é) CgD drones

Article

Inland Water Quality Monitoring Using Airborne Small
Cameras: Enhancing Suspended Sediment Retrieval and
Mitigating Sun Glint Effects

Diogo Olivetti 1-2-*

Rogério R. Marinho 4, Ronaldo L. Mincato !

check for
updates

Academic Editor: David R. Green

Received: 13 December 2024
Revised: 12 February 2025
Accepted: 12 February 2025
Published: 26 February 2025

Citation: Olivetti, D.; Roig, H.L;
Martinez, ].-M.; Ferreira, AM.R.;

Marinho, R.R.; Mincato, R.L.; Martins,

E.S.PR.Inland Water Quality
Monitoring Using Airborne Small
Cameras: Enhancing Suspended
Sediment Retrieval and Mitigating
Sun Glint Effects. Drones 2025, 9, 173.
https:/ /doi.org/10.3390/
drones9030173

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Henrique L. Roig 2(7, Jean-Michel Martinez >3, Alexandre M. R. Ferreira 2,

2
and Eduardo Savio P. R. Martins °

Institute of Natural Sciences, Federal University of Alfenas, Av. Jovino Fernandes Sales, 2600,

Alfenas 37133-840, Brazil; ronaldo.mincato@unifal-mg.edu.br

Institute of Geosciences, University of Brasilia, Campus Darcy Ribeiro, ICC-Ala Central,

Brasilia 70910-900, Brazil; roig@unb.br (H.L.R.); jean-michel. martinez@ird.fr (J.-M.M.);
moreno.rferreira@gmail.com (A.M.R.F)

3 Géosciences Environment Toulouse (GET), UMR5563, Institut de Recherche Pour le Développement (IRD),
Centre National de la Recherche Scientifique (CNRS), Université Toulouse 3, 14 Avenue Edouard Belin,
31400 Toulouse, France

Postgraduation Program of Geography, Federal University of Amazonas, Manaus 69077-000, Brazil;
rogeo@ufam.edu.br

Research Institute for Meteorology and Water Resources—Ceara State (Funceme), Avenida Rui Barbosa,
1246-Aldeota, Fortaleza 60115-221, Brazil; eduardo.martins@ufc.br

Correspondence: diogo.olivetti@unifal-mg.edu.br

Abstract: The ongoing advancement of unmanned aerial vehicles (UAVs) and the evolution
of small-scale cameras have bridged the gap between traditional ground-based surveys
and orbital sensors. However, these systems present challenges, including limited coverage
area, image stabilization constraints, and complex image processing. In water quality
monitoring, these difficulties are further compounded by sun glint effects, which hinder
the construction of accurate orthomosaics in homogeneous water surfaces and affect radio-
metric accuracy. This study focuses on evaluating these challenges by comparing two distinct
airborne imaging platforms with different spectral resolutions, emphasizing Total Suspended
Solids (TSS) monitoring. Hyperspectral airborne surveys were undertaken utilizing a pushb-
room system comprising 276 bands, whereas multispectral airborne surveys were conducted
employing a global shutter frame with 4 bands. Fifteen aerial survey campaigns were carried out
over water bodies from two biomes in Brazil (Amazon and Savanna), at varying concentrations
of TSS (0.6-130.7 mg L1, N: 53). Empirical models using near-infrared channels were applied to
accurately monitor TSS in all areas (Hyperspectral camera—RMSE = 3.6 mg L~!, Multispectral
camera—RMSE = 9.8 mg L~!). Furthermore, a key contribution of this research is the
development and application of Sun Glint mitigation techniques, which significantly im-
prove the reliability of airborne reflectance measurements. By addressing these radiometric
challenges, this study provides critical insights into the optimal UAV platform for TSS
monitoring in inland waters, enhancing the accuracy and applicability of airborne remote
sensing in aquatic environments.

Keywords: remote sensing; water quality; drones; sediment; hyperspectral camera; multi-
espectral camera

1. Introduction

Total Suspended Solids (TSS) encompass both inorganic and organic particles sus-
pended within water, quantified in units of mass per volume of water [1]. This parameter
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holds considerable significance as a fundamental indicator of water quality, primarily due
to its frequent correlation with sediment transportation and water transparency [2]. Fur-
thermore, TSS assumes a key role within the aquatic ecosystem, functioning as transporters
of diverse substances, such as nutrients and pollutants. These substances may originate
from soil erosion, runoff from adjacent watersheds, and the breakdown of organic matter
and phytoplankton [3].

Remote sensing techniques have found extensive application in the monitoring of TSS
and other pivotal water quality parameters, particularly those categorized as Optically
Active Components (OACs), which encompass Phytoplankton and Colored Dissolved
Organic Matter, alongside TSS [4,5]. The spectral behavior of waters with TSS is complex
and varies based on the specific characteristics of the water body. This behavior is influenced
by the absorption and scattering of both organic and inorganic particles within the water
column. Due to this complexity, TSS estimation models are typically developed for specific
sites. Several bio-optical models have been applied to continental waters with varying TSS
concentrations, utilizing a range of radiometric data sources, including orbital, airborne,
and in situ sensors [3].

Orbital remote sensing offers notable advantages, primarily in its ability to gather data
across spatially distributed areas, in contrast to singular point observations. Additionally,
it facilitates the establishment of historical data series through records obtained from
sensors [1,5,6]. Nevertheless, inherent limitations related to the spatial, temporal, and
spectral resolution of orbital sensors can curtail the comprehension of variability within the
hydrological and limnological dynamics of aquatic systems [7]. Furthermore, the frequent
occurrence of cloud cover, undermines the efficacy of monitoring precisely, mainly in rainy
periods, when the accumulation of sediment in water bodies becomes more pronounced.

Manned airborne surveys employing high spectral resolution cameras provide an
alternative approach capable of surmounting the inherent constraints associated with
orbital sensors. This platform offers enhanced spatial, temporal, and spectral resolutions,
and effectively mitigates disruptions caused by cloud cover interference [8,9]. Nonetheless,
this approach necessitates a significant investment in terms of both financial resources and
the establishment of appropriate infrastructure.

Simultaneously, the advancement of unmanned aerial systems coupled with compact
cameras has spurred the emergence of a novel generation of remote sensing platforms.
This platform is characterized by their reduced weight, enhanced affordability, heightened
operational adaptability, and superior spatial resolution in comparison to manned aircraft.
Given this technological framework, there exists a diverse array of applications for remote
sensing methodologies utilizing unmanned aerial systems. These applications span various
domains, including but not limited to agriculture [10,11], forestry [12,13], urbanism [14-16],
and more, as well as water quality [17-21].

Although UAV platforms present viable and promising solutions for bridging the gap
between in situ and orbital remote sensing systems, they also entail noteworthy limitations.
These constraints encompass decreased image acquisition stability, higher complexity in
image processing, and diminished coverage area in comparison to orbital platforms [4]. An
additional constraining element is the susceptibility of airborne platforms to the adverse
impacts of reflected sun glint on water surfaces. Sun Glint effects are unfavorable for remote
sensing purposes, leading to sensor response saturation and obscuration of the spectral
signatures of aquatic constituents, as the TSS [22]. Furthermore, the ongoing progress in the
development of UAVs and compact cameras introduces additional complexities, encom-
passing aspects such as flight autonomy, camera stability, variations in image acquisition
geometry and in spectral resolutions [23,24]. These factors can exert both positive and
negative influences on the monitoring of inland water quality.
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In this context, the present study aims to evaluate the effectiveness of two distinct UAV,
differing in terms of image acquisition geometry and spectral resolutions. We integrate
empirical data from airborne and in situ surveys, alongside existing literature, to identify
the optimal UAV /sensor configuration for TSS monitoring. This includes a comprehensive
examination of small camera characteristics for water imaging, georeferencing challenges,
and the innovative application of sun glint mitigation techniques.

2. Materials and Methods
2.1. Study Area

This study is based on several experimental aerial surveys over various regions,
biomes, and river basins in Brazil (Figure 1). A 4-band multispectral camera and a 276-

band hyperspectral camera were used. In-situ water optical properties and TSS data were
collected concurrently with the aerial surveys to calibrate and assess camera radiometric

accuracy and to generate retrieved TSS.

e
Reservoir

Figure 1. Study areas across various basins and biomes in Brazil. (A) turbid and dark waters in the
Amazon basin; (B) small inflows and river confluences into urban (Paranod) and rural (Corumbd IV)
reservoirs in the Parand basin; (C) inflow area of a large reservoir (Trés marias) and the entire open
water area of a medium reservoir (Retiro Baixo) in the Sdo Francisco basin; and (D) stretches of the
Paraopeba river under the influence of sediment originating from a tailing dam collapse during the
Brumadinho disaster in 2019.

In the Amazon region, distinct experimental areas were delineated, showcasing sig-
nificant OACs variations. These areas included the confluence of the Solimoées River’s
turbid waters with the dark waters of the Negro River, as well as the contrast between the
Solimoes River’s turbid waters and the dark waters of igarapés, along with water bodies
containing algae and sediments found in fishponds (Figure 1A).
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Within the Parana basin in the Cerrado (Savanna) biome, specific study areas encom-
passed the inflow and confluence zones of tributary rivers into the Paranod and Corumb4
IV reservoirs. Where water velocity and suspended sediment levels decrease during the
transition from river to lake. Consequently, notable deposition of suspended materials
takes place, involving both inorganic elements and nutrients, as well as heavy metals
(Figure 1B).

While the primary emphasis of this study is on unmanned platforms, a distinctive
manned helicopter survey with a hyperspectral camera was incorporated. This addition
was motivated by the exclusive opportunity to detect the movement of tailings slurry into
water bodies, especially considering the dramatic environmental incident that occurred
in Brumadinho district (Sdo Francisco Basin), in 2019. The rupture of a tailings dam at a
stream iron ore mine in Brumadinho resulted in the discharge of approximately 12 million
cubic meters of tailings containing high levels of heavy metals [25]. The tailings advanced
along the Feijdo stream, eventually reaching the downstream Paraopeba River, leading to
significant harm to aquatic biota and various water uses [26]. The extent of this damage
prompted increased efforts by Brazilian environmental agencies for control and inspection.
They intensively measured the environmental consequences of the dam collapse and
closely monitored the tailings’ progression. A primary concern was to determine if the
tailings would reach the Sdo Francisco River, a vital water source for over 1 million people
across 255 municipalities in the arid northeastern region of Brazil [27]. To address this
question, a manned airborne remote sensing survey was conducted aboard a helicopter to
mapping map TSS across key stretches of the Paraopeba River (Figure 1D) and the upstream
reservoirs (Retiro Baixo and Trés Marias—Figure 1C) leading to the Sdo Francisco River,
covering approximately 200 km.

2.2. Multispectral Platform: Data Collection and Processing

The Parrot Sequoia was the chosen multispectral camera. Weighing just 135 g with a
compact size, it offers adaptability to a range of UAV models. Despite its original agricul-
tural focus, the Sequoia camera underwent tests tailored for water quality monitoring. This
is due to its inclusion of four sensors covering the spectral ranges of green (530-570 nm), red
(640-880 nm), red-edge (730 to 740 nm), and near-infrared (NIR: 770-810 nm). Additionally,
an RGB camera module complements the Sequoia camera (Figure 2d).

A significant advantage is the incorporation of a GPS/IMU/magnetometer system,
and an irradiance sensor equipped with filters matching the spectral range of the Sequoia
camera (Figure 2c). This integrated system simultaneously captures positional data, camera
parameters, and irradiance sensor readings. This synergy streamlines the process of
generating orthomosaics of multispectral bands, transformed into surface reflectance,
referred to as at sensor Surface Reflectance (asSR).

The Sequoia camera’s versatility led to its installation on two distinct UAVs platforms
for this study. The Parrot Disco Pro AG (Figure 2b), a fixed-wing aircraft pre-integrated
with the camera, was utilized, along with the DJI Phantom 4 multi-rotor UAV. The latter
was adapted to accommodate the camera using a 3D-designed and printed bracket (as
depicted in Figure 2a).

For autonomous flight planning, the DroneDeploy app was employed for Phantom 4,
while Pix4D Capture was used for the Disco Pro AG. Both flight plans were configured to
operate at an altitude of 120 m above ground, with a maximum speed of 10 m/s. Frontal and
lateral overlaps of 80% and 70%, respectively, were selected. These parameters were chosen
to ensure accurate alignment of captured images and subsequently generate orthomosaics
with a spatial resolution of detail (GSD) of 13 cm.
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Figure 2. Depiction of the Sequoia (c,d) camera affixed to the Parrot Disco Pro AG (b) and DJI
Phantom 4 (a) UAVs, facilitated by the utilization of a bracket and 3D printing. Source: Parrot 2020.

The processing of the multispectral images was performed using Pix4D Mapper
software (version 3.0). The resulting orthomosaics, containing asSR values, were generated
through the digital photogrammetry technique called Structure from Motion (5fM). The SfM
process automates the identification of corresponding points across a set of overlapping
images using bundle adjustment [28]. This forms the foundation for constructing the
orthomosaic in Pix4D Mapper. The sequential process includes image alignment, 3D points
cloud creation, triangular mesh generation, and digital terrain modeling. During image
overlay, Pix4D Mapper computes asSR values using radiance data from the camera bands
and the irradiance sensor. This method accounts for all images covering a specific pixel,
assigning greater weight to those where the pixel is more centrally positioned (Pix4D S.A.).

2.3. Hyperspectral Platform: Data Collection and Processing

The camera used is the Headwall Nano-Hyperspec sensor which weighed 680 g, with
276 bands and 2.2 nm spectral resolution covering a spectrum range from 400 to 1000 nm
(Figure 3a). This camera has a sensor field of view (FOV) of 28.1° using a 12-mm lens
with a complementary metal-oxide-semiconductor sensor. A subsystem can store 480 GB
of the 12-bit radiometric resolution images. The images are acquired by the pushbroom
scanning system for scanning pixel lines (Headwall Photonics Inc., Boston, MA, USA).
This type of sensor acquires the entire line of the image at once and captures the image
continuously with the motion of vehicle [29]. The Nano-Hyperspec is integrated with a
GPS/IMU system that, with a GPS antenna and an internal magnetometer, generates the X,
Y, and Z coordinate information through the inertial navigation system (Figure 3b).
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Figure 3. Hedawall Nano-Hyperspec camera (a) and its IMU (b) installed on a helicopter using a
metal bracket and supported by the DJI RONIM MX gimbal. (c): image captured during the flight
over the Trés Marias reservoir (Figure 1C).

The Nano-Hyperspec camera was affixed to a Brazilian Federal Police helicopter
(Figure 3c), enabling coverage of expansive regions along the Paraopeba River, encompassing
the entirety of the Retiro Baixo Reservoir, and a section of the Trés Marias Reservoir upstream
from the Sdo Francisco River (Figure 1C,D). An adaptation using aluminum components
was constructed to secure the camera onto the helicopter, and a Gimbal (DJI RONIN MX)
coupled with 3D support for optimal fitting (Figure 3c) was employed to stabilize the Nano-
Hyperspec at the nadir angle (90°) during image acquisition. Flight plans were configured
in line with the camera’s FOV and the chosen flight altitude (1200 and 1500 m above the
ground). In the GIS (Geographic Information System) environment, spaced lines were
delineated at 380 m for 1200 m flight altitude, and 515 m for 1500 m flight altitude, ensuring
a 20% lateral overlap (Figure 1C,D). These measures were taken to produce orthomosaics
with a Ground Sampling Distance (GSD) of 17 cm. During flight execution, GPS navigation
tools were utilized by the pilots to guide the helicopter along the designated flight lines as
closely as possible.

Three software components are integrated into the Nano-Hyperspec package for con-
figuration and data processing (Headwall Photonics Inc., Boston, MA, USA). XSENS is
employed for calibrating the GPS/IMU system. Signal processing, in conjunction with
sensor fusion algorithms, ensures the effective capture of platform dynamics under sus-
tained vibrations, prolonged accelerations, and magnetic disturbances, providing necessary
corrections ([30]). Hyperspec III offers various functional configurations, including radio-
metric, geometric, GPS, and automatic trigger settings for flight planning. Spectral View
facilitates the processing of acquired images, including orthorectification using information
from the GPS/IMU system, conversion of digital numbers to radiance and reflectance, and
visualization of spectra generated by the scan.

Spectral View was used for the orthorectification of the scanner images and the con-
struction of orthomosaics. However, in the calibration process, the hyperspectral ortho-
mosaics from the Nano-Hyperspec camera underwent conversion from Digital Number
(DN) to asSR using the Empirical Line Method [31]. This conversion involved establishing
a direct relationship with in-situ Ry values obtained by TriOS RAMSES hyperspectral
spectroradiometer (Section 2.3).
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2.4. Data Collection and Analysis

The entire methodology was as follows: (a) planning and execution of airborne
surveys, (b) field collection of in situ data generally simultaneous to UAV surveys, (c) image
processing to generate asSR orthomosaics, (d) analysis of the statistical performances
of TSS models, and (e) TSS mapping using the most robust models for both multi and
hyperspectral platforms.

The asSR pixel values, a sample of eight pixels, from the multi- and hyper-spectral
orthomosaics, were extracted at the same geographic positions of the water sampling points
for application of TSS models.

Considering the challenges posed by adverse sun glint effects and the complexities
associated with constructing orthomosaics in homogeneous areas encountered during aerial
surveys and image processing, this study aimed to identify alternative solutions through a
comprehensive literature review. The objective was to determine the most suitable type
of airborne platform for effectively monitoring TSS in continental waters, for small and
large water bodies. Figure 4 presents the flowchart illustrating the sequential steps of the
methodological procedures employed.

Small water bodies
ideal platform for TSS
monitoring in
inland waters

Large water bodies

Figure 4. Flowchart of methodological procedures for TSS mapping from the multispectral and
hyperspectral airborne platforms and the indication of an ideal platform for effectively monitoring
TSS for small and large inland water bodies.

Field water quality and radiometric data sampling campaigns were conducted simultane-
ously with the flights. Spectroradiometric data were collected using the TriOS RAMSES, which
offers a spectral resolution of approximately 2 nm across spectrum bands ranging from 320
to 950 nm. Remote Sensing Reflectance-Rs data (Equation (1)) was derived using the method
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outlined by [32] for above water measurements. The installation structure and geometry of this
equipment were implemented in accordance with the approach described by [33].

R (V) = (L”(” LA ) M

where: Ly, is the upwelling radiance (W m~2 nm~! sr~!) of the surface water; L; is the atmo-
spheric radiance (W m~2 nm~! sr—!) used to correct the scattering effects of electromagnetic
radiation in air-water interface; and E,; is the downwelling irradiance (W m~2 nm~! sr—1)
above the water surface conditions; p is a proportional factor depended on sky, wind speed,
zenithal sun angle, and viewing geometry conditions. For p, the 0.028 value was used,
ref. [32] estimated the p variability in relation to different influent factors, their results
showed 0.028 value presented low variability when the L, factor was acquired with a 40°
off-nadir angle and a 135° azimuth direction from sun in a clear sky condition, wind speed
lower than 4 m s~!, and a sun zenith angle variation varying from 0° to 60°.

Water surface samples, taken at a depth of approximately 20 cm, were gathered at
the designated sampling points. These samples were then processed at the Geochemistry
Laboratory of the University of Brasilia to determine TSS concentrations. The water samples
underwent filtration using a low vacuum millipore membrane filter with a porosity of
0.45 pm. The filters were drying at 105 °C for 1 h, weighed, filtered with the water sampled
and finally redrying and reweighed with the filter “dirty”. TSS values (Table 1) were
estimated employing the methodology detailed in [34].

Table 1. In situ and airborne data collected during the field campaigns.

Date Local N* In()sli\tll’l Pata TSS (mg/L) Multi. Aerosurveys Hyper. RS * Platform
08/05/2015 Paranod 6 Ris 2.8-12.4 - - Insitu
28/05/2015 Paranod 7 Ris 1.6-4.1 - - Insitu
17/06/2015 Paranod 5 R 0.6-7.8 - - In situ
21/08/2015 Paranod 10 Rys 0.2-3.1 - - Insitu
29/06/2016 Paranod 6 Ris 2.1-59 - - In situ
03/10/2016 Paranod 6 Ris 0.7-37.5 - - Insitu
05/05/2017 Paranod 14 Ris 0.6-3.4 - - Insitu
14/06/2017 Paranod 6 Rys 0.9-1.8 - - Insitu
25/10/2017 Paranod 8 Ris 0.6-12.6 - - Insitu
02/03/2018 Paranod 5 - 23-36.2 Sequoia - UAV /Multirotor
29/03/2018 Corumbd IV 5 Ris 5.0-15.6 Sequoia - UAV /Fixed Wing
24/04/2018 Manacapuru 1 Ris 130.7 Sequoia - UAV /Fixed Wing
25/04/2018 Manaus 7 Ry 3.6-115.1 Sequoia - UAV /Multirotor
18/05/2018 Corumbd IV 5 Rys 1.0-2.2 Sequoia - UAV /Fixed Wing
12/09/2018 Paranod 7 - 8.8-15.6 Sequoia - UAV /Multirotor
31/10/2018 Paranod 1 - 186.8 Sequoia - UAV/Multirotor
02/11/2018 Paranod 12 - 2.7-43.2 Sequoia - UAV /Multirotor
09/11/2018 Paranod 1 - 73.2 Sequoia - UAV /Multirotor
11/11/2018 Paranod 1 - 78.8 Sequoia - UAV /Multirotor
05/12/2018 Paranod 1 - 68.2 Sequoia - UAV/Multirotor
11/05/2019 Trés Marias 2 Ry 0.6-2.8 - Nano Helicopter
12/05/2019 Retiro Baixo 6 Ris 0.6-11.2 Nano Helicopter
13/05/2019 Retiro Baixo 6 Ris - Nano Helicopter
14/05/2019 Paraopeba 2 Ris 29.6-31.2 Nano Helicopter

* N: number of samples; OAP: Optical Active Properties; RS: Remote Sensing.
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Regression analysis was used to create and to evaluate the performance of the bio-
optical models. Root mean square error (RMSE, Equation (1)) was employed to quantify
the accuracy of the estimated TSS values relative to the in situ TSS data.

The reflectance and model’s effectiveness were evaluated using regression analysis
and root mean square error (RMSE). The equations are as follows:

2 XX -XP
T TR —xP @
RMSE — \/ %Z?’: (X = X)? 3)

where X' is the estimated values and X is the measured values (Rrs and TSS), with N being
the number of data points.

RMSE was considered a key validation parameter because it represents the average
difference between the observed values and the values predicted by the regression model.
It provides an estimate of the magnitude of prediction errors and is used to evaluate the
performance of the model in absolute terms. The R-squared (R?) was calculated to assess
the explanatory power of the model in relation to the variation in the observed data.

Table 1 displays radiometric data gathered from diverse remote sensing platforms and
corresponding TSS data acquired across various regions of Brazil. The extensive sample
range enables comprehensive spectral insights into distinct TSS concentrations.

3. Results and Discussion

3.1. Acquisition Geometry Systems of Small Cameras: Insights into Monitoring Inland
Water Quality

Various types of sensors adapted for UAVs have been developed, encompassing
cameras capturing visible color images (RGB), as well as multispectral and hyperspectral
systems, thermal, laser, and synthetic aperture radar (SAR) devices. A review by [23] on
spectral sensors in optical systems available in the market categorizes these devices based
on their distinct mechanisms for acquiring spectral information:

1. Airborne spectroradiometers: these are utilized to capture point-spectral informa-
tion. While their spatial resolution may be limited, they stand out for their high spectral
resolution and lightweight design. An application example involves their use in calibrating
the MODIS orbital sensor for spatial monitoring of phytoplankton proliferation in Taiwan’s
estuaries [35].

2. Pushbroom sensors: these function as scanning systems enabling the extraction of
spectral information from the target. In this system, the sensor instantly records a spectral
line with each exposure, and repetition of this process enables the generation of continuous
spectral scanning. Pushbroom sensors are extensively used in satellites such, as Landsat
8 OLI and Sentinel II MSI, and they have also been adapted for crewed aerial surveys.
Compact cameras utilizing this system are being designed for UAV applications.

3. 2D imaging sensors (Frame): in contrast to pushbroom, capture a spectral frame
with each exposure. However, frame capture methods can vary, including the rolling
shutter system, where frame recording occurs line by line during exposure, and the global
shutter system, where the entire frame is captured during exposure. Despite being two-
dimensional, frontal, and lateral overlaps allow the creation of three-dimensional models
through the principle of image spectroscopy. This can be executed by software utilizing
algorithms based on computer vision.

The imaging mechanism plays a crucial role in covering expansive water bodies,
particularly in regions with homogeneity. This aspect becomes particularly relevant in
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situations where the camera’s FOV predominantly identifies water areas, devoid of the
presence of other types of objects or distinct elements.

Frame cameras are programmed to capture images at specific time intervals and/or
positions, with the ability to determine frontal and lateral overlaps between each image.
The construction of orthomosaics from frame camera images is viable through photogram-
metry software like Pix4D Mapper (Pix4D), Metashape (AGISOFT), APS (MENCI), and
Graphos [36]. These programs employ computer vision technologies based on the Structure
From Motion (SfM) method [36] for this process. Despite variations among these software
tools, they all follow a procedural scheme involving image alignment, followed by the
generation of sparse and dense point clouds. These points are used to create digital terrain
and surface models through stereoscopy, which leverages the frontal and lateral overlaps
between images. Moreover, the technique is also applied in constructing the orthomosaic,
enabling the representation of a flat image.

The alignment process carried out by the SfM method involves converting image
pixels into three-dimensional points, which are then used to align the images through
the recognition of homologous points—these are identifiable points present in multiple
images that the SfM can detect and correlate. However, in areas with visual homogeneity.
such as forests, snow, deserts, and water bodies, recognizing these homologous points
can be challenging, leading to difficulties in generating alignment for overlapping images.
Additionally, the low textural variation in these areas hinders point matching algorithms,
leading to alignment errors or deformations in the final orthomosaic. Water surfaces or
areas with high brightness exhibit solar reflections and illumination variations, further
complicating the consistent identification of correspondences between images. These
challenges are further accentuated in turbulent flow environments, such as rivers. In such
cases, the constant movement of water can result in the displacement of points between
one image and another [37,38].

Figure 5 illustrates the process of generating an orthomosaic using Pix4D Mapper
software, utilizing multispectral images obtained from the Sequoia camera. The images
capture was focused on the Solimoes riverbank, igarapés, and fishponds (Figure 1A), in
the Amazon region. Upon visual analysis, it becomes apparent that images with the FOV
exclusively over the water surface of the Solimoes River (indicated by red dots) did not
achieve accurate alignment with adjacent images. Conversely, images in which the FOV
encompassed both water and terrain (indicated by green and blue dots), demonstrated
suitable alignment with neighboring images.

Figure 5. Image excerpt extracted from the orthomosaic generation process using Pix4D Mapper
software. Sequoia images were acquired in Amazon. The red annotations signify images that did
not align with adjacent overlapping images, particularly those acquired farther inland along the
Solimoes River. The green/blue dots represent images that have been successfully aligned with their
neighboring images in heterogeneous areas.
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The mentioned issues are absent in pushbroom cameras due to their distinct imaging
system, which continuously generates a scanner as the sensor moves, thereby forming
images along the flight lines. Unlike frame cameras, extensive overlapping of images in
frontal and lateral directions is not necessary for mapping water bodies using pushbroom
cameras. Rather, a few scanning flight lines with low lateral overlap are sufficient. However,
operating pushbroom cameras is more intricate. For instance, with the Headwall Nano-
Hyperspec camera, acquiring high-quality images requires careful synchronization of
flight speed and altitude with the camera scanner’s trigger setting. measured in frames
per second.

Figure 6 shows successfully acquired scanners at each flight line using the Nano-
Hyperspec camera mounted on a helicopter, effectively covering extensive water bodies,
including the entire Retiro Baixo reservoir and a portion of the Trés Marias reservoir within
the Sao Francisco River Basin (Figure 1C,D). Occasional failures between consecutive lines
arose due to the helicopter’s deviation from the intended flight path, as the flights were not
autonomous. Nevertheless, these failures are deemed negligible, given that most of the
reservoirs were encompassed by the acquired scanners.

arsarw

Figure 6. Scanned images captured by the Nano-Hyperspec camera during helicopter flights over the
Trés Marias reservoir (left) and the Retiro Baixo reservoir (right).

Despite their limitations in homogeneous water body coverage, frame cameras remain
valuable tools for inland water monitoring, particularly in smaller-scale regions. They
prove useful in areas where captured images encompass both water bodies and land,
featuring identifiable homologous points within the images. This applicability extends
to region such as river and tributary confluences with water reservoirs, as seen in the
study areas of this work in the Paranod and Corumbd IV reservoirs. Such regions hold
significant importance for water quality monitoring, enabling quantification and control of
constituent loads reaching the reservoirs. Furthermore, it's noteworthy that medium and
low spatial resolution (>10 m) satellite images are unsuitable for monitoring these areas
due to limitations in obtaining pure water pixels in such specific contexts.
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3.2. Sun Glint: Definition and Correction Approaches

Sunglint (Figure 7) is a physical phenomenon characterized by the reflected sunlight’s
beam on water surfaces, as well as on other specular materials like ice and metal. It emerges
when the zenith angle of sunlight’s equals the viewing angle of the camera [39]. This effect
is undoubtedly undesirable for water quality monitoring via remote sensing methods, as it
disrupts the authentic spectral response of both the surface and water column, particularly
its components.

Figure 7. Example of Sequoia camera images affected and unaffected by the sun glint effect. At
the confluence of the Negro and Solimoes rivers (A: RGB lens, B: NIR band), sun glint is visible in
images acquired at a solar angle of 0.17°. In contrast, images from the Paranoa Reservoir (C: RGB
lens, D: NIR band) show no sun glint, as they were captured at a solar angle of 0.72°. All images
were captured with the camera angle at 90°.

Issues stemming from sun glint have been observed and studied since the inception of
remote sensing with satellite imagery in oceanic environments in the 1950s [40], they re-
main a contemporary concern across oceanic, coastal, and continental settings [41,42]. Sun
glint presents a pervasive challenge affecting various forms of satellite imagery, regardless
of spatial resolution. Neglecting its correction can significantly threaten the accuracy of
outcomes in water quality-related applications [43]. It’s important to note that sun glint
also impacts airborne imagery, thought to a lesser extent, thanks to the greater operational
adaptability of these platforms. Manned airborne surveys, characterized by higher auton-
omy and potential for operation at elevated altitudes, tend to be less vulnerable to these
effects compared to UAV airborne surveys.

Numerous satellites, particularly those intended for water quality-related purposes
like SeaWiFS. Ocean Colour Sensor (OCTS), Coastal Zone Color Scanner (CZCS), and
Sentinel-3, implement tilt strategies to mitigate Sun Glint impacts [44,45]. Tilted orbital
sensors, adjusted by approximately 20° relative to the nadir direction, have demonstrated
the capacity to prevent or substantially diminish these undesirable effects [41].

Within the field of manned airborne platforms, strategies to mitigate sun glint effects
primarily revolve around flight path design and image acquisition timing. Investigations
like those conducted by [45,46] have showcased effective Sun Glint mitigation by employing
flight lines directed away from the sun and by tilting the sensor at angles ranging from
30 to 60°. Alternatively, flying with the camera at nadir but under a high solar zenith
angle has also proven successful in countering sun glint. Regarding UAVs, adhering to
these protocols has led to the acquisition of high-quality images with the Sequoia camera,
exhibiting minimal sun glint, particularly under medium to high solar zenith angles (6).
The study by [47] demonstrated that aerial surveys with 6 > 46° were effective in generating
orthomosaics devoid of sun glint.
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Figure 7 displays RGB and NIR images from the Sequoia camera acquired at 6 = 17°,
depicting sun glint at the confluence of the Negro and Solimédes Rivers (left, A and B).
Conversely, Figure 7 (right, C and D) showcases images from the same camera captured
at 0 = 72°, along flight lines in both frontal and opposing directions to the sun within
the Paranod reservoir, revealing the absence of sun glint. These observations confirm the
potential of acquisition strategies during higher solar angle conditions in minimizing sun
glint impact on UAV-obtained images, thereby enhancing the accuracy and reliability of
acquired data.

Ref. [41] categorized sun glint correction methods into two distinct groups. The first
category pertains to oceanic waters and involves low spatial resolution images. This class
employs radiative transfer models, such as [40], while incorporating wind speed and swell
as variables in the correction process. The second category focuses on high spatial resolution
imagery. In this second class, many methods utilize NIR bands for sun glint correction,
employing a similar principle as atmospheric corrections for oceanic waters. Given that
the reflectance is null in this wavelength for oceanic waters, sun glint can be detected and
rectified through high reflectance values, as demonstrated in models developed by [47,48].

Correction models that rely on NIR spectrum for high spatial resolution imagery.
while proven accurate in certain scenarios like clean water river bathymetry [49], pose
practical challenges for water quality monitoring in most inland environments. These
models become less feasible in such contexts, particularly with turbid waters since the
spectral response at NIR is not null as elevated concentrations of TSS lead to stronger light
scattering and subsequently increased reflectance values. Alternative strategies to mitigate
sun glint effects have been explored, such as the approach proposed by [42]. This method
harnesses the shortwave infrared (SWIR) band, leveraging principles akin to those of NIR.
In the SWIR band, reflectance is inherently suppressed in waters, irrespective of elevated
concentrations of TSS. Nevertheless, this approach is not applicable to the cameras utilized
in this study, as they lack SWIR bands within their spectral range.

The mask application method proves to be the most suitable approach for correcting
sun glint in the multispectral images obtained in this study. While [39] automated mask
application through computer programming, image processing software like Pix4D Mapper
and Metashape provide flexible tools for mask implementation. In this study, the Mosaic
Editor tool in Pix4D Mapper was employed, enabling the manipulation of the resulting
orthomosaic. This tool allows users to delineate a polygon over an area affected by sun
glint. Subsequently, the tool presents an alternative set of images covering the same region,
enabling the selection of an image unaffected by sun glint (Figure 8).

Figure 9 displays orthomosaics of the Sequoia camera’s NIR band, depicting the
study area, with one image prior to mask application (A) and another image post-mask
application (B), leading to the removal of the sun glint effect. The efficiency of this effect’s
removal is evident in the post-processed orthomosaic, where images have been replaced,
notably seen in the elimination of linear sun glint patterns extending from south to north,
as observed in Figure 9A.

The sun glint deletion method utilizing masks is not applicable to pushbroom cameras
due to the absence of an alignment process for overlapping images and the generation of
point clouds during orthomosaic construction, as seen in frame cameras. Additionally, for
Nano-Hyperspec, SWIR correction methods are not viable due to the absence of bands
within this spectrum range on the camera. However, an alternative approach involves
utilizing the bands around 950 to 1000 nm, as present in the camera. For those spectral
bands, it is reasonable to assume that reflectance values remain negligible for turbid water
presenting lower TSS concentration than 50 mg L~1.
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Figure 8. Dense point cloud depiction, created using the Pix4D Mapper software, originating from
the Sequoia camera images in Amazon. The frame (A) emphasizes a randomly selected point within
the mapped region, with all corresponding covering images marked by the green line. In frame (B),
various images covering this point are showcased, both with and without sun glint presence.
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Figure 9. Orthomosaic comparison of NIR asSR from the Sequoia camera in Amazon, depicting (A) the
pre-processed state and (B) the post-processed condition removing images presenting sun glint.
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Although this work presents a method for eliminating the effects of sun glint on
the orthomosaic through masking, it is important to highlight other correction methods
available in the literature. Ref. [50] tested four conventional methods commonly used for
correcting sun glint in multispectral drone imagery for monitoring water transparency,
with model correlations ranging from 0.65 to 0.92. In addition, innovative approaches
have been proposed, particularly those utilizing machine learning techniques. For instance,
ref. [51] compared the effectiveness of traditional methods with deep learning methods in
the context of high-resolution UAV imagery. The results indicated that while traditional
methods face challenges when applied to UAV imagery, deep learning methods show
considerable promise. Finally, it is worth noting the methodology proposed by [52], which
introduce a novel sun glint correction pipeline. This approach integrates a semantic
segmentation network based on foreground attention (FANet) with pixel propagation
based on optical flow. However, these methodologies have primarily been applied to water
or UAV imagery.

3.3. Radiometric Accuracy and TSS Monitoring by Multispectral and Hyperspectral Cameras

In this section we provide an overview of the insights gained from the remote sensing
data surveys conducted using both in situ and airborne platforms equipped with multi and
hyperspectral cameras. The primary goal of these efforts was to assess the accuracy of these
approaches in monitoring TSS. In situ radiometric data are regarded as the benchmark for
field reference, as they are acquired following rigorous acquisition protocols that minimize
atmospheric interferences and sun glint effects. Consequently, these measurements serve
as a dependable tool for evaluating the precision of orbital and airborne platforms across a
range of applications.

Figure 10 illustrates Ry in situ spectra captured in the field using the TriOS Ramses
spectroradiometer. It also presents correlation coefficient (r) and determination correlation
and determination coefficients (R? and r) values for each band concerning TSS concentra-
tions. These r and R? values signify the strength of the connection between the reflectance
spectra and TSS levels, offering a quantitative evaluation of the spectral bands’ TSS estima-
tion accuracy. Notably, the NIR region exhibits the most significant correlation. Coefficient
values above 0.9 across a wide range of NIR and red-edge (750 nm to 950 nm) indicate a
robust relationship between the R spectra in these bands and TSS concentrations.
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Figure 10. In situ water remote sensing reflectance and the associated r and R? values in relation to
the TSS concentrations for each band (~2 nm). Grayscale variations correspond to TSS levels. TSS
range: 0.6-130.7 mg L=, N: 88.
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The reflectance values in waters containing TSS are complex and highly dependent on
the specific characteristics of the water body. The spectral behavior of TSS is influenced
by the scattering and absorption of phytoplankton particulates, the absorption of organic
particulates, and the scattering of inorganic minerals. The scattering process itself is further
influenced by several factors, including the size, shape, and mineralogical properties of
the particles. Due to these complexities, developing a universal equation to estimate TSS
remains a challenging task [7,53].

Reflectance within the NIR range is primarily influenced by TSS backscattering, as
light absorption process by OACs is generally absent at thoses wavelengths [54]. Earlier
studies involving field spectra, such as [55], have already showcased a robust correlation
between reflectance within the 700 to 800 nm and TSS concentrations in reservoirs within
the Mississippi region. Furthermore, [56] conducted research indicating a significant
correlation between reflectance at 810 nm and TSS concentration in boreal lakes across
Europe, encompassing TSS values ranging from 0 to 64 mg/L. Manned aerial surveys
employing hyperspectral cameras have also proven effective in TSS monitoring through
NIR bands, as demonstrated by [56,57] in river and lake settings. These findings emphasize
the NIR’s crucial role as a valuable tool for accurate TSS estimation in aquatic environments.

Despite the high correlation between NIR and TSS for in situ and airborne spectra, it
is a significant challenge for orbital platforms, which often encounter issues with adjacency
effects and atmospheric correction residues due to the water low albedo [2]. Numerous
investigations have indicated diminished radiometric accuracy in the NIR bands of satellite
images above continental waters. For instance, studies conducted by [58] (in the Amazon
and by [59] in Paranod reservoir have highlighted this concern.

While the NIR region is commonly utilized for TSS monitoring, it’s crucial to em-
phasize its limitations in situations of extremely high or low concentrations. At elevated
concentrations, reflectance saturation occurs. A study by [33] examined TSS (5-620 mg L)
and R data at 279 stations across the Amazon basin. The comprehensive analysis revealed
that levels surpassing 600 mg L~ lead to NIR saturation, indicating that the NIR/RED
band ratio is more suitable for addressing this scenario. In the context of low concentrations,
a recent study by [47] demonstrated that algorithms employing visible spectrum bands
were more effective in estimating concentrations below 20 mg L™}, particularly in high
spatial resolution settings.

3.3.1. Multispectral Camera

Incorporating in situ Rys data obtained during campaigns in Corumbd IV reservoir, in
the Amazon, and the Sdo Francisco Basin (Table 1) facilitated the assessment of asSR data
accuracy from the utilized cameras. For the Sequoia camera, a comparison was conducted
between asSR values and band values simulated from Rys data, illustrated in Figure 11.
The dispersion across values reveals robust radiometric consistency, particularly within
the RED-EDGE and NIR bands, which typically present challenges for orbital sensors.
This outcome reflects positively on the Sequoia camera’s capability to deliver reliable TSS
estimation information.

Figure 12 highlights an even stronger correlation between NIR and TSS. In all in-
stancesthe correlations exhibit R? values surpassing 0.9 (RMSE: 9.8 mg L™!). As a result,
the subsequent step involved the implementation of predictive models employing solely
the NIR band for TSS mapping utilizing multispectral camera.
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Figure 12. Scatter plot depicting the relationship between asSR values of the Sequoia camera bands
and TSS concentrations (Table 1).

Figure 13 illustrates TSS mapping generated using the Sequoia camera across distinct
biomes—the Cerrado (A and B) and the Amazon (C and D). The visual depiction accen-
tuates fluctuations in TSS concentration, notably showcasing significant distinctions at
the confluence point of the Solimoes River’s turbid waters with the darker waters of the
Negro River (C). Correspondingly, regions where turbid waters from the Solimoes River
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intersect with dark waters from igarapés and fishponds are also highlighted (D), along
with the capability to identify suspended sediment inputs from tributaries into reservoirs,
potentially influencing the siltation process (A and B).

TSS mg.l-1
O - 10 [ 10 - 257125 - 50 [ 50 - 90 1N > 90
Service Layer Credits: Source: Esn, DigitalGlobe. GeoEye, Earthstar Geographics, CNES/Asbus DS, USDA, USGS, AeroGRID, 1GN, and the GIS User Community

Figure 13. TSS maps depicting different areas, including: (A,B) confluence area between tributary
rivers and the Corumbd IV and Paranod reservoirs, emphasizing the sediment plume from urban
drainage; (C) high concentrations in the Solimdes River and low concentrations in the Negro River,
and the mingling of waters between the two rivers (C); (D) Contrast between the turbid waters of
the Solimdes River and certain artificial ponds, juxtaposed with the clear waters of igarapés and other
artificial ponds.

3.3.2. Hyperspectral Camera

Regarding the Nano-Hyperspec camera, Figure 14 compares in situ Ry spectra with the
Nano asSR values post empirical line calibration. Taking the Ry (top graph) as a reference,
the similarity between the two graphs demonstrates the efficiency of the calibration of the
Nano-Hyperspec camera using the empirical line method.

The observation that the most substantial correlations with TSS occur in the NIR
wavelengths concurs with earlier findings, underscoring the pivotal role of this spectral
range in accurately gauging TSS concentrations R? values increased from the blue bands to
the NIR bands. At shorter wavelengths, a saturation of reflectance was observed, which
does not effectively discriminate between varying concentrations of TSS. The relationship
between TSS and reflectance becomes better adjusted (R% > 0.8) in the NIR bands, where
Rrs or asSR is primarily influenced by the backscattering of suspended particles [54].
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Figure 14. (above): R in situ spectra (Equation (1)) acquired by the Ramses spectroradiometer
during the field campaign in Brumadinho. (below): asSR spectra of the Nano-Hyperspec camera
(Section 2.2) acquired during the helicopter aerosurveys in Brumadinho. Both graphs also include the
plotted r and R? values concerning TSS concentrations for each respective band. TSS: 0.6-30.2, N: 18.
The Ry spectra (above) are taken as a reference. Therefore, it can be concluded that the asSR spectra
(below) were consistently calibrated, as indicated by their similarity to the upper graph.

Following the correlation analyses with the spectral data, the estimated TSS was
calculated using a semi-empirical model derived from the linear regression equation
applied to the Rrs832 nm (RMSE: 3.5 mg L~1). TSS maps for a long stretch of the Paraopeba
River (~38 km), the entire Retiro Baixo reservoir (~86 km?), and an initial part of the Trés
Marias reservoir (~31 km?) are presented in Figures 15 and 16. These maps illustrate a
consistent distribution of TSS within the study area. For instance, Figure 15 highlights the
increase in TSS levels in the Paraopeba River following the confluence with the tailing’s
intake, attributed to the high sediment load from the dam breach, where the river flows in an
easterly direction. Additionally, TSS levels decrease along the Paraopeba River downstream
toward the Retiro Baixo and Trés Marias reservoirs (Figure 16).
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Figure 15. TSS map of the Paraopeba River, accentuating the confluence area with the tailing’s slurry.
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Figure 16. TSS map of the Trés Marias and Retiro Baixo reservoirs, indicating low concentrations and
confirming that the tailings sludge did not reach the reservoirs or the Sio Francisco River.
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As reiterated from Section 2.4, the analysis of these TSS maps serves as pivotal guid-
ance for comprehending and addressing pertinent matters. The increase in TSS levels
downstream of the Paraopeba River following the confluence with the impacted stream
signifies the presence of tailings along the river’s course. Conversely, the observed low
TSS levels in the Retiro Baixo and Trés Marias Reservoirs indicates that the tailings did not
extend to the Sdo Francisco River until the time of monitoring.

4. Final Considerations: Guidance for Mitigating Sun Glint Effects and
Optimizing UAV Platforms in TSS Monitoring

This study demonstrates the effectiveness of small airborne cameras in monitoring TSS
in inland waters, with a particular focus on improving radiometric accuracy through sun
glint mask techniques. The proposed methodology integrates feasible masking approaches
to mitigate sun glint effects, ensuring more reliable retrieval of reflectance values. The
results underscore the importance of tailored correction techniques in aquatic remote
sensing, paving the way for more accurate and consistent monitoring of TSS dynamics
in diverse inland water systems. Sun glint distorts the true spectral response of water
column, compromising data accuracy when monitoring TSS or other in-water components.
High viewing angles and careful flight planning—such as aligning flight paths against
the sun or using sensor angles between 30° and 60°—are effective strategies to mitigate
sun glint effects, particularly when the solar zenith angle exceeds 46°. If avoidance is
not possible, applying masks or performing sun glint correction is a feasible alternative.
Common correction techniques use NIR band as a reference; however, these methods are
less effective in turbid waters where NIR reflectance influenced by TSS. In such cases,
SWIR band may offer a viable solution. Masks to exclude sun glint-affected regions
during orthomosaic construction provide an additional corrective approach, though this is
primarily applicable to frame cameras. Beyond traditional methods, emerging techniques
such as machine learning and neural networks for semantic segmentation demonstrate
significant potential for enhancing sun glint correction in UAV-acquired imagery.

Cameras adapted for UAVs exhibit distinct characteristics that can be both advan-
tageous and challenging for monitoring TSS, as any OAC, depending on the conditions.
Frame cameras provide a practical solution for monitoring smaller areas but encounter
significant difficulties in regions of high visual homogeneity, where image alignment and
orthomosaic generation become problematic. The presence of solar reflections and lighting
variations, particularly in turbulent flow environments, exacerbates alignment errors. In
contrast, pushbroom cameras do not require extensive image overlaps, making them more
effective for covering large aquatic areas. However, their operation is more complex and
necessitates precise alignment between flight speed and camera trigger settings to ensure
optimal performance.

Multispectral and hyperspectral cameras have proven effective for monitoring total
suspended solids (TSS), with the near-infrared (NIR) band playing a pivotal role in con-
centration estimation. Calibration and the application of semi-empirical models enable
accurate assessments in regions where rivers and reservoirs converge, areas of high con-
trast in the Amazon, and zones impacted by events such as the Brumadinho dam collapse.
However, challenges remain, particularly with reflectance saturation at very high TSS
concentrations and in areas with low sediment levels, which can hinder precise monitoring.

Based on the theoretical foundation, conducted tests and presented outcomes, the
recommendation for an optimal small camera suited for airborne TSS monitoring in inland
waters, in terms of spectral resolution, is as follows:
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e  Significant coverage of the NIR region (approximately 700-900 nm) due to its strong
correlation with TSS concentrations. More precisely narrower spectral bands between
830 and 870 nm are advisable due to the high robust correlation with TSS;

e Adequate coverage of the visible spectrum, including the RED and GREEN bands, to
effectively address low TSS concentrations (below 20 mg/L~1);

o  Consideration of spectral bands and resolutions that address the saturation issue in
cases of extremely high TSS concentrations (above 600 mg/L~1).

This camera configuration would facilitate reliable and comprehensive TSS monitoring
in continental waters, encompassing a wide range of concentration levels.

Regarding sun glint correction procedures, certain bands are not recommended for
frame cameras due to the possibility of addressing this phenomenon through mask applica-
tion. However, such correction via masks is impractical for pushbroom cameras. Thus, the
recommendation is to employ bands within SWIR or NIR wavelengths, specifically above
950 nm. This recommendation is based on the presumption that the impact of OACs effects
on the reflectance spectra is negligible within these wavelength ranges.

The objective of this study was to establish an optimal selection of UAV platforms for
monitoring TSS in inland waters. Considering the intricate nature of the cameras’ image
acquisition geometry systems and the diverse range of UAV types, encompassing factors
such as flight autonomy, stability, and safety during take-off and landing over various
water body sizes. The identification of ideal platform combinations is tailored for two
distinct hypothetical scenarios based on the area of inland water bodies:

(1) Small water bodies, primarily encompassing small to medium-sized rivers, fishponds,
small water reservoirs or lakes, and specific portions of larger lakes and reservoirs
like confluence areas with tributary rivers, an optimal setup involves:

e  UAV Type: Multi-rotor UAVs due to their enhanced stability and safer take-off
and landing capabilities over water.

o  Camera Type: frame cameras are better adapted, preferably with a global shut-
ter imaging mechanism. This choice is facilitated by the capability of digital
photogrammetry software to construct orthomosaics from images captured in
heterogeneous environments.

(2) Large water bodies, encompassing significant rivers like the main rivers within Brazil-
ian hydrographic basins, as well as complete or partial sections of medium to large
lakes and reservoirs. The following approach is recommended:

e UAV Type: Fixed-wing UAVs provide superior autonomy compared to electric
multirotor. However, they come with trade-offs such as lower stability and
reduced safety during take-off and landing. Vertical Take-Off and Landing
(VTOL) UAVs offer the advantage of both high flight autonomy and safe take-off
and landing in multi-rotor mode. While their fixed-wing mode may have lower
stability, it ensures longer flight autonomy.

e  Camera Type: In cases where the camera’s FOV captures homogeneous water
areas exclusively, such as those described above, the use of frame camera im-
ages with digital photogrammetry software to construct orthomosaics is not
feasible. Instead, pushbroom cameras coupled with high-flying UAVs present a
viable solution.
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