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ABSTRACT
Aim: Testing the impact of climate on diversification is a major goal of evolutionary biology. Birth-death models like 
palaeoenvironment-dependent diversification (PDD) models, for example, allow exploring the potential correlations between 
diversification dynamics and past environmental changes, such as temperature, among other abiotic variables. So far, such stud-
ies have been limited to proxy-derived global temperature trends, because these are the only temperature records that are easily 
accessible and almost continuous over multimillion-year periods.
Innovation: In this study, we propose a methodology to generate spatialised and/or seasonal palaeotemperature time series. 
To do so, we take advantage of temperature variables simulated by climate models for several ‘snapshots’ of the last 100 million 
years. Based on the hypothesis that a long-term global temperature drift is imprinted, to some degree, on all regional and sea-
sonal temperature records, we use the global proxy-derived temperature record as the mean of interpolation between discrete 
climate simulations. We then evaluate the possibility of constraining the PDD models, as implemented in RPANDA, with these 
hybrid temperature time series. We assess if these regional and seasonal temperature trends may be more relevant to the evolu-
tionary history of a given clade than the global temperature record used so far.
Main Conclusions: Our results show that PDD models using seasonal and/or regional hybrid temperature time series tend to 
receive high statistical support. This offers promising perspectives for refining our understanding of the impact of regional and 
seasonal temperature evolution on diversification dynamics, and calls for continuing development of deep-time palaeoclimate 
modelling and interdisciplinary studies.
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1   |   Introduction

Understanding the relative impact of biotic versus abiotic fac-
tors on species diversity is a key challenge in macroevolution 
(Ezard et al. 2016). It has long been addressed by assessing cor-
relations between fossils or dated phylogenetic trees with the 
evolution of environmental parameters, such as proxy-derived 
global temperature, or uplift rates of mountain ranges (Hoorn 
et  al.  2010; Jaramillo et  al.  2006; Favre et  al.  2015; Delsuc 
et al. 2004). In the past decades, steps forward have been made 
in the comprehension and formal quantification of these links. 
Palaeoenvironment-dependent diversification (PDD) models, 
such as implemented in RPANDA (Condamine et  al.  2013), 
using time-calibrated molecular phylogenetic trees, are able to 
detect correlates between extinction and speciation rates, and 
an environmental parameter that varies through time. To this 
end, benthic marine sediments (Zachos et al. 2001; Westerhold 
et al. 2020) are extensively used as a proxy for deep-time palae-
oclimate change. Indeed, their temporal resolution (typically of 
several thousands of years) is suitable for simple interpolations 
and the production of an almost time-continuous record needed 
in PDD models. Specifically, PDD models have been used with 
the Cenozoic and Cretaceous marine records of δ18O oxygen 
isotopes (Westerhold et al. 2020; Veizer and Prokoph 2015) and 
the corresponding global temperature fluctuations (Condamine 
et  al.  2013; Boschman and Condamine  2022). Other environ-
mental variables tested in PDD models also include, but are 
not limited to, reconstructions of atmospheric CO2 concentra-
tion (Lewitus et  al.  2018), sea-level fluctuations (Condamine 
et  al.  2015), δ13C (Lewitus and Morlon  2018) and topographic 
changes (Boschman and Condamine 2022; Dagallier et al. 2024; 
Lagomarsino et al. 2016).

The use of a variable describing the evolution of global climate in 
a diversification model nevertheless raises the question of its rel-
evance in explaining speciation and/or extinction dynamics of 
a group that has diversified regionally rather than globally. One 
can assume that using a global climate indicator is likely to be 
relevant if applied to a widespread clade, but may be less appro-
priate if applied to a continental endemic clade or a regionally 
restricted clade. Indeed, atmospheric (e.g., monsoon regions) 
and ocean (e.g., upwelling regions) dynamics, latitude (e.g., 
polar amplification), land-sea distribution or mountain uplift 
create climatic heterogeneity in space and time. We could also 
expect that seasonality, rather than annual averages, could be 
more relevant for diversification dynamics of certain groups: for 
example, winter temperature was suggested to be a highly con-
straining factor for ectotherm animals (Chiarenza et al.  2023) 
or tropical plant dispersal out of low latitudes (Donoghue 2008).

With this in mind, recent studies have attempted to integrate 
regional environmental data by developing different strate-
gies. The first choice is usually to use regional field data when 
such records are available at suitable temporal resolution. For 
example, Weppe et al.  (2023) evaluated the impact of regional 
abiotic parameters on European artiodactyl turnover at the 
Eocene–Oligocene Transition, using mean annual and seasonal 
European palaeoclimatic records from Mosbrugger et al. (2005). 
However, generating regional environmental time series over 
multimillion-year periods and with an appropriate resolution 
remains a challenge, as data are temporally sparse and spatially 

scattered. To circumvent this issue, methodologies combining 
field data and numerical tools are interesting. In order to study 
the diversification of North American freshwater gastropods 
over the last 200 Ma, Neubauer et al.  (2022) extracted a subset 
of North American mean annual temperatures, with one value 
every 5 Ma, from a global palaeoclimate simulations data set 
(the PALEOMAP project, see Valdes et al.  (2021), Scotese and 
Wright (2018)). However, the need for records with a finer time 
resolution (less than 1 Myr) quickly leads to significant compu-
tational limitations with complex Earth System Models, making 
it impossible to produce multimillion-year transient palaeocli-
mate simulations. Such limitations may be overcome by using 
a set of palaeoclimate simulations, which provide physically co-
herent, spatialised climatic ‘snapshots’, and to use an interpola-
tion method to produce continuous abiotic time series between 
these ‘snapshots’. To this end, previous studies have efficiently 
developed statistical emulators (Lord et al. 2017; Van Breedam 
et al. 2021). Providing a few simulations describing the Earth's 
climatic conditions under a variety of scenarios (e.g., in extreme 
orbital configurations with corresponding ice-sheet configura-
tions), the emulator is able to predict the climatic variables for 
any combination of the forcing parameters within the domain 
of the end-member simulations. Such methods so far have been 
used for periods spanning less than 10 million years (My).

Here, we set forth an alternative hybrid approach, that leans 
on the wide range of temperature output variables that Earth 
System Models calculate, while still benefiting from the high 
temporal resolution information retrieved from sedimentary 
archives. The following framework allows generating custom-
designed regional palaeoclimate data across the last 100 My, and 
potentially longer periods. We take advantage of temperature 
outputs from a recently published palaeoclimate simulation data 
set (Li et al. 2022) generated with the Community Earth System 
Model (CESM). Each simulation is a discrete climatic ‘snapshot’, 
providing monthly temperatures at any point of the globe every 
10 My. We then introduce a novel interpolation methodology, 
using a kriging interpolation (see Section 2.2.3), allowing to use 
the global temperature trend provided by proxy records to fill 
the gaps between the simulated climate snapshots. These hybrid 
temperature time series are then fed into the RPANDA PDD 
model to evaluate their potential for explaining diversification 
dynamics. As such, we (i) compared this new approach with 
the traditional use of the global δ18O temperature proxy-derived 
curve, and (ii) explored the importance of regional and seasonal 
climate changes by applying them to a set of clades with differ-
ent spatial distributions and biogeographic histories spanning 
the last 100 My.

2   |   Materials and Methods

2.1   |   Choice of Biological Groups 
and Phylogenetic Data

We selected a number of biological groups (Table 1) with near-
complete, robust dated phylogenetic trees available at the time of 
this study. The origin of each group is estimated within the past 
100 My before present (hereafter Ma), which allows the use of 
the composite proxy-derived global temperature time series in-
troduced in previous studies (Boschman and Condamine 2022; 
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Condamine et  al.  2013). We chose clades spanning a range of 
different spatial (global and regional) and environmental set-
tings (tropical and temperate, mountainous and lowland). This 
nonexhaustive selection of clades allowed us to test different 
types of temperature time series, from the more global to the 
more regional and/or seasonal, based on the general ecology of 
each group. Each clade is briefly presented, together with the 
hypothesis we wish to test related to their diversification depen-
dence on temperature.

2.1.1   |   Cetacea

Cetacea are an infraorder of aquatic mammals with approx-
imately 89 living species separated into two parvorders: 
Odontoceti, or toothed whales (containing porpoises, dolphins, 
other predatory whales like the beluga, the sperm whale and 
the beaked whales) and the filter-feeding Mysticeti, or baleen 
whales (which includes species like the blue whale, the hump-
back whale and the bowhead whale). Having a cosmopolitan 
distribution, they can be found in some rivers and all of Earth's 
oceans, and many species inhabit vast ranges where they mi-
grate with the changing of the seasons. We retrieved the species-
level time-calibrated phylogenetic tree of Cetacea, with an 
origin dated around 35 Ma and that includes most species, that 
is, 87 of the 89 species (Steeman et  al.  2009), which has been 
used in several diversification studies to test birth-death models 
(Morlon et al. 2011; Condamine et al. 2013). With the Cetacean 
phylogeny, we compared the support received by environment-
dependent models using the traditional proxy-derived global 
temperature time series and those using sea surface tempera-
ture time series reconstructed with our hybrid method.

2.1.2   |   Testudinoidea

Within the order Testudines (turtles), Testudinoidea is a su-
perfamily including the pond turtles (family Emydidae), Asian 
turtles (family Geoemydidae), the monotypic big-headed turtle 
(family Platysternidae) and the tortoises (family Testudinidae), 
for a total of 177 extant species (Thomson et al. 2021). Their or-
igin is estimated around 91 Ma; they are well spread over the 

globe, with a strong affinity for low-elevation and coastal envi-
ronments. Although currently distributed preferentially in trop-
ical and subtropical environments, the fossil record indicates a 
more widespread distribution, up to the polar regions during 
warmer climates, especially in the Cretaceous (Chiarenza 
et  al.  2023). Palaeoniche modelling studies have highlighted 
that temperature (both annual and seasonal) is a critical abi-
otic driver of turtle species distribution (Chiarenza et al. 2023). 
Therefore, we explored the impact of mean annual and coldest 
month temperature evolution on Testudinoidea diversification. 
Given their cosmopolitan distribution, all available continental 
temperature time series have been tested (global and regional).

2.1.3   |   Pinus

Pinus is a genus of conifers, comprising the sections Pinus (sub-
sections Pinus and Pinaster), mostly present in the Palearctic 
and the section Trifoliae (subsections Australes, Ponderosae, 
Contortae, Attenuatae, Sabinianae), mostly present in the 
Nearctic region (Jin et al. 2021). We retrieved the phylogenetic 
tree from Leslie et al. (2018), for a total of 122 species, with an 
origin dated in the Late Cretaceous (around 90 Ma). The extant 
species richness of Pinus is spread across the Holarctic region, 
occupying arid to subtropical environments, with an affinity 
for mountainous settings (Nobis et  al.  2012). The relationship 
between predictor variables and current species richness has 
highlighted a positive correlation of Pinus species richness with 
topography and temperature (Jin et al. 2021). Therefore, in addi-
tion to global temperature-dependent models, we tested here the 
potential correlations of diversification with regional tempera-
ture time series of the Eurasian and North American continents, 
respectively. We also explored possible correlation to seasonal 
trends (coldest month evolution) and to plains or mountainous 
environments temperature evolution.

2.1.4   |   Parnassiinae

Within swallowtail butterflies, the subfamily Parnassiinae 
(Apollo butterflies) comprises eight genera with around 90 cur-
rently recognised species, grouped into three tribes: Luehdorfiini, 

TABLE 1    |    Tested phylogenies, sampling fraction and missing species, age of clade and distribution.

Clade name
Sampling fraction 
(missing species) Clade age (Ma) Distribution Reference

Global

Cetacea 87/89 (2) 35 Global oceanic Steeman et al. (2009)

Testudinoidea 160/177 (17) 91 Global terrestrial Thomson et al. (2021)

Regional (terrestrial)

Monodorae 88/90 (2) 25 Afrotropics Dagallier et al. (2024)

Pinus 116/122 (6) 90 Holarctic, mountainous Leslie et al. (2018)

Parnassiinae 85/90 (5) 39 Holarctic, mountainous Condamine et al. (2018)

Arinae 167/150 (0) 24 Neotropics Smith et al. (2023)

Thamnophilidae 231/236 (5) 19 Neotropics Harvey et al. (2020)
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Sericinini and Parnassiini (Condamine et  al.  2013). Apollo 
butterflies occur from the western Palearctic to the western 
Nearctic. Most of the species’ richness is concentrated in the 
Palearctic, where there are two nonmonophyletic lowland-
flying communities separated by the Himalayas and the Tibetan 
Plateau: An Eastern Palearctic group formed by Luehdorfia 
(Luehdorfiini) and Bhutanitis and Sericinus (Sericinini), and a 
Western Palearctic community including Archon (Luehdorfiini), 
Allancastria and Zerynthia (Sericinini), and Hypermnestra 
(Parnassiini). The most speciose genus, Parnassius, is mainly 
distributed in mountainous regions throughout the Holarctic, 
with its highest diversity in the Himalaya and Tibetan Plateau. 
Apollo butterflies provide a model for understanding the role of 
past environmental change in diversification because they are 
adapted to cold climates and occur in high mountains of the 
Northern Hemisphere. A previous study has found an effect of 
temperature and Himalayan orogeny on their diversification 
(Condamine et al. 2018). Phylogeographic studies have revealed 
an effect of Pleistocene glaciations on population-level dynamics 
(Dapporto 2009; Todisco et al. 2010, 2012; Zinetti et al. 2013). 
Time-calibrated phylogenies support an early Cenozoic origin of 
the subfamily (Condamine et al. 2018; Allio et al. 2021), which 
means that the lineage has experienced the dramatic cooling 
and warming events of the last 50 My, including a drop in global 
temperatures during the Eocene–Oligocene climate transition 
that led to the demise of Boreotropical Holarctic vegetation 
(Condamine et al. 2018). Therefore, we investigated the impact 
of mean annual and coldest month temperature evolution on 
Apollo diversification. Given their distribution, we tested cor-
relations of diversification with temperature time series of the 
Eurasian and North American continents, and with tempera-
ture evolution in plains or mountainous environments.

2.1.5   |   Monodoreae

The African subtribe Monodoreae belongs to the large pantrop-
ical plant family Annonaceae (Chatrou et al. 2012). This clade 
contains 90 currently recognised species of mainly trees in 11 
genera (Dagallier et al. 2023). Most species are restricted to the 
lowland rain forests of west, central and east Africa, with a few 
species also occurring in Madagascar (five species of the genus 
Isolona; Couvreur  2009). A recent near-complete species-level 
phylogenomic study estimated the origin of Monodoreae at 
around 25 Ma (Dagallier et al. 2024), that is at the start of the 
Miocene. For this group, we tested the impact of mean annual 
and coldest month temperature in plains in Africa (Table 2).

2.1.6   |   Neotropical Birds: Arinae and Thamnophilidae

We analysed two clades of Neotropical birds. One is within the 
order of parrots, Arinae (Neotropical parrots or New World 
parrots), which is a subfamily of the Psittacidae, comprising 
about 160 extant species in 32 genera found throughout South 
and Central America and the Caribbean islands. The origin of 
the subfamily is dated around 24 Ma and is further divided into 
four tribes (Smith et al. 2023). The group is mostly distributed 
in Amazonian forests, in particular along river systems. The 
other study group is the Thamnophilidae (antbirds), a family of 
Neotropical birds comprising 236 extant species dated around 

19 Ma and belonging to the infraorder Furnariides (Harvey 
et  al.  2020). They are found across subtropical and tropical 
Central and South America. Most species live in forests and 
feed in the understory and midstory of the forest. For both 
clades, there is no strong evidence that diversification would be 
influenced by climate or elevation (Harvey et  al.  2020; Smith 
et al. 2023). In this case, we tested the impact of mean annual 
and coldest month temperature in South America (Table 2) and 
with temperature in plains or mountainous regions.

2.2   |   Choice of Climate Variables

Climate change at the geological timescale involves variations 
in numerous physical variables (e.g., temperature, rainfall, 
wind velocity and ocean surface salinity) that can impact en-
vironments and diversity. Here we have restricted our study 
to temperature, which has the best-documented record for the 
Phanerozoic and is the most robust in palaeoclimate numerical 
simulations.

2.2.1   |   Global Proxy-Derived Temperature Time Series

The Global Air Temperature time series (GATdat, Figure  1) 
is derived from palaeoceanographic isotopic records. It is 
obtained by combining the δ18O Cenozoic data set from 
Westerhold et  al.  (2020) with the Cretaceous data set from 
Veizer and Prokoph  (2015), as introduced in Boschman and 
Condamine (2022). δ18O values measured on benthic foramin-
ifera are converted to deep-sea temperature, then to global 
air temperature using the equations described in Hansen 
et al. (2013). Given that the typical time resolution of the deep-sea 
record is of thousands to ten of thousands of years, a continuous 
estimate of global air temperature through time has been calcu-
lated by applying a smoothing spline (degrees of freedom: 80) on 
bulk data, to provide a reliable estimate of global temperature 
trend through time. Such a global temperature data set has been 
classically used in phylogenetic diversification studies, even 
for regionally distributed clades (Condamine et al. 2013; Davis 
et al. 2016; Condamine et al. 2018, 2019; Dagallier et al. 2024).

2.2.2   |   Temperature Variables Extracted From 
Palaeoclimate Simulations

We utilised a high-resolution (0.9° latitude × 1.25° longitude) 
data set of palaeoclimate simulations recently generated using 
the Community Earth System Model (CESM) version 1.2.2 (Li 
et al. 2022). The data set covers the entire Phanerozoic (last 540 
My) and includes one simulation every 10 My. We extracted a 
subset of 11 simulations covering the last 100 My, each simula-
tion providing a spatially-gridded ‘snapshot’ of steady-state cli-
mate variables for a given time period (at 100, 90, 80 Ma, etc.). 
Variables are in the form of an averaged climatology, that is, 
12 monthly outputs, spatialised over the globe (see Supporting 
Information for detailed step-by-step tutorial). The globally 
and yearly averaged air temperature over land and sea (GAT, 
for Global Air Temperature) is thus comparable to the proxy-
derived GATdat variable introduced earlier, and has been used 
as a first test for our new approach (Figure 1a).
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We then extracted time series describing the mean annual 
evolution of air temperature over landmasses mean annual 
temperature (MAT) and above the sea surface (SST), averaged 

globally (Figure  1a). We acknowledge that a data set provid-
ing actual SST values (i.e., water surface temperature instead 
of air temperature above water) would likely produce slightly 

FIGURE 1    |    Environmental variables used in the present study. (a) Global Annual Temperature, either derived from proxies (GATdat) or re-
constructed with the hybrid methodology: (GAT), continental mean annual temperature (MAT) and winter temperature (CMT) and sea surface 
temperature (SST); (b-e) At a regional scale, MAT and CMT are distinguished either by considering only continental areas below 1000 m of alti-
tude (MATplain, CMTplain) and above 1000 m (MATmountain, CMTmountain), for (c) North America, (d) Eurasia, (e) South America, (f) Africa. 
Coloured circles each 10 Ma in plots b to f represent the temperature obtained from palaeoclimate simulations, while the curves are obtained by 
applying a Kriging interpolation method, using the GATdat curve as trend (see Section 2.2.3). Note the change of scale on the temperature axis de-
pending on each region.
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different SST trends and that we are realising an approximation. 
Continental temperature time series of North America (suffix 
‘NAM’), Eurasia (‘EURA’), South America (‘SAM’) and Africa 
(‘AFR’) were also extracted (Figure 1b–e). In addition, we distin-
guished between plain, or low-elevation lands (< 1000 m above 
sea level [asl], suffix ‘P’ in model names) from mountainous 
regions (> 1000 m asl, suffix ‘M’ in model names). We also ex-
tracted the Coldest Month Temperature averaged over all land-
masses (CMT), as well as over previously mentioned continents, 
with the same elevation distinction. Note that for Africa, we 
only retained the low-elevation curves (MAT-AFR-P and CMT-
AFR-P), due to inconsistencies regarding mountain uplift his-
tory in the palaeogeography that was used for the simulations 
(see Figures S2 and S3 with the South African Dome being fully 
uplifted at 30 and 10 Ma, but not at 20 Ma). Mapped regional and 
seasonal temperature outputs plotted for each palaeoclimate 
simulation are provided in Figures S1–S9.

2.2.3   |   Time Interpolation of Simulated 
Palaeotemperatures

Since the PDD models require environmental variables defined 
continuously over time, the main challenge of our study was to 
interpolate between the discrete values simulated every 10 Ma 
(circles in Figure 1). Indeed, even though each simulation pro-
vides a fair description of the climate of the targeted period, it 
is missing important climate events occurring in between these 
time frames. For example, the Eocene–Oligocene Transition, 
dated at 33.9 Ma, and characterised by a sharp decrease in 
global temperatures and glacial inception, would not be visible. 
Therefore, we applied a one-dimensional Regression Kriging 
(Hengl et al. 2007), an interpolation method that uses the avail-
able proxy-derived global temperature trend (GATdat) as inter-
polation background for simulated temperatures. This approach 
assumes that temperature evolution over geological timescales 
imprints a global trend on any temperature signals, whether an-
nual, seasonal, global, regional, marine or continental, despite 
the fact that these individual signals may show variations in the 
magnitude of the temperature shift.

The Kriging interpolation (see Hengl et al. (2007), for examples) 
is performed using the Gstat R package (Pebesma 2004). Kriging 
is a geostatistical method commonly used in geosciences to in-
terpolate spatially and/or temporally autocorrelated variables 
based on a weighted average of available sampled points. The 
Regression Kriging (as well as other more complex methods 
such as Co-Kriging) is specifically adapted to interpolate a high-
confidence, under-sampled target variable (here, the 11 discrete 
temperatures values extracted from our 11 palaeoclimate sim-
ulations subset) by using one or several well-sampled auxiliary 
variables (here, the proxy-derived global temperature trend) 
that are correlated to the target variable. This method allows 
for locally matching the discrete simulated values and follows 
the background trend provided by the proxy-derived curve for 
the interpolation (Figure 1). The Regression Kriging is done in 
several steps: (i) the covariance structure of the sampled points 
(temperature variables derived from palaeoclimate simulations, 
constituting here a set of 11 points, one each 10 Ma) is determined 
by fitting a variogram model to the experimental variogram, (ii) 
the residuals between simulated values and data-derived values 

are calculated, (iii) weights derived from this covariance struc-
ture are used to interpolate values for unsampled points (see 
expanded methodology in Figure  S3). The degree of temporal 
refinement given by this final hybrid curve is thus highly de-
pendent on the GATdat curve used as interpolation background 
material. While all curves presented here were obtained using a 
GATdat curve obtained with 80° of freedom, a much smoother 
GATdat background curve was also tested for benchmarking 
purposes (with 20° of freedom). As it received consistently lesser 
statistical support than the temperature curves obtained with 
the refined GATdat when used in RPANDA, results are not 
shown here.

2.3   |   Estimating the Environment-Dependent 
Diversification With RPANDA

2.3.1   |   The RPANDA Approach

Explicit environment-dependent diversification models have 
been developed in the last decade (Condamine et  al.  2013; 
Davis et al. 2016). The approach used in this study, developed 
by Condamine et  al.  (2013, 2019), builds on time-dependent 
diversification models (Nee et al. 1994; Morlon et al. 2011) but 
allows speciation and extinction rates to depend on an exter-
nal time-varying variable. This methodology is implemented in 
the R package RPANDA (Morlon et al. 2016). Under a constant 
birth-death process, clades are assumed to evolve with both spe-
ciation and extinction rates following a Poisson process, which 
means that the expected time to an event follows an exponential 
distribution (Nee 2006). In its simpler version, the birth-death 
model is called the Yule (or pure birth) model, in which only the 
speciation rate is estimated to be constant and extinction is zero. 
As a result, and except for the Yule and the constant birth-death 
models, we assume the speciation and extinction functions to 
be exponential. Speciation (B) and extinction (D) rates can vary 
through time, and both can be influenced by one or several en-
vironmental variables (e.g., temperature T(t)) that also varies 
through time. We consider the phylogeny of n species sampled 
from the present and allow for the possibility that some extant 
species are not included in the sample by assuming that each 
extant species was sampled with probability f ≤ 1. Time is mea-
sured from the present to the past such that it denotes branching 
times in the phylogeny.

2.3.2   |   Fitted Models

In total, 82 models were tested, including 2 constant-rate mod-
els, 4 time-dependent models and 76 temperature-dependent 
models, among which 4 models used the proxy-derived curve 
GATdat, and 72 models used simulation-constrained curves 
(Table  2, Figure  2). The two constant models, the four time-
dependent models and the eight global temperature-dependent 
models (GATdat and GAT) were systematically fitted to all 
phylogenies. In addition, the four global sea surface tempera-
ture models (SST) were also fitted to the marine phylogeny of 
the Cetacea (for a total of 18 models) and the eight models using 
global continental mean annual (MAT) and winter tempera-
ture (CMT) variables were fitted for all continental phylogenies 
(Testudinoidea, Pinus, Parnassiinae, Monodorea, Arinae). 32 
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models using the Eurasian and North American temperature 
curves (MAT-EURA-P, MAT-EURA-M, MAT-NAM-P, MAT-
NAM-M, CMT-EURA-P, CMT-EURA-M, CMT-NAM-P, CMT-
NAM-M) were fitted to the Holarctic phylogenies Parnassiinae 
and Pinus, for a total of 54 models fitted each. The Monodoreae 
phylogeny was also fitted with the eight models using the 
African temperature curves (MAT-AFR-P, CMT-AFR-P), for a 
total of 30 models. The Arinae phylogeny was fitted with 16 ad-
ditional models based on South American temperature curves 
(MAT-SAM-P, MAT-SAM-M, CMT-SAM-P, CMT-SAM-M), 
for a total of 38 models. Finally, all regional terrestrial curves 
mentioned above were fitted for Testudinoidea, as they are wide-
spread over the globe, totaling 78 models tested for this clade.

3   |   Results

We first describe and interpret briefly the temperature time se-
ries obtained with the hybrid methodology depicted above. The 
results obtained with RPANDA are then presented in Figure 3, 
showing only the 20 best models for each clade, ranked by their 
Akaike weight (AICω). In a second step, the AICω were recalcu-
lated, comparing the best model of each category: temperature-
dependent, time-dependent and constant models (Table 3). The 
diversification plots as generated by RPANDA for each of the 
best models are shown in Figures 4 and 5.

3.1   |   Temperature Time Series

By construction, our hybrid global temperature time series 
(GAT) depicts the same trends (Figure 1a) as the proxy-derived 
one (GATdat). However, the temperatures serving as anchor 
points every 10 million years to construct GAT lead to signif-
icant differences between both time series. This is due to the 
very nature of the proxies used to obtain GATdat on the one side, 
and palaeoclimate simulations on the other. Simulated tempera-
tures (see detailed methodology in Li et  al.  (2022)) were ob-
tained through a tuning strategy aiming to match reconstructed 
temperatures derived mostly from the continental record. To 

do so, various palaeoclimate indicators over the globe (tillite, 
evaporites, bauxites, fossils, see Boucot et  al.  (2013), Scotese 
et al. (2021)), have been compiled to map the extent of the main 
Köppen climatic belts (tropical humid, warm arid, warm tem-
perate, seasonal temperate and boreal). A mean temperature 
was then attributed to each belt, based on conservatism hypoth-
esis and used to calculate the global mean annual temperature 
for each time step. The authors further perform some punctual 
adjustments to the global curve (see Scotese et al.  (2021) for a 
full description). Thus, palaeoclimate simulations used as an-
chor points to produce GAT have been mostly adjusted to the 
continental temperature record. GATdat on the other hand, has 
been obtained with a radically different approach, through the 
conversion of δ18O measured of deep-sea fossil foraminifera, 
first to deep-sea temperatures, then to air temperature, using 
the equations of Hansen et al. (2013).

These differences lead to a general offset of 1 to 3°C between 
GATdat and GAT. GATdat is also significantly warmer in the 
late Cretaceous and the early Eocene, with ∼32°C at 90 Ma and 
∼29°C at 50 Ma for GATdat, against ∼25°C for GAT during the
same periods. For the present time (0 Ma), GAT (∼16°C) indi-
cates warmer temperatures than GATdat (∼12°C). This latter
difference is linked to the fact that the 10 million-year time span 
between climate simulations from Li et al. (2022) do not permit
to account for the Plio-Pleistocene glacial inceptions and onsets
of glacial–interglacial cycles.

While it is out of the scope of this study to debate whether one 
representation of global mean annual temperature is more accu-
rate than the other, it is important to stress that it is the relative 
change along a time series that matters to PDD models as imple-
mented in RPANDA, rather than the absolute temperature val-
ues (in °C). In that optic, the main changes between trends of the 
GATdat and GAT time series are observed in the late Cretaceous 
and early Eocene, with warm intervals described by GATdat, 
while a more equable climate is described by GAT time series. 
Regional time series also convey interesting perspectives: while 
mean annual and coldest month temperature time series tend to 
follow similar trends through time, the temperature evolution of 
plains versus mountainous regions display notable changes, es-
pecially for North American and Eurasian regions (Figure 1b,c). 
Although it may seem counter-intuitive at first, the tempera-
tures in plains may be colder than the mountainous regions, 
especially after 40 Ma. This is due to a strong polar amplifica-
tion effect on lowlands situated at high latitudes in the Holarctic 
region, while most of the mountains (Rockies, Appalachians, 
Tibetan Plateau, Iranian Plateau, Alps) are at lower latitudes.

3.2   |   Performance Comparison Among 
Temperature-Dependent Models

3.2.1   |   Performance of Models Based on 
Simulations-Constrained GAT Temperature Variable 
Compared to Models Based on the Proxy-Derived 
GATdat Variable

First, we evaluated the respective support received by models 
using the proxy-derived temperature curve GATdat, that has 
been the reference in previous studies involving PDD models, 

FIGURE 2    |    Quick guide to the different types of PDD models used 
in 2.
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and models using the GAT curve constrained with palaeoclimate 
simulations (Figure 1a). For the Cetacea phylogeny (Figure 3), 
model BGAT received the highest support (AICω = 0.17, on par 
with model BSST), while the best GATdat model (BGATdat) 
received significantly lower support (AICω = 0.06, ninth-best 
model). For Apollo butterflies (Parnassiinae), the GATdat model 

(BGATdat_DGATdat, AICω = 0.06, third-best model) received 
much higher support than any GAT models (not ranked in the 
top 20 models). For the Pinus phylogeny, model B_DGAT re-
ceived similar support (AICω = 0.032, eighth-best model) than 
the best GATdat model (B_DGATdat, AICω = 0.031, eleventh-
best model). In the Arinae, Monodorea and Testudinoidea 

FIGURE 3    |    Comparison of the Akaike weights (AICω) obtained for the 20 best models of each phylogeny. Bar colours match the colour coding of 
each environmental curve presented in Figure 1. Red asterisk indicates the first occurrence of a temperature-dependent model based on the variable 
GATdat, which is the temperature variable traditionally used in previous studies. The vertical red dotted line corresponds to the expected AICω if 
all models were equally likely. For each model, the ΔAICω criterion is indicated: As a convention, models with a ΔAICc < 2 are considered of equal 
confidence, marked by a horizontal line.
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phylogenies, neither GAT nor GATdat models received signif-
icant support (AICω close to 0). Thamnophilidae phylogeny 
is the only one for which GATdat models receive the highest 
support, with BGATdat model yielding an AICω = 0.53, while 
none of the GAT model appears in the best 20 models (Figure 3). 
This model translates into a burst of speciation during the Mid-
Miocene Climatic Optimum, and a decrease in speciation rates 
towards the present (Figure 4).

3.2.2   |   Performance of Models Based on 
the Simulation-Constrained MAT, SST, and CMT 
Compared to Models Based on GAT

Here, we assessed if distinguishing, at the global scale, the air 
temperature evolution over continental masses versus over the 
oceans, could yield better results for terrestrial and marine phy-
logenies, respectively. For Cetacea, the BSST model received 
the highest support (AICω = 0.16, Figure  3), on par with the 
BGAT model. Such a congruence is explained by the very simi-
lar trends of these two curves for the time span of the Cetacean 

phylogeny (last 35 Ma, Figure 1a). It is a pure birth model with 
a positive dependency of speciation to temperature that receives 
the best support (AICω = 0.46, when comparing only the three 
best models, Table 3). This translates into a decrease of specia-
tion at the Eocene–Oligocene transition (33.9 Ma), followed by 
two increase in speciation, during the Mid-Miocene Climatic 
Optimum, and in the latest Miocene (Figure 3).

Regarding continental clades, two models using the mean 
annual temperature evolution received very high support. 
Parnassiinae displayed a positive correlation of both speciation 
and extinction to mean annual temperature (BMAT_DMAT, best 
model, AICω = 0.19 and AICω = 0.78 when recalculated compar-
ing the three best models, Table 3). This is expressed through 
a dramatic decrease in both speciation and extinction rates 
during the late Eocene and at the Eocene–Oligocene Transition 
(40–33 Ma), followed by two minor increases in speciation and 
extinction during the mid-Miocene Climate Optimum (MMCO) 
and the latest Miocene (Figure 4). In the case of Monodoreae, the 
best model described a positive correlation of speciation to mean 
annual temperature, and a constant extinction rate (BMAT_D, 

TABLE 3    |    Results of the diversification analyses, showcasing the best model of each category (Constant, time-dependent, temperature-dependent, 
sea level-dependent).

Clade Model NP logL AICc AICω �0 � �0 �

Cetacea B 1 −276.789 555.626 0.40 0.106 — — —

BTime 2 −276.786 557.716 0.14 0.107 0.001 — —

BSST 2 −275.583 555.308 0.46 0.0017 0.22 — —

Testudinoidea B 1 −605.815 1213.655 0.10 0.0619 — — —

BTime 2 −605.751 1215.579 0.04 0.0636 0.0017 — —

BNAM-CMT-P 2 −602.737 1209.55 0.85 0.0257 0.0457 — —

Monodoreae B 1 −235.854 473.755 0 0.1773 — — —

BTime 2 −235.804 475.75 0 0.183 0.0061 — —

BMAT_D 3 −207.609 421.503 1 4.47e-06 1.1516 0.2429 —

Pinus B_D 2 −365.971 736.048 0.2 0.2096 — 0.1788 —

BTime 2 −365.103 734.313 0.47 0.1597 0.0397 — —

B_DEURA-MAT-M 3 −364.403 735.02 0.33 0.1911 — 0.1073 0.0505

Parnassiinae B_D 2 −239.56 483.267 0.02 0.2171 — 0.1245 —

BTime 2 −237.398 478.943 0.20 0.2065 0.0434 — —

BMAT_DMAT 4 −233.841 476.183 0.78 0.0032 0.4718 0.0016 0.526

Arinae B 1 −412.664 827.353 0 0.2229 — — —

BTime 2 −411.694 827.461 0 0.2463 0.0224 — —

BCMT_DCMT 4 −402.972 814.19 1 1.6007 0.7052 2.9955 1.2941

Thamnophilidae B 1 −657.759 1317.536 0 0.1554 — — —

BTime 2 −628.223 1260.498 0 0.0815 0.1221 — —

BGATdat 2 −618.292 1240.637 1 0.0018 0.3122 — —

Note: For each clade, the best-fitting model (higher AICω) is highlighted in bold. The table displays the model, the number of parameters (NP), the estimated 
log-likelihood (logL), the corrected Akaike information criterion (AICc), the Akaike weight of the model (AICω) and the corresponding parameter estimates (�0 = 
speciation rate at present, � = parameter controlling the dependency of speciation rate on time or environment, �0 = extinction rate at present and � = parameter 
controlling the dependency of extinction rate on time or environment).
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FIGURE 4    |     Legend on next page.
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FIGURE 4    |    Potential diversification dynamics obtained with the best-fit model of each category: Constant, time-dependent and temperature-
dependent. On the left panel, the dated phylogeny of each clade is presented, and on the right panel speciation (full line) and extinction (dotted line) 
rates are shown, together with the Akaike weights (AICω) corresponding to each model, also summed up in Table 3. Only models with non-null 
AICω are shown. Illustrations credits: Thamnophilidae, (Harvey et al. 2020); Parnassiinae, F.L. Condamine; Monodorea, T.L.P. Couvreur.

FIGURE 5    |    Reader is referred to Figure 4. Illustrations credits: Arinae (Smith et al. 2023), Pinus (Jin et al. 2021) and Testudinoidea (Thomson 
et al. 2021).
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best model, AICω = 0.34, and AICω = 1 when recalculated keep-
ing only the three best models, Table 3). Again, two speciation 
peaks were inferred at the MMCO and latest Miocene, respec-
tively (Figure 4).

Models based on the global coldest month temperature (CMT) 
also receive good support, for Arinae (BCMT_DCMT, best 
model AICω = 0.65 and AICω = 1 when recalculated comparing 
the three best models, Table 3) and for Monodoreae (BCMT_D, 
second-best, AICω = 0.28). In the case of Arinae, both speciation 
and extinction rates are positively correlated to temperature, 
overall leading to an increased net diversification during cooler 
periods (Figure 5).

3.2.3   |   Performance of Models Based on 
Simulation-Constrained Regional Mean Annual 
Temperature Variables

Different subsets of regional temperature variables were tested 
on terrestrial phylogenies, depending on their regions of occur-
rence and habitat affinity (as introduced in Sections  2.1 and 
2.3.2). Models derived from regional time series tend to get high 
support for most phylogenies (Figure 3). For Pinus, the second-
best model is based on the evolution of Eurasian mean annual 
temperature in mountains (B_DEURA-MAT-M, AICω = 0.039), 
and it is also the best temperature-dependent model for this 
phylogeny (AICω = 0.33 when comparing only the three best 
models). B_DEURA-MAT-M predicts a positive correlation of 
extinction with temperature, thus displaying higher extinc-
tion rate in the Late Cretaceous, Palaeogene and early Eocene 
(Figure 5).

The model BNAM-MAT-P, based on North American mean an-
nual temperature evolution (in plains), is on par with the model 
BNAM-CMT-P for Testudinoidea (AICω = 0.16) and third-
best for Parnassiinae (AICω = 0.06). We can also mention that 
none of the African regional models gets significant results for 
Monodoreae (they all receive an AICω = 0). Similarly, most of the 
models using South American regional time series receive very 
low support for Arinae and Thamnophilidae neotropical birds.

3.2.4   |   Performance of Models Based on 
the Simulations-Constrained Regional Winter 
Temperature Variables

Regional coldest month temperatures were additionally tested 
for terrestrial phylogenies, assuming cold may be a more critical 
parameter than mean annual temperature evolution for warm-
adapted clades (ectotherms or tropical clades). Models based on 
North American coldest month temperature at low elevation 
(BNAM-CMT-P) receive high support for Testudinoidea (best 
model, AICω = 0.16 and best temperature-dependent model, 
with an AICω = 0.85 when considering only the three best mod-
els). This positive correlation of speciation to coldest month 
temperature translates into progressively decreasing speciation 
rates throughout most of the past 90 My, with an increase in the 
Pliocene (Figure 4). For Pinus, it is the North American winter 
temperature evolution in mountains (B_DNAM-CMT-M) that 
receives high support (fifth-best model, AICω = 0.037).

3.3   |   Performance of Temperature-Dependent 
Models Compared to Other Birth-Death Models

Temperature-dependent models overall received high support 
for all phylogenies. Nevertheless, pure birth or time-dependent 
models also receive significant support on a few occasions: 
BTime is best model for Pinus (AICω = 0.057) and fifth-best for 
Parnassiinae, while pure birth B model is third-best model for 
Cetacea (AICω = 0.11).

4   |   Discussion

4.1   |   Spatialised and Seasonal 
Palaeotemperature Curves and Their Application 
to Palaeoenvironment-Dependent 
Diversification Models

In this paper, we propose a reproducible methodology to gener-
ate user-specific spatialised and/or seasonal palaeotemperature 
curves. In doing so, we provide a potentially more accurate in-
ference of regional and seasonal temperature change through 
the last 100 My, complementing global temperature models 
(Westerhold et  al.  2020). For example, we can generate tem-
perature curves for different continents and compare the cli-
mate trends through time (Figure 1). As such, our approach is 
highly relevant to studies in macroecology or macroevolution, 
where understanding past climate is central to explain observed 
patterns. Here, we were specifically interested in integrating 
these regional and/or seasonal palaeotemperature curves in 
palaeoenvironment-dependent diversification (PDD) models 
to assess how these spatialised data sets can improve, or not, 
our understanding of macroevolution when compared to global 
curves. Using seven clades displaying a variety of ecologies and 
distributions as case studies, we evaluated which temperature 
curve best explained diversification patterns. We show that, 
except for Thamnophilidae (Figure 3, Table 3), all phylogenetic 
trees were better fitted by models other than the traditionally 
used global atmosphere annual temperature trend derived from 
benthic oxygen isotopes record (GATdat) and the hybrid GAT. 
Below, we discuss some of our findings in relation to tempera-
ture variables. We do not pretend to explain the diversification 
of each clade in detail since further studies including other envi-
ronmental data would be necessary.

Several clades showed high support to models based on hybrid 
curves that seemingly agreed with their ecology, probably bet-
ter than a dependency to a global temperature trend. This is 
the case of the two oldest clades, Pinus and Testudinoidea, dis-
playing a high correlation of diversification rates to regional 
temperature models of Eurasian and North American regions 
(Figure 3). In the case of Pinus, the models based on moun-
tainous temperature evolution often received high support and 
were positively correlated to extinction (B_DEURA-MAT-M, 
B_DNAM-CMT-M, B_DNAM-MAT-M and B_DEURA-
CMT-M). This may support the findings of Jin et  al.  (2021), 
who showed that mean annual temperature and topography 
are two key determinants of Pinus diversity today. Conversely, 
in the case of Testudinoidea, speciation rates were systemat-
ically correlated to temperature in plains (BEURA-MAT-P, 
BNAM-CMT-P, BNAM-MAT-P and BEURA-CMT-P). Given 
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the strong affinity of turtles for lowland and coastal environ-
ments (Thomson et  al.  2021), this is a very promising result 
that demonstrates the added value of our new methodology. 
Given the high proportion of North American species sam-
pled in the Testudinoidea phylogenetic tree, we can assume it 
may explain the high score received by NAM models in these 
PDD analyses, over other regions of the globe. It is worth not-
ing that, North America, and to a lesser extent Eurasia, are 
regions where curves constrained with palaeoclimate simu-
lations show the most different trends between mountainous 
and lowland regions (Figure 1). Therefore, a given clade is un-
likely to display a strong support for both environments (while 
it is more common for the Neotropical clades, see Figure 3).

Additionally, models based on coldest month temperature re-
ceived high support, for Testudinoidea, Monodoreae and Arinae 
(Figure 3). These clades being respectively ectotherm and trop-
ical, winter temperature is expected to be an important param-
eter in explaining their diversification (Sakai and Larcher 2012; 
Donoghue  2008). For Testudinoidea, the positive correlation 
between speciation and North American winter temperature 
evolution (in plains), suggests an increase in diversification 
with higher winter temperatures, and slowdowns in diversifi-
cation during cooling events (Figure  4), in line with previous 
studies (Chiarenza et al. 2023; Thomson et al. 2021). Other fac-
tors likely influenced the diversification of turtles, such as the 
emergence of new lands suitable for their development during 
periods of sea level fall (Thomson et  al.  2021). Providing fur-
ther research, our approach may allow understanding more 
precisely the relative importance of regional and seasonal tem-
perature changes versus available space in turtles evolutionary 
history. In the Monodoreae case study, using the same dated 
phylogenetic tree, African palaeoelevation was correlated with 
diversification, whereas the GATdat model was not significant 
(Dagallier et al. 2024). Here, we show that the MAT and CMT 
are much better fits than GATdat, suggesting that more de-
tailed temperature models can be preferred over global ones for 
tropical African clades. Finally, the high score received by the 
BCMT–DCMT model for Arinae also suggests a strong impact 
of winter climate on these parrot bird diversification dynamics. 
Such dependence of temperature in parrot diversification would 
be completely overlooked if considering only the classical global 
temperature trend (GATdat). A finer understanding of the po-
tential influence of coldest month temperature on parrot diver-
sification would nevertheless require in-depth research.

The cetacean results showed comparable support for tempera-
ture dependence (either BSST or BGAT) and for a pure birth 
model with constant speciation rates through time (Table  3). 
The high support described by the temperature-dependent mod-
els (BSST or BGAT), translating into a marked decrease in spe-
ciation at the Eocene–Oligocene transition (33 Ma), followed by 
two increases at the mid-Miocene Climate Optimum (17–15 Ma) 
and in the latest Miocene (7–8 Ma), is congruent with other stud-
ies (Marx and Uhen 2010; Condamine et al. 2013).

For Parnassiinae, the MAT variable was the only significant 
variable (Figure  3). However, the explanation may be less 
straightforward, given that Apollo butterflies are mostly pres-
ent in the Palearctic and especially the Himalayan regions today 
(Condamine et al. 2018), and even though the curves related to 

seasonal (CMT) or altitude (M) showed some weight, they were 
not significant.

In the few case studies analysed here, we thus show that regional 
and seasonal palaeotemperature curves as generated here pro-
vided a more detailed understanding of the role of temperature 
in diversification. These approaches are prone to improvement 
in the future, which we discuss below.

4.2   |   Challenges of Using Palaeoclimate 
Simulations-Derived Time Series

Our hybrid method to build environmental time series provides 
a framework to circumvent the impossibility of running million-
year-long climate simulations with state-of-the-art Earth System 
Models. Here, we emphasise the points that users need to be vig-
ilant about in using our methodology and the potential areas for 
improvement. First, our hybrid time series are highly influenced 
by (i) the palaeoclimate simulations data set, (ii) the number of 
available simulations over the considered time period, and (iii) 
the interpolation method used. A direct consequence is that the 
higher the number of simulations, the lesser the hybrid time 
series will rely on background data. Here we used an equally 
spaced data set (Li et al. 2022) with one simulation every 10 mil-
lion years, which prevents capturing important climate transi-
tions in between these time series (e.g., the Eocene–Oligocene 
transition, 33 Ma, or the Mid-Miocene Climatic Optimum, 
15 Ma). As a consequence, the imprint of these events in our 
hybrid time series is mostly driven by the GATdat trend used 
as interpolation background. Therefore, to explore the specific 
regional expression of these climatic events more comprehen-
sively, it would be beneficial to produce simulations that spe-
cifically target these key periods in the past. Such an approach 
involves the development of new palaeoclimate modelling strat-
egies aimed at finding a compromise between computing cost 
and temporal precision.

Second, Model Intercomparison Projects dedicated to the geo-
logical past (e.g., MioMIP (Burls et al. 2021) or DeepMIP (Lunt 
et al. 2021)) have shown that there can be substantial variations 
between results obtained with different Earth System Models, 
especially at the regional scale. This is mostly attributable to 
differences in model spatial resolution and tuning strategy 
through parametrisation (Hourdin et  al.  2017). As mentioned 
in Section 3.1, the palaeoclimate simulations from the data set 
used in the present study were designed to match the estimated 
mean global palaeotemperature reconstructed from a variety of 
palaeoenvironmental archives compiled in (Scotese et al. 2021) 
(see Li et al. (2022) for full methodology), by adjusting the pCO2 
concentration. Other palaeoclimate groups adopt a reverse strat-
egy, which is to set a pCO2 value in agreement with pCO2 prox-
ies estimates, without specifically trying to match an estimated 
global temperature. While both strategies have their advantages 
and disadvantages, it is important to acknowledge that biases 
from the original proxies (e.g., due to sampling bias, errors in 
dating or palaeolocalising the proxy, calibrations issues) may be 
reflected in the simulated palaeoclimate. Consequently, users 
of palaeoclimate model results for macroevolutionary purposes 
must be aware of the specific characteristics of the model, includ-
ing its biases. Given the high degree of uncertainty on boundary 
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conditions for certain time periods, palaeoclimate simulations 
also depend on decision-making during their experimental 
design. Typically, pCO2 estimates have long been quite uncer-
tain in the geological past (Foster et al. 2017, The Cenozoic CO2 
Proxy Integration Proiect (CENC02PIP) Consortium 2023, Rae 
et al. 2021) and palaeogeographic reconstructions may entail un-
certainties, due to the lack of available data or conflicting results 
with different methods (Buffan et al. 2023; Poblete et al. 2021; 
Tardif et  al.  2023; Botsyun et  al.  2019; Su et  al.  2019). While 
these uncertainties have been reduced considerably during the 
past decades, palaeogeographic reconstructions are bound to 
further improve with time and access to new data, which may 
lead to revision of palaeoelevation, mountains extant, drainage 
patterns and land-sea distribution. While the impact of a partic-
ular geographic feature will likely be smoothed if working with 
a temperature time series at the global or continental scale, it 
may lead to significant changes when working on clades at the 
regional to local scale.

Future studies would also benefit from comparing thoroughly 
the time series generated with our initial approach with those 
obtained with recent emulators and data assimilation strategies. 
Although, to our knowledge, emulators have been applied to no-
tably shorter time intervals of a few My so far (e.g., the Pliocene 
and the Eocene–Oligocene Transition, see Van Breedam 
et al. (2022), Lord et al. (2017)) using them with high-resolution 
Earth System Models over the entire Cenozoic could open new 
avenues to include environmental variables in diversification 
models. Likewise, our reconstructions could be compared to 
global temperatures reconstructed through the use of palaeocli-
mate data assimilation methods that combine the use of a high 
number of palaeoclimate simulations with various palaeotem-
perature reconstructions (see (Judd et al. 2024), published very 
recently).

4.3   |   Perspectives

Our original endeavour to include climate model-derived in-
formation into the PDD framework can be enhanced in several 
ways and open doors to new studies. First, besides tempera-
ture, rainfall or available continental surface have also likely 
been key drivers of diversification (Fine and Ree 2006; Zaffos 
et al. 2017; Neves et al. 2021; Ringelberg et al. 2023; Husson and 
Sepulchre 2021). Including rainfall into new exploratory envi-
ronmental time series could be fruitful, but is still very challeng-
ing. It requires overcoming important limitations in the way 
rainfall can be interpolated, since there is no time-continuous 
proxy for palaeoprecipitation variations through time. In addi-
tion, although improvements have been made in the latest gen-
erations, Earth System Models are known to have limitations 
in their ability to simulate rainfall (Stevens and Bony  2013), 
calling for a careful comparison between palaeoproxies and 
model outputs before using them within a PDD framework. 
Including other abiotic forcings (like palaeogeography or pCO2) 
will allow to explicitly test which variable, or which combina-
tion of variables, better explains diversification (e.g., Condamine 
et al. 2015, 2018; Boschman and Condamine 2022).

Our diversification analyses with the PDD models make the 
assumption of a single rate depending on the environment 

Condamine et  al.  (2013), which can be an oversimplification 
of the diversification history of the group. For example, Morlon 
et al. (2011) showed that it is necessary to account for rate het-
erogeneity, with different groups having different diversification 
dynamics, in order to reconcile the observed discrepancy be-
tween phylogenetic data and the fossil record. It is also possible 
that subclades responded differently to environmental changes 
(e.g., Condamine et al. 2012; Quintero et al. 2023). Accordingly, 
allowing PDD models to account for climate heterogeneity in 
diversification rates, that is, multiple regional climate curves ap-
plied to different clades rather than a single curve for the whole 
group, would be a significant step forward in macroevolutionary 
studies. While the estimation of clade-specific diversification 
rates has recently been automated and improved in RPANDA 
(Mazet et al. 2023), it has yet to be adapted to a palaeoenviron-
mental context.

Finally, our methodology may be of interest to produce the abi-
otic fields needed to force the emerging generation of population-
based, spatially explicit, mechanistic eco-evolutionary models 
(e.g., Rangel et al. (2018), Hagen et al. (2021), see Hagen (2023) 
for a review). Nevertheless, these new models require the use 
of environmental records (aridity index, temperature and ele-
vation) with a high spatial resolution, which represent an addi-
tional challenge to be tackled.

5   |   Conclusions

The present study demonstrated the strong potential of generat-
ing spatialised and seasonal proxy-derived temperature trends 
constrained with palaeoclimate simulations, and how these can 
then be integrated into environment-dependent diversification 
models. As such, we can test more detailed diversification hy-
potheses like the influence of global to regional and/or seasonal 
temperature trends on the speciation and extinction dynamics 
of a given clade. This new methodology, when used in combi-
nation with biogeographic analyses, the integration of fossil in-
formation and other macroevolutionary data, may significantly 
advance our understanding of how abiotic factors impact biodi-
versity patterns.
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