~ BinomiaI(Pj(t)- ”J'(t)>

where
Pj(t) _ Mj(t)"i_Rj(t)

M;(t) + 5i(t) + [i(t) + R;(t) + Lj(¢)
is the expected seroprevalence for age class j at time t.

Penalties against demographic growth or decline.

Due to an absence of longitudinal population census data, there were large uncertainties con-
cerning the total population size at the beginning and end of the simulation period. We made
the simplifying assumption that the E. helvum population was close to its carrying capacity and
was approximately stable. Thus, we added penalty terms to the Bayesian model, to limit popu-
lation growth or decline over the short simulation period and therefore constrain the potential
distribution of starting population densities. These penalties were implemented as follows,

0 NLapIace(Iocation = log(/end/ earty). scale = Iog(lOOl/lOOO))

0 ~Laplace(location = log(Agnd/Atarly), scale = Iog(lOOl/lOOO))

where Ig,ny and fgnq are the total densities of immatures early on, and at the end of, a simulation,
and Agary and Agng are the total densities of adults early on, and at the end of, a simulation -
where "Early" and "End" indicate the first model output for January following one year and three
years of simulation respectively. The contribution to the total likelihood given by these penalties
is greatest when there is zero population growth or decline over the last two years of the three
year simulation period. The scale parameter controls the strength of the penalty. These penalties
were only applied to the sizes of the adult and immature bat populations, because the other age
classes were absent at the beginning of each year. Whilst it could arguably be reasonable to make
this simplifying assumption that the total population size was roughly stable over the simulation
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period, a similar stability assumption for the epidemiological dynamics was considered to be too
strong, since too little is known about the dynamics of Ebola in natural reservoirs - thus we did
not use equivalent penalty terms to constrain the starting values of the various epidemiological
compartments of the model.

Markov chain Monte Carlo.

Bayesian inference was based on Markov chain Monte Carlo sampling. An adaptive Metropolis-
Hastings block sampler was used to explore the posterior distribution of the model. Starting val-
ues for each parameter were based on the final values obtained from a previous short run of
the algorithm. The sampler was run for 40 million iterations, with thinning set to 2000, and the
first half of the samples were removed as a burn-in period. Thus, we obtained 10000 samples in
total.

Multi-annual cyclicity and skip years

An analysis of the long-term behaviour of the model was performed, with the aim of deter-
mining if seasonal patterns in prevalence were likely to be consistent (or not) from one year to
the next. For each of the 10000 MCMC samples the ODE system was projected for 1100 years,
with the first 1000 years removed as a burn-in period. The time vector sent to the ODE solver
provided a temporal resolution of 10 steps per week. Each trajectory of infectious adults (/4)
over the final 100 years was used to construct a recurrence plot (Marwan et al., 2007), using
a threshold neighbourhood of 1 bat. In other words, each trajectory was used to construct a
matrix with entries

(26) Rij = 1(lla(t;) — Ia(t))] < 1)

where 1 is the indicator function, i and j are indices for location along the time vector, and |- | rep-
resents the absolute value. Clearly, the main diagonal of any recurrence plot contains only ones
(because i = j for each entry of the diagonal) and is uninteresting. However, any other diagonal
containing only ones is interesting, because it informs about periodic (i.e. repeating) dynamics.
Thus, we searched for the closest diagonal (to the principal diagonal) containing just ones, in
order to identify k, the periodicity in years of any multi-annual pattern in /4. Thus, 10000 values
of k were tabulated in order to quantify uncertainty in the periodicity of the epidemiological
dynamics. For this tabulation, we pooled all observations of 50 < k < 100 years, and 100 < k, to
avoid potential false positives near the corners of the recurrence plots and to identify potentially
chaotic trajectories.

For any simulation where we identified that kK > 1 we searched for skip years, which we
defined as any 52 week period within which the density of infectious adults (/4) consistently
remains below one. Thus, when tabulating the various observed values of k we also tabulated
the frequency of observing skip years as a function of k.

Probability of not sampling an infectious bat

A key aim of this work was to quantify whether or not we should expect to see PCR positive
bats in a typical sample given the fitted model of Ebola transmission in E. helvum. Let Nj(t)
represent the sample size for bats of age class j obtained during a sampling campaign performed
in week t - the probability to have zero infectious bats in this sample is:

li(t) )N}(t)
(6) + () + (t) + Ri(D) + Li(o)
where Z;(t) is the number of infectious bats in the sample. We considered that V;(t) = 25 is a
fairly typical scenario in a given sampling campaign, and thus plotted the evolution of p(Z;(t) =

0|j(t) = 25) in time for adult and immature bats, to provide an indication of when in the year
would be an optimal time for sampling if viral extraction was the aim.
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Similarly, we also calculated the probability of having not captured a single infectious bat
given all the bats tested by PCR throughout the entire study,

_ _ . i)
20 pz=opii N = 1 1T (- G s@r o RO 50

)Nj(f)

where 7 is the total number of infectious bats sampled during the study, N; is the vector indicat-
ing how many bats of age class j were sampled in each sampling campaign, and Tgys is the set
of times for all of the observation campaigns.

Implementation

All calculations were performed in R (R Core Team, 2022) version 4.2.1. Numerical integration
of the ODE system (equations 1-19 and 22) was performed using the 1soda function in the
deSolve package (Soetaert et al., 2010). Functions for the derivatives and Jacobian of the ODE
system were coded in C. Bayesian inference was performed in NIMBLE (de Valpine et al., 2022,
2017), and the function nimbleRcall was used to call 1soda from inside NIMBLE. The package
nimbleNoBounds (Pleydell, 2023) was used for improving the efficiency of adaptive Metropolis-
Hastings sampling near the bounds of the parameter space. The R package CODA (Plummer et al.,
2006) was used to perform convergence diagnostics on the MCMC output, and to provide the
mean, median, 95% credibility interval and effective sample size (ESS) for each parameter. The
effective sample size, which estimates the number of independent samples per parameter while
accounting for auto-correlation, was calculated using the function effectiveSize. Whilst the
system of ODEs was defined in continuous time, it is common for ODE solvers to discretize time
- for each simulation 1soda was provided a time vector with intervals of 0.1 weeks to define
when estimates for the state of the system were required. To economise on memory allocation
we configured NIMBLE to store and use the state of the dynamic system at weekly time intervals.

Results

Inference from parameters

The posterior mean, median and 95% credibility intervals (shown in parentheses below) of
each parameter, along with the annual survival and effective sample sizes (ESS) estimates ob-
tained from 10000 MCMC samples, are presented in table 3. Twelve of the parameters were
associated with ESS scores of 10000 or higher. The lowest ESS estimates were associated with
the inverse of antibody loss rate (ESS(a~!) = 2289), the proportion of recovered individuals
obtaining long-term immunity (ESS(pro.) = 6024), and the proportion of adults with long-term
immunity at the start of each simulation (ESS(po(L|Ad)) = 7133).

The birth pulse is expected to start in the eighth week of the year and last nine (95% ClI:
6.6 — 10.7) weeks. The three consequent maturation pulses are expected to start in weeks 12,
24 and 45 respectively. The ranges of the 95% credibility intervals for the four pulse function
start times were (in chronological order) 0.76, 0.3, 1.5 and 1.9 weeks respectively. Annual sur-
vival probabilities were estimated as 39% (33% — 46%) and 76% (74% — 79%) in young and adult
bats respectively. The estimated recovery rate, p = 0.67 (0.37 — 1.5), indicates that the expected
duration of infections was 1.5 weeks (5 days - 19 days). Recovered bats are expected to produce
antibodies for 75 (48 — 135) weeks, and maternal antibodies are expected to last 1.1 (0.36 — 2.3)
weeks. The estimates of pro indicate that roughly two thirds of recovered individuals pass to
the long-term immunity class, although uncertainty was high (0.24 — 0.92). Only 17% of infec-
tious attacks on individuals with long-term immunity re-initiate anti-body production, although
uncertainty is large (0.7% — 47%).

A comparison of age-structure seasonality in the data and the model is presented in Fig. 2.
The modelled trajectory of pup presence (red) closely follows the observed seasonal patterns
in the number of lactating females (black). The model slightly underestimates the proportion
of juveniles in May, but otherwise matches the juvenile data well - i.e. with overlap between
the credibility intervals generated from the data and from the model. Seasonality in the pres-
ence/absence of immature adults is characterised well, although some considerable fluctuations
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in densities remain unexplained by the model. Similarly, there was considerable overlap between
the credibility intervals calculated from the model and from the tooth-age data, albeit with some

notable outliers among young adult bats.

Table 3 - Summary of marginal posterior distributions for each parameter in the Ebola-
E.helvum model. The mean, median and 95% credibility intervals for each parameter are
presented, along with the effective sample size (ESS) estimated using the effectiveSize

function of R package CODA.

Parameter Mean 2.5% Median 97.5% ESS
bstart 8.04E+00 | 7.67E+00 8.04E+00 8.43E+00 | 10000
dRirth 9.12E+00 | 6.62E+00 9.31E+00 1.07E+01 | 7372
PBirth 9.54E-01 | 9.19E-01 9.56E-01 9.80E-01 | 10000

mp 6.41E-01 | 3.31E-01 6.10E-01 1.11E+00 | 10000
my 4.58E-01 | 3.22E-01 4.37E-01 7.04E-0O1 | 10375
My 1.44E+00 | 7.71E-01 1.33E+00 2.75E+00 | 10000
mﬁ,tart 1.25E+01 | 1.19E+01 1.25E+01 1.28E+01 | 10000
mﬁtart 2.40E+01 | 2.30E+01 2.39E+01 2.55E+01 | 9381
m,Start 458E+01 | 4.50E+01 4.57E+01 4.69E+01 | 11342
ugl 1.24E+03 | 1.09E+03 1.24E+03 1.41E+03 | 9532
R 5.12E-01 | 4.16E-01 5.10E-01 6.19E-01 | 9199
No 4.92E+05 | 4.51E+05 4.92E+05 5.36E+05 | 9711
po(Im) 2.09E-01 | 6.65E-03 1.67E-01 6.22E-01 | 10341
¢o(S|Im) | 2.43E-01 | 8.60E-03 1.99E-01 7.02E-0O1 | 10000
¢o(l|Im) | 2.60E-01 | 8.90E-03 2.17E-01 7.15E-01 | 9662
¢o(R|Im) | 2.45E-01 | 7.48E-03 2.00E-01 7.01E-O1 | 10000
¢o(L|Im) | 2.52E-01 | 8.89E-03 2.07E-01 7.05E-01 | 10000
¢o(S|Ad) | 2.38E-01 | 6.09E-03 1.81E-01 7.18E-01 | 10000
¢oo(l|Ad) | 2.76E-01 | 1.24E-02 2.41E-01 7.24E-01 | 9037
oo(R|Ad) | 2.35E-01 | 7.17E-03 1.89E-01 6.91E-01 | 10000
¢o(L|Ad) | 2.51E-01 | 8.53E-03 2.07E-01 7.22E-01 | 7133
B 5.57E-06 | 3.08E-06 4.96E-06 1.21E-05 | 7574

p 6.77E-01 | 3.71E-01 6.06E-01 1.49E+00 | 7540
a1 7.51E+01 | 4.81E+01 6.96E+01 1.35E+02 | 2289
a;,,l 1.11E+00 | 3.60E-01 1.04E+00 2.28E+00 | 9575
PROL 6.33E-01 | 247E-01 6.54E-01 9.20E-01 | 6024
PL2R 1.70E-01 | 7.67E-03 1.47E-01 4.71E-01 | 9426
Sy 3.91E-01 | 3.27E-01 3.90E-01 4.60E-01 | 9198
Sa 7.65E-01 | 7.42E-01 7.65E-01 7.87E-01 | 9474

Seroprevalence dynamics

Comparisons of modelled and observed seroprevalence, in juvenile, immature adult and adult
bats, are presented in Fig 3. The credibility intervals of observed and modelled seroprevalence
overlap at all sampling dates. In juveniles and immature adults there is a large drop in seropreva-
lence when the maturation pulse functions permit the re-population of those age classes - by
contrast, in adults there is a small increase in seroprevalence at the time when immatures start
becoming adults. Seroprevalence increases in juveniles and immature adults during midsummer,
with median seroprevalence rates being just 0.4% (0.05% — 1.8%) and 0.9% (0.007% — 3.8%) in
weeks 22 and 24 (of 2019) respectively, and reaching 68% (60% — 74%) in week 40. Whilst this
peak in seroprevalence is synchronised for the two classes, the density of juveniles is already
reaching zero by that time, whereas the density of immature adults is reaching its maximum.
A summertime upward trend is also observed in the seroprevalence of adults, with a median
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Figure 2 - Comparison of model trajectories to age-structure data for Eidolon helvum
in Yaounde, Cameroon (top row and bottom left), and of modelled adult survival to age
estimates of adults based on tooth annuli data from Ghana (Peel et al., 2016).

seroprevalence of 35% (29% — 41%) in week 25 rising to 51% (43% — 62%) in week 38. The tra-
jectories of both observed and modelled seroprevalence from early April to early May suggest
that seroprevalence in juveniles drops considerably during this period - a continuation of the
drop initiated one month earlier by the initiation of weaning in week 12.

Period and predictability of long-term dynamics

The periods of multi-annual cyclicity in the dynamics of infectious adults (/4), identified us-
ing recurrence plots from 10000 simulations, are presented in table 4. Eighty nine percent of
simulations resulted in dynamics with a period of one year - in these cases, the timing of the
annual peak remained identical from one year to the next. Among the 11% of simulations which
exhibiting more complex dynamics, 31% exhibited skip years. Nearly nine percent of simulations
resulted in biennial (k = 2) cycles, 24% of which exhibited skip years. Sixty seven simulations re-
sulted in four-year cycles, with 94% exhibiting skip years. Nineteen simulations exhibited k > 4
and k < 50. Seventy three simulations exhibited k > 50, with 48% exhibiting skip years. Exam-
ples of the types of trajectories possible under each value of k are presented in Fig. 4.

The timing of the annual peak in infectious adults, and the relation ship between that timing
and the size of the peak, is presented in Fig. 5. An annual peak in the density of infectious adults
is most likely in weeks 30 - 31 (p = 0.63), in weeks 17 - 27 (p = 0.05), or in weeks 48 - 52
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Figure 3 - Seroprevalence data and estimates for 2018-2019. The mean and 95% cred-
ibility intervals for the seroprevalence data are shown as black dots and whiskers re-
spectively. The median and 95% credibility intervals for the modelled seroprevalence
are shown as dotted lines and red bands respectively. 95% credibility intervals for the
density of individuals in each class are shown in beige.

Table 4 - Recurrence plot analysis results, providing the frequency distribution for vari-
ous values of k, the period (in years) of dynamics in the density of infectious adults (/,),
and the frequency of observing skip years in those patterns. Since recurrence plots were
constructed from 100 year simulations, the maximum periodicity permitting at least one
whole replication of a dynamic cycle was 50 years. Thus, we pool all simulations providing
just partial evidence for periodicity in the 50 - 99 range. Similarly, we pool all simulations
indicating kK > 100, many of which are likely to have been chaotic. Four simulations re-
sulted in extinction of the virus.

Period k | Frequency | Frequency
(years) with skips
1 8938 0
2 899 219
4 67 63
5 1 0
6 5 4
7 1 0
8 7 7
10 1 1
14 1 0
25 1 0
28 1 0
48 1 1
51-99 25 8
>100 48 27
Extinct 4 N.A.
Total 10000 330

(p = 0.045). Weeks 21, 25 and 27 are associated with the greatest expected outbreak sizes
(24610, 24411 and 24528 infectious adults respectively), despite bi-modality in outbreak size
during that period of the year. The expected outbreak size in weeks 30 and 50 are 8128 and
9618 respectively.

Probability of not sampling an infectious bat

Seasonality across 2019 in the probabilities to not have an infectious individual in a sample
of 25 adults and 25 young bats are represented graphically in figure 6. The expected values of
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Figure 4 - Example long-term trajectories of infectious adults under various values of
period k. From top to bottom, k equals 1, 2, 4, 6, 8, 48 and k > 100 respectively. Vertical
grey, and blue, lines depict the start of each year, and the period k, respectively. Skip years
(any 52 week period without an outbreak) are evident in several examples. A higher (than
one bat) threshold in the recurrence plot definition (equation 26) could clearly result in
k = 8 and not k = 48 in the sixth example. The dynamics in the final example appear to
be chaotic.
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Figure 5 - Seasonal trend in the probability that the annual peak in infectious adults falls
within a given week (left), and the relationship between the timing and size of outbreak
peaks (right). These results are based on the final 100 years of 10000 simulations, each
1100 years in length. The probability of the peak given the week of the year was derived
as the expected value obtained from these one million years of simulated output (black
line, left plot). The frequency distribution for the timing and size of peak /4 density for
each of these one million years of simulated output is represented via a white-green-red
colour scale (right plot), with the weekly mean and 95% credibility intervals represented
as solid and dashed lines respectively.

these probabilities were minimised in week 31 in both young and adult bats, and were 0.02 (95%
Cl: 0.0039 - 0.069) and 0.48 (0.29 - 0.70) respectively.

The probability to not have an infectious bat in the samples tested by PCR in the (Djomsi et
al., 2022) study was 0.00052 (6.6 x 10~9 - 4.2 x 10~3). These probabilities are greatest during the
first four to five months of the year. Uncertainty in these probabilities is greatest in late summer
and early autumn.

Discussion

Model overview and fit

The current work presents a Bayesian analysis of an age-structured epidemiological model of
Ebolavirus transmission in Eidolon helvum. The model simulates both demographic and epidemi-
ological dynamics, and was calibrated to ecological and serological data collected previously in
Cameroon (Djomsi et al., 2022) and age structure data from Ghana (Peel et al., 2016). A key
component of the model is a series of four seasonally dependant pulse functions, which con-
trol when females can produce pups, and when maturation between successive age classes can
occur. Uncertainty in the estimated starting times of those pulse functions was low, with the
95% credibility interval being less than two weeks wide in all four cases. Some outliers in the
age-structure data were observed (Fig. 2) and are likely linked to neglected ecological mecha-
nisms, such as heterogeneity in dispersion patterns, food availability and survival. Nevertheless,
the model trajectories provide a succinct summary of trends observed in both the age-structure
and serology data - the most notable trend being the sharp increase in seroprevalence in late
summer (Fig. 3).
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Figure 6 - Probability of not capturing an infectious bat in a sample of 25 pre-adult (left)
or adult (right) bats, across 2019. Grey vertical lines indicate weeks at which bats were
captured for PCR analysis, with a mean sample size of 25.

Inference from parameter estimates

Our analyses indicate that, on average, 76% of adults and 39% of young bats survive each
year. Infections are expected to last one and a half weeks. Maternal antibodies are expected to
provide protection for just 1.1 weeks on average, thus the annual birthing pulse leads rapidly to
growth in the pool of susceptible individuals, which in turn typically leads to increased transmis-
sion and seasonal outbreaks. Somewhat similar patterns of maternal antibody loss, followed by
acquisition as young adults, and with seroprevalence in adults stabilising at roughly 60%, have
also been reported for Lagos bat virus and henipavirus in E. helvum (Peel et al., 2018) - however,
the mean duration of protection from maternal antibodies in that study was estimated to be half
a year. Following experimental infections with canine distemper virus in adult female Pteropus
hypomelanus and natural infections of Hendra virus in adult female Pteropus alecto serological
tests could still detect maternal antibodies in pups of up to 7.5 and 8.5 months of age (Epstein
et al., 2013). The duration of protection from maternal antibodies estimated in the current study
does appear to be low compared to estimates from other studies for other viruses, however, un-
certainty was low (despite a very uninformative prior) which suggests that the result was really
driven by the observed data. Further studies could be useful to verify why maternal antibodies
play an apparently less important role here, compared to other host-virus systems.

Here, the expected duration of antibodies in recovered bats was estimated to be 75 weeks,
or possibly as much as 135 weeks - although again, this duration of protection from antibodies
is shorter than the four years and twelve years estimated for henipavirus and Lagos bat virus
respectively in Peel et al. (2018). Given the shorter half-life of detectable antibodies in the adult
bats of the current study, it is perhaps less surprising that maternal immunity appears to be
shorter here than in other studies. The posterior distribution of pgy indicated that the major-
ity of individuals loosing antibodies are expected to enter a form of long-term immunity - and
97.5% of samples indicated pro. > 0.24, thus some form of long-term immunity appears to be
likely. This result replicates modelling results of Brook et al. (2019), who described a similar phe-
nomenon in henipavirus transmission in Eidolon dupreanum, Pteropus rufus and Rousettus mada-
gascariensis fruit bats in Madagascar. Moreover, experimental infections suggest that Egyptian
fruit bats (Rousettus aegyptiacus) continue to exhibit long-term protection to Marburg virus 17-
24 months after an original infection despite waning expression of virus-specific IgG antibodies
(Schuh et al., 2017).
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Probability of serology-PCR mismatch

A key aim of the current work was to explore an apparent mismatch between seroprevalence
data - which suggest Ebola-related virus circulation in juvenile and sexually immature bats - and
the results of PCR tests - which have failed to detect a positive sample among the 456 oral
and rectal swabs tested from 366 bats (152 juveniles and 214 immature adults)(Djomsi et al.,
2022). Here the probability to not have an infectious bat among all the samples tested by PCR
was estimated to be 0.00052 (95% Cl: 6.6 x 1072 - 4.2 x 10~3), which confirms a paradoxical
mismatch between the results of the serology and PCR tests.

The circulation pattern observed in the serology data, and replicated in our model, is appar-
ently driven by seasonal pulses of young susceptible bats entering the population, fueling an
annual resurgence of viral circulation, and playing a key role in viral persistence. That birthing
patterns play an important role for contributing to the timing of outbreaks has been reported
for various other host-pathogen systems (Cappelle et al., 2021; Jolles et al., 2021; Marién et al.,
2020; Peel et al., 2014), which supports the argument that the seasonal patterns observed in the
serology data really are linked to viral circulation. However, in the absence of confirmed positive
control samples for ebolaviruses in bats the calibration of a serological test is challenging, there-
fore there is a risk that a low cut-off value could have inflated the frequency of false positive
results. Indeed, Djomsi et al. (2022) tried several methods to identify a cut-off value - however,
even the most stringent of those cut-offs suggested the presence of bats that were seropositive
to ebolaviruses and seasonality in transmission. Cross-reactivity between different ebolaviruses
has been documented in humans (Diallo et al., 2021) and in experimentally infected Rousettus
aegyptiacus, where limited cross reactivity with other filoviruses was also documented (Schuh et
al., 2019). Such results suggest that the serological signal observed in that study did come from
the circulation of Ebola-related viruses and not other filoviruses. Nevertheless, false positive re-
activity with other pathogens cannot be excluded for the serological assay used in our study,
which may explain why all PCR tests remained negative - i.e. the viruses actually circulating and
causing positive serology in E. helvum might not be in the detection range of the pan-filovirus
PCR of Djomsi et al. (2022). However, other factors could also explain the lack of positive PCR
test results, even if Ebola-related viruses actually are circulating within the bat population.

One alternative possibility is that low sensitivity of the PCR assay may have lead to many
false negative test results and may therefore explain the mismatch between the serological and
PCR data. PCR assays designed to detect viral families may have lower sensitivity than PCR
targeting specific viruses. For example, a Bomabali-virus-specific real-time PCR assay detected
an additional positive sample than the filovirus ‘family level’ cPCR assay used by Goldstein et al.
(2018).

Furthermore, samples taken from infectious sylvatic bats are likely to have very low viral
loads compared to experimentally infected bats or sick naturally infected humans for whom the
PCR assays have been designed. If PCR sensitivity is an issue, then developing a more sensitive
PCR should help, so long as it is not associated with a decrease in specificity. Indeed, if unknown
Ebola-related viruses are actually circulating in the population, designing a specific PCR assay
would prove challenging. Moreover, future studies that succeeded to identify or isolate those
viruses would greatly clarify the epidemiological picture.

Finally, another potential explanation for the negative PCR results, despite the apparent circu-
lation of Ebola-related viruses, may be the absence of viral excretion in the rectal and oral swab
samples collected. During an experimental inoculation of Rousettus aegyptiacus with Ebola virus,
none of 36 swab samples taken 3-10 days post infection tested positive by PCR, although Ebola
RNA was detected in the blood of one bat and the lungs and liver of another (Paweska et al.,
2016). Transmission routes other than the fecal-oral or oral-oral routes may be involved in the
transmission of Ebola-related viruses in E. helvum. In rare cases Ebola virus has been detected
in various samples from humans, and a sexual route of transmission has been demonstrated
(Christie et al., 2015; Mate et al., 2015; Thorson et al., 2016). The large majority of samples
taken from bats so far have been oral and rectal swabs. Taking multiple samples from bats, in-
cluding organs, may help to clarify this point. Ethical questions would arise from such a protocol
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involving bat euthanasia, and the balance between improving our understanding of the ecology
of ebolaviruses and animal well-being should be discussed by ethics experts.

Complex dynamics and optimal timing for sampling

A key aim of the current study was to predict the optimal timing for identifying or isolating
the virus(es) responsible for the sero-conversions observed in E. helvum. Clearly, when planning
field sampling schemes, it can be highly beneficial to have as complete an understanding as
possible concerning the complexity of viral dynamics in a sylvatic host population. Some bat-
borne zoonotic viruses are known to exhibit complex multi-year inter-epizootic periods, which
have been attributed to interactions between population density changes, waning immunity,
and viral recrudescence (Cappelle et al., 2020; Epstein et al., 2020). Results from our long-term
simulations indicate a degree of uncertainty regarding whether or not complex multi-annual
dynamics in the number of infectious bats are to be expected. Ten percent of our simulations
suggest that the period of cyclicity could be greater or equal to two years, and 31% of that subset
of simulations suggest that there may be periods of twelve months or more where prevalence
rates remain close to zero. Such "skip years" are a well known phenomenon in mathematical
epidemiology (Stone et al., 2007; Subramanian et al., 2020; Zhao et al., 2018) and arise when
the size of the susceptible population remains below a threshold required for an outbreak for
prolonged periods of time. Clearly, whether or not skip years occur is an important question for
field-virologists interested in sampling sylvatic hosts for virus isolation. Here the probability that
the system exhibits skip years was estimated as 0.033, which is low but not completely negligible
either.

Actually, almost 90% of our long-term simulations suggested that the dynamics of ebolavirus
in E. helvum in Cameroon may be relatively simple. The most likely scenario appears to be: one
outbreak occurs per year; the size of those outbreaks is somewhat consistent; and the peak of
each outbreak likely occurs during weeks 30 and 31 of the year (p=0.63). Thus, a sampling cam-
paign centered at these dates would most likely be optimal. However, our uncertainty analysis
does not eliminate the possibility of more complex patterns where the peak in the number of in-
fectious bats could occur at any time after the first three months of the year, and where the size
and timing of outbreaks are related. Given this uncertainty in the timing and size of outbreaks,
it could also be worth sampling in weeks 17-27, because although the probability to have an
outbreak in this period is lower, the size of outbreaks predicted in this period can be greater.
Any outbreaks occurring after week 35 would only generate low prevalence rates, thus it could
be challenging to isolate the virus during this period. These results can be used to target periods
when ebolavirus circulation can be expected to be greatest, and to help optimise the sample
sizes required to have a high probability of sampling at least one infectious bat - which can help
limit the number of bats euthanized for the purpose of viral isolation.

Limitations and future research

Various limitations should be kept in mind when interpreting the results presented in the
current work. For example, our modelling neglects: stochasticity in population dynamics, trans-
mission and recrudescence (Mufoz et al., 2022; Peel et al., 2014); spatial dynamics and migration
(Richter and Cumming, 2006); between-year variation in the timing and success of birth pulses
(Adole et al., 2016); potential long-term carriers (Forrester, 2018); temporal changes in envi-
ronmental stress that may affect susceptibility (Lafferty and Holt, 2003); and age-dependant
heterogeneity in contact rates (Rohani et al., 2010). Future modelling studies should consider
using sensitivity analysis to assess whether or not neglecting such mechanisms can have im-
portant consequences on the long-term trajectories of disease transmission and on the optimal
timing of sampling. Moreover, the current work has focused on one host, one serological test
and is based on just over one year of field data. We cannot eliminate the possibility that multiple
Ebola-related viruses contributed to the observed trends in serology, because of a lack of speci-
ficity of the serological tests. The limitations of this study highlight the importance of conducting
long-term field monitoring, for the calibration of models, assessing their predictions and for fully
elucidating the complex dynamics of Ebola-related viruses in sylvatic host communities.
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Conclusions

The current paper presents modelling work that addresses a paradoxical observation in straw
coloured fruit bats, where young bats exhibit rapid seroconversion for ebolavirus antibodies
whilst confirmation by PCR remains elusive. The probability of this contradictory observation is
estimated to be one in two thousand. The potential causes of this mismatch have been discussed
and remain the focus of future research. This work provides novel insights in to the nature of
the seasonality of ebolavirus transmission in fruit bats and provides predictions which can help
with the design of future field programs for isolating circulating Ebola viruses.
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Supplementary information

Details regarding the pulse functions used to control seasonality are provided in annex 1.
Details regarding the parameterisation of priors are provided in annex 2.

Annex 1: Pulse functions

Seasonal flow of individual bats through the four-class life cycle model was controlled via a
series of four pulse functions. The scaled product of two logistic curves was used to define a
single pulse, and modulo arithmetic was used so that this pulse could be applied to an unlim-
ited number of years. Thus, the rate of a given life-cycle process (i.e. birth, or maturation) was
modelled as a function of time t as follows:

1 1
29 t) =
(29) r(t) = vy exp(7X1(8)) 1 + exp(7.Xa(2))
with
(30) X1(t) = ((tstart — t + ) mod 52) — 4,
(31) Xo(t) = ((t — tstop +0) mod 52) — 6
and
(32) 5= 52 + tStop — tstart — 1072

2
where ts,+ gives the start of the pulse (i.e. the centrality parameter for the first logistic curve),
tstop gives the end of the pulse (i.e. the centrality parameter for the second logistic curve), modulo
arithmetic permits the recycling of the pulse function over multiple years, § provides a shift that
eliminates artefacts arising from edge effects under most biologically reasonable combinations
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of parameters, and ~ is a shape parameter controlling how rapidly the rate r(t) passes from zero
to nviax, and back again. In practice we fix v at ten. Note, tsiop > tstart-

For the birth pulse function, nvay represents the within-season birth rate, which we note as
bmax, Which we define as

where dg;j.i, is the duration of the birth pulse, and pgj.t, is the proportion of females expected to
give birth (to a single pup) during the birth pulse. For the pulse functions controlling maturation
from the state of being a pup, juvenile or immature adult nv,y is Mmp, M and M, respectively.

Annex 2: Parameterisation of priors

Prior distributions for all fitted parameters are summarised in table 2 of the main text. In the
following subsections we outline our choices for how the prior distributions for each of the esti-
mated model parameters were specified. Typically our choices for prior distributions were classic.
For example: the beta distribution was used to model scalar proportions; Dirichlet distributions
were used for vectors of proportions that sum to one; and gamma distributions were used as
priors for positive scalars such as rates or sejourn times. Recall, an exponential distribution is a
gamma distribution with a shape parameter of one.

Prior for bsi,t and dpjrin

For the start and duration of the birth pulse (bst,+ and dgjri, respectively) semi-informative
priors were chosen to represent the knowledge and uncertainties of ecologists familiar with the
E.helvum population of Yaounde.

For the start of the birth pulse, bsst, @ gamma distribution was chosen with an expected
value of 10 and a standard deviation of approximately 4.5. This provides a distribution with
approximately 90% of its mass distributed between the 4th and 18th week of the year.

For the duration of the birth pulse, dg;j.tn, @ gamma distribution was chosen with an expected
value of 5 and a standard deviation of approximately 2.2, providing a distribution with approxi-
mately 90% of its mass distributed between 2 and 9 weeks.

Prior for pgi.th

The proportion of females giving birth each year, pgith, Wwas modelled using data from Hay-
man et al. (2012a) and a beta-binomial model, which is a natural choice for modelling proportions
with binary data. According to that paper, the expected value and 95% confidence interval of
peirth are 0.96 and (0.92, 0.98) respectively. We sought to identify the parameters of a beta dis-
tribution that would minimise the L2 norm of errors between fitted values and these three data
points. Using the optim function in R, we identified that

(34) pBirth ~ Beta(171.49,8.13).
For further details, see the script hayman.R.

Prior for mp, m; and My

The maximum maturation rates of pups, juveniles and immatures (/p, M, and /;) were given
exponential prior distributions, with the scale parameter set so that an expected 99% of individ-
uals completed the given stage of the life cycle within eight weeks. The expected time for 99%
of individuals to complete the life stage becomes 76 weeks (or 3.5 weeks) if the maturation rate
was set to the 10" (or 90t") percentile of its prior distribution (respectively) - suggesting that this
the prior is only weakly informative within a biologically plausible range of values.

Prior for m3trt, m3t and mytart

The start of the pulse functions controlling maturation (to subsequent life stages) of pups,
juveniles and immatures were given uniform priors. The bounds on those uniform distributions
were set to 0 and 104 weeks, making them uninformative over the expected development time
of E. helvum.
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Prior for 1 ,*

The baseline mortality rate for adults, 14, is the mortality rate that is expected in the absence
of competition with other bats. Thus, it is the expected mortality rate when bat densities are
close to zero. We set a mildly informative prior on its inverse, the baseline life expectancy. For
that, we used a gamma distribution with an expected value of ten years and a standard deviation
of four years. For this distribution 99% of the mass corresponds to the expected life expectancy
being less than 21.6 years.

Prior for R

According to Hayman et al. (2012a) the expected annual survival probability and 95% confi-
dence intervals is 0.63 and (0.27, 0.88) for adult bats. Using arguments similar to the previous
section on pgirth, We used optim to minimise the L2 norm of the errors between these three data
points and fitted values, giving the following model of adult survival

(35) S ~ Beta(4.95,3.35).

Similarly, Hayman et al. (2012a) reported the expected annual survival probability and 95%
confidence intervals for young bats are 0.43 and (0.16, 0.77) respectively. To ensure that Sy <
S, we assumed Sy = RS 4 and that R could be modelled using a beta distribution. Thus, we
sought to identify parameters for R that could minimise an L2 norm between the three data
points and their equivalent "fitted values". We used Monte Carlo approximation to obtain these
"fitted values" as follows.

Assume the following model for R,

(36) R ~ Beta(ar, fr).

For a given set of parameters (o, 5r), we simulated 10001 values from equations 35 and 36.
Those vectors were multiplied to obtain 10001 samples of Sy, and kernel density estimation was
applied to these samples to obtain an empirical distribution for Sy. This empirical distribution
was used to identify the fitted expected value and 95% credibility interval, which were then used
to calculate the L2 norm. Minimising the L? norm resulted in obtaining the following prior

(37) R ~ Beta(4.7,1.6).

For further details, see our script hayman.R.

Prior for N\,

The total population size at the start of each simulation (Np) is a parameter that cannot be
known with precision, given the lack of census data or capture-mark-recapture studies. However,
experience in the field indicates that Yaounde's E. helvum population is extremely large, and
probably consists of several hundreds of thousands of individuals. We adopted a prior that was
informative about the order of magnitude of the population - representing uncertainty in the
total population size via a gamma distribution, with an expected value of 5 x 10°, a standard
deviation of 2.2 x 10* and 2.5t" and 97.5!" percentiles of 4.6 x 10° and 5.4 x 10° respectively. The
purpose of this prior was to constrain N within a likely order of magnitude, in order to facilitate
the estimation of the other parameters.

Prior for phee

Before simulating dynamics with an epidemiological model, it is necessary to set the initial
conditions of the system, i.e. the state of each compartment at time zero. For an age structured
model, this includes setting the initial population sizes for each age class. We do that by pa-
rameterizing in terms of the total population size at time zero, Ny, and the proportion of that
population associated with each age class, pj®° = (pf, pd. pb, p{'). Since pups and juveniles are
absent at the start of the year we set their initial proportions to zero. The prior on Ny was set to
approximate the unknown population size in Yaounde. Thus, we simply needed to set a prior for
the proportion of immatures, p}, and it's compliment, p§! = 1 — p{. We outline how we did that
here.
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Since p} is a probability, it was natural to assign a beta distribution and to seek data on which
to base the hyper-parameters. Assuming that the annual adult survival is constant with age,
the population age structure follows a geometric series, and the proportion of individuals of a
given age relative to all individuals of the same age or greater is constant. Thus, we used tooth
cementum annuli data (Peel et al., 2016) to estimate that proportion, and thereby obtain an
estimate for the proportion of immature adults in the population at the start of the year, just
prior to the spring birth pulse. For each age t, in years, we modelled the proportion of bats of
age t among all bats of age t or more as a beta-binomial model with uniform prior, i.e.

p(Age = t|Age > t) ~ Beta(1l + n¢, 1+ ns)

where n; is the number of sampled bats of age t, n-; is the number of sampled bats older than ¢
and t is any integer in the interval [1, 14]. Recall, the oldest bat in the data set was 15 years old,
so 14 was the greatest value of t for which n; and n~; were both non-zero. A weighted average
of these 14 priors was calculated to obtain a general prior

14 14
pw(Age = t|Age > t) ~ Beta(l + ZanT, 1+ Zw7n>T)
T=t T=t

where the weights w, o« -2 ,(n; + n-;) sum to one and account for the diminishing sample

size as bats die each year. Since p,,(Age = t|Age > t) is constant (with respect to t) under the
assumption of constant mortality, we originally considered it to be a suitable a prior for p(/). This
resulted in the prior

ph ~ Beta(38.74, 146.57).

However, in practice, this prior lead to mismatches with data that suggested that very few bats
were still being classified as immature at the start of the year (fig. 2). Thus, we maintained the
expected value of this prior, but relaxed the variance so to not exclude zero as the proportion of
immatures at the start of January. This relaxation resulted in the following prior

(38) ph ~ Beta(1,3.8).

The density functions of these priors, and the 14 distributions used to build them, are shown
graphically in figure 7.

Prior for ¢;o and ¢ 49

The proportions of immatures and adults within each of the epidemiological classes at the
start (t = 0) of each simulation (¢;9 and ¢ 49 respectively) were given Dirichlet priors. These priors
were parameterised to be uninformative, with the exception that we assumed no bats in either
of these age classes will carry maternal antibodies at the start of the year.

Prior for g

Experience with our model indicated that uninformative priors for the transmission rate 5 do
not work well. Thus, it was important to restrain 5 from being so large that the posterior distri-
butions became biologically implausible. To do this, we assumed an exponential (or equivalently,
a gamma distribution with shape equal to one) prior, to penalise against very large values of §.
To obtain a reasonable expected value for this prior we asked roughly how many new infections
might a single infectious individual generate in one week when introduced into a completely sus-
ceptible population (and neglecting all other transitions). In other words, we asked what might be
aroughly reasonable value for the product 3S/, where | = 1and S = E[Ng]. Since E[Ng] = 5x10°
we opted for E[3] = 10~° so that a priori the expected number of secondary cases in one week
is five. Thus, we used the following prior

(39) 3 ~ Gamma(shape = 1, scale = 107°).

Setting /3 to the 1st or 99th percentile of this prior leads to the product 35/ being 0.05 or 23
respectively.
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Priors for pg"™ derived from Peel tooth data

p(Age=1|Age>0)
p(Age=2|Age>1)
p(Age=3|Age>2)
p(Age=4|Age>3)
p(Age=5|Age>4)
p(Age=6|Age>5)
p(Age=7|Age>6)
p(Age=8|Age>7)
p(Age=9|Age>8)
p(Age=10|Age>9)
p(Age=11|Age>10)
p(Age=12|Age>11)
p(Age=13|Age>12)
p(Age=14|Age>13)
Beta(38.7, 146.6)
Beta(1, 3.8)

—

15

10

Density of Beta-Binomial Model

Figure 7 - Posterior distributions for beta-binomial models of the proportion of a given
age of adult in years (t) in the sub-population of bats the same age or more. Tooth ce-
mentum annuli data (Peel et al., 2016) were used to calculate these distributions, fixing
t at integer values in the interval [1, 14]. The weighted average of those 14 distributions
(dotted line) proved to be overly restrictive as a prior. So the variance of the prior was
relaxed to not exclude zero (black line), providing a prior for the proportion of immature
adults in the E.helvum population at the start of the year.

Prior for p, a;, and o~ ?

For the recover rate, we set an exponential prior with an expected value of one week - a
value consistent with many virus infections in humans. In other words we assumed that

(40) p ~ Gamma(shape = 1, scale = 1).

For the expected duration of maternal antibodies (inverse of antibody loss rate) we set an
uninformative uniform prior over the range of zero to twenty years

(41) apjt ~ Uniform(0, 20 x 52).

For the expected duration of maintaining antibodies following infection, we specified the
following non-informative exponential prior

(42) o~ ! ~ Gamma(shape = 1, scale = 10'1).
Prior for pr,; and p;or

The probabilities of developing long-term immunity following the loss of antibodies, pg-/,
and of re-acquiring antibodies when exposed to the virus whilst in a state of long term immunity,
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pioRr, Were assigned uniform uninformative priors. In other words,

(43) PR2L ~ Beta(l, ].)

and

(44) pr2r ~ Beta(1,1).
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