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Fine-scale sampling unveils diazotroph patchiness

in the South Pacific Ocean
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Diazotrophs are important contributors to nitrogen availability in the ocean. Oceanographic cruise data accumulated over the past
three decades has revealed a heterogeneous distribution of diazotroph species at regional to global scales. However, dynamic fine-
scale physical structures likely affect the distribution of diazotrophs at smaller spatiotemporal scales. The interaction between fine-
scale ocean dynamics and diazotrophs remains poorly understood due to typically insufficient spatiotemporal sampling resolution
and the lack of parallel detailed physical studies. Here we show the distribution of five groups of diazotrophs in the South Pacific at
an unprecedented resolution of 7-16 km. We find a patchy distribution of diazotrophs, with each group being differentially affected
by parameters describing fine-scale physical structures. The observed variability in species abundance and distribution would be
masked by a coarser sampling resolution, highlighting the need to consider fine-scale physics to resolve the distribution of

diazotrophs in the ocean.
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The surface ocean is constantly stirred by currents that swirl and
mix different seawater masses creating a dynamic mosaic of
biogeochemical properties.’ Numerical modeling and satellite
data show that “fine-scale” structures such as filaments and eddies
(with typical spatiotemporal scales of 1-100 km and days-weeks)
impact the distribution of phytoplankton and carbon export in the
ocean.>™ While these remote approaches provide synoptic views
at large spatial scales, at-sea sampling remains imperative to
resolve the diversity, metabolism and trophic interactions of
microbes at finer scales. Yet, the typical spatiotemporal sampling
resolution is too coarse to resolve fine-scale processes.

Understanding the effect of fine-scales on biogeochemically
relevant microbes is of particular importance. Dinitrogen (N,)
fixers or “diazotrophs” provide a significant source of bioavailable
nitrogen to the ocean.® Diazotrophs may accumulate in antic-
yclonic eddies,”® where eddy pumping deepens isopycnals
impoverishing surface waters in inorganic nitrogen presumably
favoring diazotroph growth.” However, diazotrophs also accumu-
late in cyclonic eddies where low nutrient concentrations are
attributed to wind-driven Ekman pumping.'® Such complex
interactions between fine-scale physics and diazotrophs cannot
be understood from satellite data alone.

Diazotrophs have a variable tolerance to biogeochemical
conditions. For example, photosynthetic cyanobacteria such as
Trichodesmium and UCYN-B abound in oligotrophic (sub)tropical
waters, while UCYN-A's distribution spans the tropics to polar
seas.® Non-cyanobacterial diazotrophs cannot photosynthesize,
and thus are regulated by different drivers to obtain carbon and
energy.'’ With such divergent physiologies, it is unlikely that
different diazotrophs respond to fine-scale forcing similarly.
Resolving these ambiguities requires coupling fine-scale physical

measurements and diazotroph activity/abundance data at high
spatiotemporal resolution. The vast majority of published diazo-
troph data were obtained at locations ~160 km apart (median
distance between stations in the diazotroph database'?). Robidart
et al.” quantified diazotrophs with an ecogenomic sensor drifting
over a single eddy at a resolution of ~30 km. More recently, Tang
et al.'* showed underway diazotroph activity/abundance data
with ~18 km resolution, but the effect of fine-scale physics was not
taken into account.

Here we demonstrate the fine-scale distribution of diazotrophs
in three zones of intense fine-scale activity in the South Pacific
(TONGA cruise doi: 10.17600/18000884; Fig. 1). Each zone was
selected for high-resolution sampling according to satellite and
Lagrangian product maps received onboard on a daily basis.'®
Maps included absolute dynamic topography (ADT), used to
compute geostrophic velocities; finite-size Lyapunov exponents
(FSLE), which depict transport barriers created by currents that can
represent ecological boundaries; and the Okubo-Weiss parameter
(OW), which distinguishes vorticity-dominated from strain-
dominated zones (e.g., eddies vs. non-eddies) (Supplementary
Information; Table S1; Fig. S1). These parameters are thus useful to
quantify fine-scale structures and to study their covariability with
plankton distribution [e.g., *]. Planktonic biomass was collected
with an automated filtration system at an unprecedented
resolution of 7-16 km. DNA extracted from the filters was used
to quantify five diazotroph groups (Trichodesmium, UCYN-A1,
UCYN-B, UCYN-C, and Gamma A) by quantitative PCR targeting
the nifH gene, and, only in zone 3 nutrient concentrations and N,
fixation rates were also measured (Supplementary Information).

Our results reveal a patchy distribution of diazotrophs, driven by
a heterogeneous effect of fine-scale physical parameters on each
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Fig. 1

Fine-scale resolution abundance of diazotrophs along three selected sampling zones. The top image shows a chlorophyll MODIS

composite averaged for November 2019 at a resolution of 4 km and the location of the three selected sampling zones. The three lower panels
(in dotted squares) show the abundance of diazotrophs (Trichodesmium, UCYN-A1, UCYN-B, UCYN-C, and Gamma) in each selected zone as
nifH gene copies per liter of seawater. Diazotroph abundances (nifH gene copies | ') are superimposed on absolute dynamic topography (ADT,
color scale) and geostrophic velocity (arrows). ADT data were retrieved for each zone on 2nd, 4th and 22nd November 2019 for zones 1, 2, and

3, respectively.
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Fig. 2 Lagrangian diagnostics parameters. a-c show values of the Okubo-Weiss (OW) in zones 1, 2, and 3, respectively. d—f show values of
finite Lyapunov finite size Lyapunov exponents (FSLE) in zones 1, 2, and 3, respectively. White dots represent sampling locations, station

numbers are also shown in white font.

group (Fig. 1; Fig. S2; Table S2). Trichodesmium correlated
positively with ADT (Fig. 1; Fig. S2; Table S2) and accumulated at
positive-negative OW transition and high FSLE regions located at
~170°E, 176 °E, and 171 °W in zones 1, 2 and 3, respectively; Fig. 2).
A particularly striking accumulation of Trichodesmium was
observed at the convergence of two counter-rotating eddies in
zone 2 (maximum 3 x 107 gene copies | '; Fig. 1), coinciding with
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high FSLE values (Fig. 2) and a steep change in temperature
(Fig. S3). The concentration of Trichodesmium at fronts depicted by
high FSLE is likely linked to intracellular gas-vesicles providing
them positive buoyancy.'® Previous concentrations of Trichodes-
mium along FSLE ridges uncoupled from significant N, fixation
rates have been interpreted as “passive” accumulations, i.e. fine-
scale dynamics affecting their distribution but not their activity.'”
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UCYN-A1 were negatively related to FSLE (Table S2) and to
Trichodesmium (Figs. S2 and S4), in agreement with the
antagonistic biogeographic trends of these two diazotrophs
witnessed at larger spatial scales.? In comparison to other
groups, the distribution of UCYN-A1 and UCYN-B was more
spatially homogeneous and independent of fine-scales (Fig. S2).
They were instead positively correlated to phosphate concentra-
tions (Fig. S5), suggesting an “active” response to nutrient inputs
induced by fine-scale dynamics®). These unicellular groups have a
large surface area:volume ratio allowing for efficient nutrient
utilization and higher growth rates than Trichodesmium,® which
could explain their faster response to limiting nutrient inputs
induced by fine-scale dynamics. UCYN-C were significantly related
to both ADT and FSLE (Table S2), but were the least abundant
group (Fig. 1), likely due to their presumed coastal origin.® Finally,
Gamma A were significantly related to ADT (Table S2) and
accumulated in frontal zones with high FSLE (Fig. 1), which agrees
with their apparent particle-attached lifestyle.'®

Although relatively high concentrations of phosphate were
measured east of ~175°W (Fig. S6), the%/ sustained only moderate
N, fixation rates (1-5nmol N I7' d™'; Fig. S6) likely due to a
scarcity of iron east of the Tonga volcanic arc.'® N, fixation rates
correlated positively with Trichodesmium and negatively with
UCYN-B (Fig. S5). Temperature and nutrients are typically invoked
to define diazotroph biogeography on regional/global scales.'?
These factors were remarkably homogeneously distributed in
zone 3 (Figs. S6-7), and did not vary significantly according to
fine-scale parameters (Fig. S7). Yet, diazotroph abundance
revealed high spatial variability at the fine-scale in zone 3 (Fig. 1).
Such variability would have gone unseen at a coarser resolution,
stressing the role of fine-scale dynamics in diazotroph distribution.

The patchiness observed likely responds to a combination of
bottom-up and top-down interactions between diazotrophs’
competitors, predators and their biogeochemical environment.
Understanding the controls imposed by fine-scales on other biotic
and abiotic drivers will enhance our understanding of current and
future diazotroph distribution and role in supplying new nitrogen
to the ocean.
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