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Abstract: This study examines urban flood vulnerability in Tetouan city, Northern Morocco,
using four machine learning models—Classification and Regression Tree (CART), Sup-
port Vector Machine (SVM), Logistic Regression (LR), and Factorial Discriminant Analysis
(FDA)—to identify and map flood-prone areas. The primary goal is to enhance flood
prevention efforts and minimize losses by determining the most vulnerable zones. The
analysis highlights consistent flood risk along the Martil River and eastern plains, areas
characterized by low-lying topography, dense drainage, proximity to canals, and recent
urban development. Despite some spatial variation among the models, all consistently
indicate low and very high vulnerability zones, with FDA identifying the highest propor-
tion of very high risk areas (58%), followed by CART, SVM, and LR (39%, 38%, and 37%,
respectively). In terms of model accuracy, SVM and LR outperform others, demonstrating
their effectiveness in flood risk delineation. The findings offer valuable insights for urban
planners and decision-makers in flood risk management, contributing to more informed re-
source allocation in Tetouan-Martil and potentially guiding similar strategies in comparable
regions globally.

Keywords: flood vulnerability; machine learning models; urban planning; risk management;
Tetouan

1. Introduction

From 2000 to 2019, floods accounted for 44% of all disasters, affecting 1.6 billion people
worldwide [1-6]. The combined effects of climate change and rapid urbanization exacer-
bate the frequency and severity of these floods, putting communities at risk and causing
disruptions in transportation, damage to infrastructure, and destruction of property [7-10].

Urban floods are classified as a major global natural disaster, causing approximately
20,000 deaths each year [6]. They are a distinct form of flooding triggered by inadequate

Urban Sci. 2025, 9, 70

https:/ /doi.org/10.3390/ urbansci9030070


https://doi.org/10.3390/urbansci9030070
https://doi.org/10.3390/urbansci9030070
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/urbansci
https://www.mdpi.com
https://orcid.org/0009-0001-5876-6223
https://orcid.org/0000-0003-3187-095X
https://orcid.org/0000-0002-7285-4270
https://orcid.org/0009-0005-3494-2949
https://orcid.org/0000-0001-5516-5679
https://doi.org/10.3390/urbansci9030070
https://www.mdpi.com/article/10.3390/urbansci9030070?type=check_update&version=1

Urban Sci. 2025, 9, 70

20f 18

drainage systems within urban environments. During heavy rainfall events or prolonged
rainy periods, runoff can exceed the capacity of drainage infrastructure, leading to such
floods [11]. In developing countries, rapid and unregulated urbanization often results in
human encroachment into active channels, altering the morphology of drainage networks
and thus promoting urban flooding [12].

Cities in northern Morocco are particularly affected due to annual precipitation
amounts (600 to 1000 mm) influenced by oceanic conditions, combined with a Mediter-
ranean climate characterized by violent storms [13,14]. Ongoing climate change poses an
additional threat to coastal urban environments, with observed sea level rise (between
3.2 and 4.2 mm/year over the period 2006-2018) and an increase in the frequency of extreme
rainfall events [15,16].

To minimize the damage caused by these floods, it is essential to develop vulnerability
maps of urban areas, a topic widely studied in recent scientific and technical literature [17]. The
success of risk assessment heavily depends on the modelling methods used. While traditional
physical models such as HEC-RAS and AutoRoute have proven effective [9,18-21], machine
learning techniques such as support vector machines, decision trees, logistic regression, and
linear discriminant analysis are gaining popularity for predicting natural hazards in data-
limited environments.

The emergence of advanced geographic data collection and analysis techniques offers
promising solutions to the challenges of urban flooding, particularly by integrating complex
factors such as climate change and urban characteristics. Machine learning algorithms can
significantly contribute to optimizing real-time flood management strategies [17,22-24].

The aim of this study is to use a combination of machine learning techniques to
evaluate the vulnerability of urban flooding in the coastal and tourist city of Tetouan, which
is experiencing rapid development. Vulnerability mapping is carried out by applying four
distinct machine-learning models, and their effectiveness, accuracy, and performance are
evaluated and compared using statistical validation indices.

2. Materials and Methods
2.1. Study Area

Tetouan is a coastal city of approximately 200,000 inhabitants located in the lower
valley of the Martil River in northern Morocco (Figure 1) [25]. It is nestled between several
mountains, namely the Rif of Jbel Dersa to the north, Jbel Ghorghiz to the south, and
the Ouadrasse hills to the west [26]. The Rif mountains form a natural barrier between
the Mediterranean coast and the interior of the country, influencing the hydrological
characteristics of the region and water resources. They are mainly composed of Jurassic
and Cretaceous limestones, sandstones, and shales [26]. The Mediterranean climate is
characterized by two distinct seasons: a cool and wet season from October to April, where
92% of the total precipitation (600 to 800 mm) occurs, and a hot and dry season from
May to September [27]. The steep slopes lead to rapid runoff during heavy rains, causing
periodic flooding in some parts of the city, mainly during the winter months (Figure 2) [28].
Low incomes, high unemployment rates, and inadequate housing increase vulnerability to
urban flooding.

Tetouan is, however, a central economic hub in the region with diverse activities in
agriculture, industry, and services. It is also a prominent tourist destination, offering a
wealth of historical sites and cultural attractions, some of which were recognised by e.g.,
UNESCO-WHC, 2021.
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Figure 1. Satellite view of study area and the locations of flooded and unflooded points, within (a)
Tangier Tetouan Al-Hoceima region.

Figure 2. (a—e) Examples of flooded streets and infrastructures in Tetouan city during 2020 and
2024 floods.
2.2. Data Collection and Description

The study was based on an inventory of locations recently affected by the floods, using
social networks and the local press (social media) that accompanied the events, and then
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supplemented by a field survey to gather precise information from eyewitnesses present
or living in the affected neighbourhoods. This inventory resulted in the identification of
120 points exposed and 120 not exposed to flooding; giving a total of 240 points. The
inventory was positioned on a Digital Elevation Model (DEM) with a resolution of 30 m
(ASTER DEM). Finally, nine geo-environmental factors were identified, followed by four
socio-environmental factors based on demographic databases, all of which are likely to
contribute to or control flooding in the study area [25]. All the data is managed using
QGIS3.20 software.

2.3. Selected Parameters

A wide range of interconnected factors influences urban flooding, yet no standardized
guidelines exist for their selection due to the complexity of the phenomenon. This study
leverages remote sensing and GIS techniques, combined with insights from previous re-
search and available local data, to identify key geo-environmental and socio-environmental
factors relevant to urban flooding. These factors were chosen based on their significance in
influencing flood dynamics and their accessibility within the study area. The integration
of these datasets provides a robust framework for analyzing flood risks, offering valuable
insights for urban planning and flood mitigation strategies.

2.3.1. Geo-Environmental Factors

Floods are influenced by a complex interplay of geo-environmental factors that shape
the dynamics of water flow, accumulation, and inundation. Understanding these factors
is critical for assessing flood susceptibility and implementing effective risk management
strategies. This study examines key geo-environmental parameters derived from Digital
Elevation Model (DEMs) and other geospatial tools to identify their roles in flood processes.

Elevation (Figure 3a) of the study area, the majority lies at low altitudes, ranging from
0 to 337 m. These low-lying regions, often near floodplains or coastal zones, are particularly
vulnerable to flooding due to slower water drainage and increased accumulation. Elevation
influences the direction and speed of water flow, as well as the extent of inundation, making
it a key parameter for assessing flood susceptibility.

Slope (Figure 3b) is a major physiographic feature for flooding contributing directly to
runoff velocity and sediment transport. It was generated from the DEM layer using QGIS
tools that calculates for each cell the maximum rate of change in elevation values relative
to its neighbors. Slopes ranged from 0° to 90°.

The exposition parameter (Figure 3c) is defined as the direction of the maximum slope
of the earth’s surface. It influences microclimate, sun exposure time, moisture retention,
evapotranspiration, rock weathering, vegetation cover and denudation processes, i.e., it
indirectly affects flooding. This parameter was also generated from the DEM layer using
QGIS tools.

The curvature (Figure 3d, unitless) of the land surface is a useful runoff factor for
detecting flood susceptibility. It was divided into three categories, namely concave (positive
values, where water tends to accumulate), convex (negative values, where water typically
tends to flows) and flat surface.

The Topographic Position Index TPI (Figure 3e, unitless) indicates the upper and lower
parts of the landscape, i.e., the difference in altitude of each cell in relation to the average
altitude of the surrounding cells. Positive values indicate areas above the surrounding cells,
i.e., ridges, while values near zero generally represent flat terrains, and finally negative
values indicate areas below the surrounding cells, i.e., valleys.
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Figure 3. Maps of geo-environmental factors of the study area (a) Elevation, (b) Slope, (c¢) Expo-
sition, (d) Curvature, (e) Topographic Position Index (TPI), (f) Topographic Wetness Index (TWI),
(g) Drainage density, (h) Distance to channel, (i) Land use.
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The Topographic Wetness Index TWI (Figure 3f, unitless) reflects the amount of
water accumulated in each pixel of the watershed. In other words, it reflects the effect of
topography on the spatial distribution of sources saturated to generate runoff. The TWI
is also expressed as the power of surface runoff, such as flow velocity, transport capacity
and potential flow. Typically, it ranges from 2 to 6 in steep, well drained areas, and can
exceed 10 in flat or low-laying regions with significant water accumulation potential. It
was generated using Grass 7.6.1 GIS tools.

Drainage density (km/km?, Figure 3g) represents the length of watercourses in kilo-
metres per unit area in square kilometres (km?). It reflects the permeability of the soil
surface and the infiltration rate, and therefore controls the intensity of runoff, which is
directly linked to flooding. It was calculated from the drainage network using the linear
density tool in the QGIS software.

The distance to channel (Figure 3h) determines the preponderant role of a dense
hydrological network in the occurrence of floods. It represents the distance between the
point of flooding and the drain. It was calculated using the Euclidean distance tool in
GIS software.

Land use (Figure 3i) has a strong influence on many types of natural hazards, including
flooding. This land-use map of Tetouan-Martil obtained from the Sentinel-2 imagery
satellite of the European Space Agency (ESA) at 10 m resolution. This annual Land-Use
map generated using artificial intelligence, using a supervised massive training dataset.

2.3.2. Socio-Environmental Factors

The socio-environmental factors associated with the study area are primarily derived
from demographic datasets for the Tangier-Tetouan-Al Hoceima region, as published by
the Moroccan Haut Commissariat au Plan [25]. These factors provide critical insights into
human-environment interactions and their contribution to flood risk, emphasizing the need
for urban planning and management strategies.

Building density: This parameter evaluates the concentration of structures within
a given area, subdivided into four classes—very low, low, medium, and high. Very low
density areas are predominantly rural or sparsely built, with large open spaces. Low den-
sity areas are characterized by scattered development, such as suburban zones. Medium
density areas feature a balanced mix of residential and commercial buildings, while high
density areas represent densely populated urban centres with compact construction pat-
terns (Figure 4a).

Population density: This parameter is divided into four classes—low, medium, high,
and very high (Figure 4b). Low density zones are characterized by scattered populations,
such as rural communities. Medium density areas include moderately populated suburban
neighbourhoods. High density zones are typically urban areas with substantial residential
and commercial activity, while very high density zones represent central urban cores or
heavily populated districts.

Building types: Structures are classified into eight categories to reflect diverse land-
use patterns in the region (Figure 4c): Residential areas, zones primarily composed of
housing units for urban or suburban populations. Apartment zones, densely packed
housing complexes. Industrial areas, regions allocated for manufacturing, warehouses.
Construction areas, active sites of new building projects or infrastructure development.
Farmland areas, agricultural zones dedicated to crop cultivation. Forest areas, regions
covered by natural or planted vegetation. Bare land, undeveloped areas with no vegetation
or human activity. Cemeteries, areas designated for burial purposes, typically with minimal
structural development.
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Figure 4. Maps of socio-environmental factors of the study area (a) Building density; (b) Population
density; (c) Building types; (d) Building state.

Building state: In Tetouan, buildings are categorized into four distinct conditions based
on their age and state of repair (Figure 4d): Recently constructed buildings, structures
completed between six and fifteen years ago, typically in good condition and meeting
modern construction standards. Older buildings, structures that were completed more than
fifteen years ago and may exhibit moderate signs of wear and aging. Old and deteriorated
buildings, refers to structures located in the historic medina or those in an advanced state
of disrepair, often posing significant risks during extreme weather events due to structural
vulnerabilities. Vacant land, areas with no built structures, representing potential sites for
urban expansion or green space development.

2.4. Data Analysis and Modelling

Four machine learning approaches were used to establish flood vulnerability, namely
(1) Factor Discriminant Analysis (FDA), (2) Logistic Regression (LR), (3) Classification and
Regression Tree (CART), and (4) Support Vector Machine (SVM).

Discriminant Factor Analysis is an interpretative and predictive statistical method
involving a defined qualitative variable [29,30]. In addition to factor analysis, it is a super-
vised classification method. The aim is to describe, explain and predict the membership of
a group or class of a set of observations (flood, landslide, etc.) based on a series of predictor
variables (latitude, slope, exposure, drainage density, type of building, etc.).

Logistic regression is a statistical method for analysing a set of data in which one or
more independent variables determine a result. The aim is to find the model best suited
to describing the relationship between the dependent and independent variables. Here a
logistic regression model was used to predict the probability of occurrence (score = 1) or
non-occurrence (score = 0) of an urban flood, based on the optimisation of the regression
coefficients. This score always varies between 0 and 1. If the predicted value is above a
given threshold, the event is likely to occur, whereas if the predicted value is below the
same threshold, the event will not occur [12].
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Classification and regression trees, first introduced by [31,32], are efficient and power-
ful methods for addressing classification problems [33], and have been successfully applied
to urban flood classification [12]. Their application involves four key steps: (1) building
the tree, where the data is split recursively based on decision rules to maximize classifica-
tion accuracy; (2) stopping tree building, which occurs when further splits fail to provide
significant improvement in classification, typically determined by thresholds for impurity
reduction or information gain to avoid overfitting; (3) pruning the tree, where unnecessary
branches are removed to simplify the model and enhance generalizability; and (4) selecting
the optimal tree, which balances complexity and performance to effectively classify flood
or no-flood classes [34].

The support vector machine is a supervised machine learning technique that was
developed in the context of statistical learning theory [35]. It has been shown to be more
effective than several other machine learning methods in modelling natural hazards and
identifying areas at risk [12,24,33,36]. Its objective is to find an optimal hyperplane (or
decision boundary) in an N-dimensional space (where N is the number of variables) that
distinctly classifies floodable and non-floodable points. The optimal linear hyperplane is
used to separate the original input space, and the kernel function is used to transform the
data into two classes made up of at-risk and non-at-risk points (0, 1). SVM performance
depends on appropriate kernel functions, including PoLynomial kernel (PL), Sigmoid
Kernel (SK), Radial Basis Function (RBF) and LiNear Kernel (LN). According to several
studies [37,38], the RBF outperforms the other kernels in flood forecasting. It is this RBF
function that has been used here [24,36].

The selection of these methods is based on their proven efficiency and widespread
use in mapping susceptibility and vulnerability to natural hazards. Their simplicity in
construction, use, and interpretation, combined with straightforward optimization, makes
them particularly suitable for this type of analysis.

For each method, hyper-parameters were automatically optimized through integrated
algorithms to ensure optimal settings during training, which was performed on 70% of
the dataset. For instance, Factor Discriminant Analysis (FDA) adjusts the coefficients of
discriminant variables to simplify the process. Logistic regression optimizes parameters
such as the type of regularization (L1 or L2) and the convergence threshold. Classification
and Regression Tree (CART) adjusts criteria like tree depth, the minimum number of
samples per leaf, and the splitting criterion, such as Gini index or entropy. Finally, Support
Vector Machine (SVM) optimizes parameters like regularization (C), kernel type (linear
or RBF), and, for non-linear kernels, the gamma parameter. Figure 5 shows a flowchart
simplifying the methodological approach to modelling and mapping areas vulnerable to
urban flooding.

2.5. Model Validation Methods
2.5.1. Repeated Hold-Out Method

The Hold-Out method is a commonly used technique for validating machine learning
models [39]. It divides a data set into two parts, one for training and the other for validation.
The repeated Hold-Out method is a variant. It overcomes its limitations by averaging model
performance over several iterations with different data partitions [40]. This provides a
more stable estimate of model performance [41,42]. Here, we used the Repeated Hold-Out
method, with 10 random partitions of data, 70% for training and 30% for validation. The
four machine learning methods are trained on the training set and validated on the test
set for each partition, with the performance of each model calculated using the arithmetic
mean Equation (1):
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where P represents the average value of a performance metric, which can be the total
accuracy of the model or other metric; k is the number of splits (where k = 10); and Pi is the
result of the performance metric of each split.
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Figure 5. Flow chart of the adopted methodology for preparing flood vulnerability maps.

2.5.2. Performance Metrics and Evaluation Criteria

The performance of the classification models was evaluated using the confusion
matrix (Table 1) by comparing the model’s predicted results with the actual results, based
on four criteria: ACCuracy (ACC; Equation (2)), SenSiTivity (SST; Equation (3)), SPeciFicity
(SPF; Equation (4)), and PReCision (PRC; Equation (5)) [43]. Higher values of ACC, SST,
SPE, and PRC indicate better model performance [44]. The models were also evaluated
using Receiver Operating Characteristic (ROC) curve statistics, which measure the model’s
ability to distinguish between flood-prone and non-flood-prone areas. Unlike accuracy,
which assesses overall correctness, the ROC curve evaluates the trade-off between true
positive and false positive rates across different classification thresholds. It is widely used
as a standard metric for assessing spatial modeling performance. The ROC-AUC value
represents the probability that a randomly chosen positive instance (flood occurrence) is
ranked higher than a randomly chosen negative instance (no flood occurrence). Based on
ROC curve statistics, models were classified as poor (0.5-0.6), fair (0.6-0.7), good (0.7-0.8),
very good (0.8-0.9), and excellent (0.9-1).

TP + TN
ACC = TP + TN + FN + FP )
TP
SST = TP + FN ®)
SPF ™ 4)

T TN L FP



Urban Sci. 2025, 9, 70 10 of 18
TP
PRC = ———— 5
TP + FP ®)
Table 1. Confusion matrix of a binary classification.
Predicted Positive Predicted Negative
Observed Positive True Positive (TP) False Negative (FN)
Observed Negative False Positive (FP) True Negative (TN)

2.6. Contribution Analysis of Parameters

The relative contribution of the variables was assessed using the Jackknife test [45],
which involves sequentially removing one predictive variable at a time and recalculating
the performance of each model to examine the amount of bias or information lost due to
the removal of that variable. The sensitivity of each indicator is assessed by the percentage
Decrease in overall ACCuracy (DACC).

ACCa — ACCi

DACCi =
! ACCap

x 100 (6)
where ACC,y represents the calculated value of the overall accuracy of the model using all
parameters. ACCi denotes the ACC value of the model when parameter i is removed from
the input dataset, and DACCi is the corresponding percentage decrease in ACC.

3. Results
3.1. Urban Flood Vulnerability Mapping

Using Geographic Information System (GIS 3.20) software, we developed four urban
flood vulnerability maps utilizing the CART (Classification and Regression Trees), SVM
(Support Vector Machine), LR (Logistic Regression), and FDA (Factorial Discriminant
Analysis) algorithms. Figure 6 presents a flood vulnerability assessment for the Tetouan-
Martil study area, classifying flood risk into four categories: low (0-0.25), medium (0.25-0.5),
high (0.5-0.75), and very high (0.75-1). This threshold is the most applicable and represents
the probability of an area being vulnerable to flooding, with 0 being no vulnerability and
1 being maximum vulnerability. The results from all four modelling algorithms exhibit
similar patterns of flood vulnerability (Figure 6). Notably, the areas classified as having a
very high flood probability contain the majority of the flood points identified during post-
flash flood field surveys. In contrast, areas with the lowest vulnerability of flooding include
most of the non-flood points, further validating the accuracy of the models. Although
each algorithm captures different spatial nuances, all the models consistently identify
flood-prone zones concentrated along the Martil River, which flows through the study area
from west to east. The eastern plain of the study area is particularly susceptible to flooding.
These high risk areas are primarily associated with low elevation, high drainage density,
proximity to water channels, and recent construction developments (Figure 6).

Regarding the spatial distribution of areas with high and low flood exposure, all the
vulnerability maps produced similar results, with the exception of the FDA model, which
identified a significantly larger portion of the study area as highly flood-prone. Among
the models, the FDA proved to be the most discerning, estimating that 58% of the study
area is at very high risk of flooding. In comparison, the SVM model estimated 39%, while
the CART and LR models provided slightly lower estimates of 38% and 37%, respectively
(Figure 7).
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Figure 6. Urban flooding vulnerability maps obtained from (a) Logistic Regression (LR); (b) Support
Vector Machine (SVM); (c) Classification and Regression Tree (CART) and (d) Factorial Discriminant
Analysis (FDA).
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Figure 7. Percentage of area occupied by each vulnerability class determined by the four models over
the study area: Classification and Regression Tree (CART); Support Vector Machine (SVM); Factorial
Discriminant Analysis (FDA); Logistic Regression (LR).

3.2. Contribution of Factors to Susceptibility Mapping

The evaluation of explanatory variables provides valuable insights into urban flooding
issues and offers environmental managers a practical framework for resource allocation
and planning in natural resource management. Although the vulnerability zones and
their distributions were largely similar, the contributing factors varied across models. The
CART model (Figure 8a) relied almost exclusively on elevation as the primary determinant,
i.e., in this case, elevation played a key role in defining flood-prone areas. In the SVM
model (Figure 8b), drainage density emerged as the most significant factor, followed
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by elevation, exposure, and slope. The FDA model (Figure 8c) prioritized elevation,
slope, and drainage density as the top three contributing parameters. Using Factorial
Discriminant Analysis (FDA), these three variables were crucial in shaping the flood
susceptibility analysis. Elevation, slope, exposure, and curvature together shaped the LR
model predictions (Figure 8d). Across all four models, socio-environmental factors—such
as building density, population density, building type, and building condition—had little
influence on the flood risk predictions.

@) (b)

© (d)

Figure 8. Contribution of descriptive parameters for each model (DACC %, Equation (6)) for
(a) Classification and Regression Tree (CART), and (b) Support Vector Machine (SVM), (c) Factorial
Discriminant Analysis (FDA), (d) Logistic Regression (LR).

3.3. Model Validation for Flood Vulnerability Prediction

The comparison of the four urban flood models—LR, CART, SVM and FDA—provides
valuable insights into their performance, based on statistical analyses of both training
(Table 2) and testing (Table 3) datasets. LR consistently performed well, achieving an
accuracy of 84.88% during training and 80.83% during testing. It showed balanced metrics
across the board: specificity (84.57% in training, 78.81% in testing), sensitivity (85.15%
and 82.94%), precision (84.81% and 79.33%), and ROC-AUC (0.93 and 0.90). This level of
consistency reflects strong generalization, meaning the model is capable of handling new,
unseen data with minimal performance degradation.

CART, on the other hand, achieved high accuracy during training (85.95%) but suffered
a notable drop in testing accuracy (79.17%), indicating overfitting. Overfitting occurs when
a model is too closely tailored to the training data, resulting in a weaker performance on
unseen data. This was evident in CART’s drop in specificity (85.8% to 77.3%), sensitivity
(86.1% to 81.3%), precision (86.6% to 77.6%), and ROC-AUC (0.92 to 0.83).

SVM demonstrated only moderate declines from training to testing: accuracy (84.82%
to 80.69%), specificity (85.8% to 81.5%), sensitivity (83.9% to 79.8%), precision (85.8% to
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80.6%), and ROC-AUC (0.92 to 0.89). This reflects good generalization, as the model
maintains its effectiveness on new data with minimal reductions in performance.

Table 2. Predictive capability of urban flood models using the training dataset.

Statistical Index FDA LR CART SVM
Accuracy (%) 83.87% 84.88% 85.95% 84.82%
Specificity (%) 75.75% 84.57% 85.76% 85.77%
Sensitivity (%) 91.79% 85.15% 86.08% 83.86%
Precision (%) 79.52% 84.81% 86.61% 85.81%

ROC Curve 0.94 0.93 0.92 0.92

Table 3. Predictive capability of urban flood models using the testing dataset.

Statistical Index FDA LR CART SVM
Accuracy (%) 74.03% 80.83% 79.17% 80.69%
Specificity (%) 69.94% 78.81% 77.33% 81.47%
Sensitivity (%) 77.56% 82.94% 81.26% 79.76%
Precision (%) 72.51% 79.33% 77.56% 80.59%

ROC Curve 0.94 0.90 0.83 0.89

FDA, despite having the highest ROC-AUC values (0.94 in training and in testing),
showed significant declines in other performance metrics such as accuracy (83.9% to 74%),
specificity (75.8% to 69.9%), sensitivity (91.8% to 77.6%), and precision (79.5% to 72.5%).
These drops suggest that FDA may suffer from overfitting, excelling on training data but
failing to generalize to new data. While the high ROC-AUC reflects its ability to distinguish
between classes, it does not guarantee overall prediction accuracy. The sharp declines in
other metrics indicate the model may be overly complex or sensitive to noise, requiring
refinement to improve generalization

In conclusion, LR and SVM emerged as the most reliable models due to their balanced
trade-off between accuracy and ROC-AUC, ensuring both strong predictive power and
generalization capability. Unlike FDA and CART, which achieved the highest ROC-AUC
but exhibited a significant drop in accuracy, LR and SVM maintained stable performance
across all metrics, with accuracy above 80% and ROC-AUC around 0.90. This consistency
indicates that they effectively classify flood-prone areas while minimizing misclassifica-
tions. Meanwhile, CART and FDA required further refinement and validation, as their
performance showed signs of overfitting and instability, leading to reduced reliability when
applied to new data.

The performance of these models was further validated during the flooding event that
struck the Tetouan region from 30 March to 1 April 2024. This catastrophic event, marked
by intense rainfall (recording a pluviometry of 121 mm in Tangier Tetouan Alho-ceima),
caused widespread flooding, disrupting public services, necessitating evacuations by civil
protection teams, and resulting in significant material damages. Crucially, the flood-prone
areas identified by LR and SVM models aligned remarkably well with the zones that
experienced flooding during this event. The models mapped vulnerable areas offered an
accuracy test in real-world conditions, underscoring their practical value in identifying and
mitigating risks.
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4. Discussion

Advanced statistical and machine learning models were used to assess urban flood
vulnerability in the Tetouan-Martil region. Logistic Regression (LR) and Support Vector
Machines (SVM) proved particularly effective, demonstrating high predictive accuracy.
These results, validated through comparative analysis with other models such as Classifica-
tion and Regression Trees (CART) and Factorial Discriminant Analysis (FDA), complement
the findings of previous studies [12,46]. For instance, Sellami et al. [46] identified 32% of
their study area as high-risk using SVM, an observation that closely aligns with our results,
particularly in lowland areas with dense drainage networks. These outcomes confirm the
robustness of our methodology and the reliability of AI/ML models for assessing urban
flood vulnerability.

While the machine learning models used in this study demonstrated strong predictive
performance, there are several limitations to consider. One primary challenge lies in the
globality of the models. Our current approach was designed (e.g., type of chosen factors)
specifically for the Tetouan-Martil region, and its applicability to other areas, particularly
those with different topographies or urban planning, needs further validation. Testing
these models on a broader scale, including various cities and watersheds in northern
Morocco, will help assess their robustness and adaptability to different geographical and
socio-economic contexts. Additionally, the model’s reliance on the selected variables geo-
environmental and socio-environmental could be expanded to incorporate more dynamic
or real-time data sources. This could include data on rapid urbanization or instantaneous
meteorological events, which would further refine the models’ predictive power. We plan
to explore these avenues in future work, seeking to integrate more comprehensive data sets
to improve the accuracy and real-time applicability of the flood predictions.

The integration of Artificial Intelligence (AI) and Machine Learning (ML) into flood
risk assessments represents a significant advancement in predictive accuracy and offers
substantial benefits for real-time decision-making. Techniques such as Artificial Neural
Networks (ANNs), Decision Trees (DTs), Convolutional Neural Networks (CNNs), and
Random Forests (RFs) have proven effective in modelling complex flood patterns by
leveraging diverse datasets, including historical flood records, remote sensing images, and
socio-economic variables [47]. For example, CNNs and RFs have been successfully applied
to accurately map flood risk zones in Beijing [48] and predict flood events. Although
AI/ML models depend on the quality of training datasets, their ability to bridge gaps in
flood mapping and provide real-time predictions is invaluable, particularly in dynamic
urban environments such as Tetouan-Martil. These approaches compensate for incomplete
drainage data by extracting meaningful patterns from heterogeneous datasets. The hybrid
methodology, combining AI/ML techniques with traditional statistical models, ensures a
robust analysis, while validation using the Repeated Hold-Out method further enhances
the reliability of our findings.

Our study is based on 13 variables (nine geo-environmental and four socio-
environmental), which may carry some redundant information. A preliminary step
could have involved reducing data dimensionality through techniques such as Princi-
pal Component Analysis (PCA) or stepwise regression [49], thus preserving key socio-
economic and infrastructural variables in the form of macro-parameters (“principal compo-
nents”) [50]. Although this particular approach in question was not adopted in this study,
it could enhance flood risk maps by eliminating redundant data without compromising the
analysis’s relevance.

The combined impacts of climate change and urbanisation [51] on flood risks are
evident in Mediterranean regions, including northern Morocco. Recent events in Spain,
particularly in the provinces of Valencia and Catalonia in October 2024, serve as stark
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reminders. Increasing short-duration, intense rainfall and unplanned urban expansion
exacerbate flooding, particularly in low-lying areas with inadequate drainage infrastructure.
Climatic factors such as heavy rainfall, rising temperatures, and sea-level rise, combined
with rapid urban growth, significantly intensify urban flood risks [52]. Furthermore,
regional topography, characterised by steep upstream areas and flat downstream plains
prone to flash flooding, compounds these vulnerabilities [53].

These challenges are further exacerbated by socio-economic factors. High illiteracy
rates, rapid demographic growth, and the settlement of populations in low-lying areas
lacking adequate drainage infrastructure increase risks for marginalised communities [54].
These vulnerable communities, often situated in poorly equipped areas, suffer dispropor-
tionately during flood events [55].

Addressing these challenges requires an integrated and adaptive approach to urban
flood management. This involves combining structural measures, such as improving
drainage infrastructure and reducing impermeable surfaces, with non-structural interven-
tions, such as sustainable land-use practices to preserve natural floodplains. However,
these physical measures alone cannot fully mitigate flood risks without considering the
socio-economic factors that exacerbate vulnerabilities. Prioritising the most vulnerable pop-
ulations in flood management strategies, enhancing access to shelters, and strengthening
community resilience are crucial. Climate projections must also inform flood models to
anticipate future risks [52]. Finally, sustainable solutions, such as Blue-Green Infrastructure
(BGI) and Sustainable Drainage Systems (SuDS), will play a key role in reducing flood risks
and enhancing urban resilience.

Another important area for future development is incorporating long-term climate
projections. While the current study focuses on historical data, integrating future climate
scenarios will allow us to evaluate flood risks under changing environmental conditions,
such as more intense rainfall and rising temperatures, which could significantly alter
flood patterns. Future work will thus aim to develop adaptive models that not only
predict current flood risks but also anticipate future challenges driven by climate change.
Ultimately, the goal is to expand these models to regional and watershed scales, allowing
for a more holistic and predictive approach to flood risk management across northern
Morocco. This will be a key next step in ensuring the models’ utility for large-scale urban
planning and disaster prevention.

5. Conclusions

The urban flood vulnerability maps generated by the CART, SVM, LR, and FDA
models exhibit a consistent pattern of flood vulnerability within the Tetouan-Martil study
area. These maps indicate that flood-prone zones are predominantly located along the
Martil River and in the eastern plains. Low-lying areas, high drainage density, proximity to
canals, and the presence of newer buildings characterize these regions. Despite variations
in spatial detail among the models, there is general agreement on the extent of low and
very high flood vulnerability areas. Notably, the FDA model tends to overestimate the
very high vulnerability zones, estimating that 58% of the area is at very high flood risk, in
contrast to the LR, SVM, and CART models, which estimate approximately 37-39%. These
findings offer valuable insights for urban planning and flood management strategies in the
Tetouan-Martil area. The assessment of explanatory variables in susceptibility mapping
enhances our understanding of urban flood vulnerability and supports resource allocation
and management planning. While the susceptibility zones identified by the models are
similar, the key contributing parameters differ. The FDA model emphasizes elevation,
slope, and drainage density; the LR model highlights elevation, slope, exposition, and
curvature; the CART model identifies elevation as the most influential factor; and the SVM
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model points to drainage density, elevation, exposition, and slope. Interestingly, socio-
environmental factors have minimal significance in susceptibility modelling for all four
models. Understanding these contributing factors facilitates informed decision-making for
resource allocation and flood risk management strategies. The study’s results support the
decision-making processes of authorities and policymakers in formulating policies aimed at
reducing urban flood risk through sustainable urban management. These findings should
be utilized for initial assessments of areas susceptible to fluvial flooding, guiding further
analyses such as hydrodynamic modelling to understand flow conditions, including depth
and velocity. However, reducing vulnerability to flood risk should not entail restricting high-
risk areas but rather managing urbanization in these areas while encouraging development
in already urbanized or less exposed regions. The research methodology employed in this
study can be applied to other urban areas to aid in managing, controlling, and minimizing
damage in flood-prone locations.
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