
Computational Intelligence

ORIGINAL ARTICLE OPEN ACCESS

Safety Monitoring of Machine Learning Perception
Functions: A Survey
Raul Sena Ferreira1, 2 | Joris Guérin1, 2, 3 | Kevin Delmas4 | Jérémie Guiochet1, 2 | Hélène Waeselynck1

1LAAS/CNRS, Toulouse, France | 2Université de Toulouse, Toulouse, France | 3Espace-Dev, IRD, Université de Montpellier, Montpellier, France |
4ONERA, Toulouse, France

Correspondence: Raul Sena Ferreira (raulsenaferreira@gmail.com) | Joris Guérin (joris.guerin@ird.fr)

Received: 13 July 2022 | Revised: 20 June 2024 | Accepted: 31 January 2025

Funding: This work was supported by Horizon 2020 (MSCA-ETN SAS, grant agreement No 812.788) and Investing for the Future - PIA3 (ANITI, grant
agreement No ANR-19-PI3A-0004).

Keywords: fault tolerance | machine learning perception | runtime monitoring | safety-critical autonomous systems

ABSTRACT
Machine Learning (ML) models, such as deep neural networks, are widely applied in autonomous systems to perform complex
perception tasks. New dependability challenges arise when ML predictions are used in safety-critical applications, like autonomous
cars and surgical robots. Thus, the use of fault tolerance mechanisms, such as safety monitors, is essential to ensure the safe
behavior of the system despite the occurrence of faults. This paper presents an extensive literature review on safety monitoring
of perception functions using ML in a safety-critical context. In this review, we structure the existing literature to highlight key
factors to consider when designing such monitors: threat identification, requirements elicitation, detection of failure, reaction, and
evaluation. We also highlight the ongoing challenges associated with safety monitoring and suggest directions for future research.

1 | Introduction

Recent advances in Machine Learning (ML) have allowed
autonomous systems to leave the safe environment of research
labs to perform complex tasks, where failures can have catas-
trophic consequences. Examples of such safety-critical systems
include self-driving cars [1], surgical robots [2], and unmanned
aerial vehicles in urban environments [3]. These autonomous sys-
tems frequently use large ML models like neural networks for
complex sensor signal interpretation, that is, perception [4], or
decision-making, that is, control [5]. This paper focuses on safety
mechanisms for critical physical systems relying on ML to process
sensor signals.

In various autonomous system applications, essential percep-
tion tasks can only be solved using ML. For example, in highly

Raul Sena Ferreira and Joris Guérin equally contributed to this work.
--

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work
is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2025 The Author(s). Computational Intelligence published by Wiley Periodicals LLC.

uncontrolled settings, such as self-driving cars [6] or UAV
emergency landing [7], deep neural networks must be used to
detect pedestrians in RGB images. This information cannot be
obtained from other approaches and is crucial to guarantee the
system’s safety. Despite the great success of modern ML-based
perception, it introduces new dependability challenges: [8–10] 1.
The lack of well-defined specification: ML models are learned from
examples instead of manually coded, making their operational
boundaries elusive, and preventing formal safety guarantees.
2. The black-box nature of the models: traceability and trans-
parency of ML predictions is difficult. 3. The high-dimensionality
of data: validation of the complete operational design domain
is impossible. 4. The over-confidence of neural networks: output
scores cannot be used as is to detect failures since a model can
deliver wrong outputs with high confidence [11]. Hence, conven-
tional offline safety measures, like fault prevention, removal, and

Computational Intelligence, 2025; 41:e70032 1 of 20
https://doi.org/10.1111/coin.70032

https://doi.org/10.1111/coin.70032
https://orcid.org/0000-0002-4629-8821
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1111/coin.70032
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcoin.70032&domain=pdf&date_stamp=2025-04-20

forecasting [12] are often not sufficient to ensure safety and to
certify these systems. Online fault tolerance mechanisms, such
as Safety Monitors (SM), emerge as a promising alternative to
improve safety in critical systems relying on ML perception.
This paper focuses on SMs, which aims to keep the system in
an acceptable state during operation, despite faults or adverse
scenarios [13]. Safety monitors are mentioned in the litera-
ture under various terms, including safety kernels [14], safety
managers [15], autonomous safety systems [16], checkers [17],
guardian agents [18], safety bags [19], or emergency layers [20].

Most autonomous systems cannot be considered fault-free given
the adverse and unspecified situations they encounter as they
evolve in unstructured environments. Fault tolerance approaches
aim to ensure that faults do not lead to catastrophic outcomes by
designing both error detection and recovery mechanisms. In par-
ticular, SMs are components responsible for checking whether
specific safety properties are violated and triggering corrective
actions. A key characteristic of SMs is their simplicity, to ensure
high reliability levels. Traditional SMs monitor system decisions
to prevent hazards, but often take for granted the reliability of
the state estimation provided by perception components [21]
(Figure 1). This work considers critical systems relying on ML
for perception tasks. As explained above, given the inherent
complexities of ML-based perception, such outputs should not
be trusted blindly to make safety-critical decisions. Therefore, it
is essential to design specific safety monitoring approaches for

these components to detect errors early and adapt the system’s
behavior.

Many existing studies on SM predominantly concentrate on
devising techniques to detect unsafe ML predictions. Conse-
quently, current surveys in this domain focus on categorizing
error detection methods, as detailed in Section 2. However, SM
encompasses more than merely identifying unsafe predictions. In
this research, our objective is to comprehensively present the lit-
erature pertinent to the creation of robust SMs. As such, our paper
is structured around the principal safety considerations intrinsic
to SM design:

• What threats are being addressed by safety monitors?
(Section 3)

• How to derive monitor requirements from safety objectives?
(Section 4)

• Which detection mechanisms can be used? (Section 5)

• Which recovery actions can be used? (Section 6)

• How are safety monitors evaluated? (Section 7)

For each of these topics, the main challenges are presented along
with existing approaches to tackle them (Figure 2). Although
classic SM mechanisms can be useful to ensure the safety of

FIGURE 1 | Safety Monitors for Machine Learning-based Perception Functions. In modern autonomous systems, state estimation provided by deep
learning models cannot be trusted to make safety-critical decisions. Therefore, specific fault tolerance approaches should be implemented to ensure that
failures of the ML perception function will not lead to catastrophic outcomes.

FIGURE 2 | Key questions to design, implement, and deploy reliable safety monitors for ML perception. Each section of this work discusses a
specific aspect of safety monitoring of machine learning perception.

2 of 20 Computational Intelligence, 2025

such autonomous systems, this paper focuses on the specificities
related to ML perception. As shown in Figure 1, most approaches
presented in this paper act close to the ML perception function,
often directly considering either its inputs or outputs. However,
we cast a broader net, shedding light on diverse strategies perti-
nent to crafting safety monitors, making this a valuable guide for
safety practitioners keen on integrating ML, as well as ML experts
navigating the intricacies of safety.

2 | Related Work

Recent literature about ML safety has flourished, leading to sev-
eral surveys about the different facets of this domain. This section
aims to delineate the contributions of these works and articulate
the unique space our study occupies.

In their survey, Xu and Saleh [22] categorize the existing research
on the use of ML to improve safety across various applications.
Similar surveys have been proposed in domain-specific contexts
like autonomous driving [23] and architecture [24]. However,
these surveys primarily emphasize the benefits ML brings to
safety initiatives, sidestepping the crucial aspect of ensuring the
safety of the ML components themselves, which is the focus of
our study.

The overview proposed by Faria [9] is closer to our objective as it
presents the challenges posed by ML models in a safety-relevant
context and describes potential solutions. However, it does not
present the literature for safety monitoring, a critical pillar for ML
safety that our survey delves deep into.

Mohseni et al. [10] also undertook an exhaustive literature
review on the safety implications of ML, within the context
of autonomous vehicles. Their spectrum of safety mechanisms
is composed of three categories: inherently safe design, safety
margins, and fail-safe mechanisms, that is, safety monitors.
Regarding SM, they classify detectors by their targeted error
types (uncertainty estimation, in-distribution error detection,
and out-of-distribution error detection). Likewise, Pandhari-
pande et al. [25] also discuss safety for ML-based automotive
perception. For monitoring, they mostly discuss techniques to
detect inputs that are outside of the expected operational design
domain.

Varshney and Alemzadeh [8] consider ML safety through the
lens of risk, epistemic uncertainty, and resultant harm. They dis-
cuss four categories of methods to achieve ML safety, including
fail-safe strategies, echoing our emphasis on runtime monitoring.
Their discussion on monitoring includes classification with rejec-
tion and uncertainty estimation techniques. They present several
practical examples, but their discussion is mostly focused on the
actions that are taken after ML failure has been detected, while
not fully covering detection mechanisms. Recently, Mohseni
et al. [26] also proposed a taxonomy of dependability tech-
niques for ML design and deployment. Starting from engineer-
ing safety requirements, they present safety-related ML research
into three categories: inherently safe design, enhancing model
performance and robustness, and runtime error detection. How-
ever, regarding the specific subfield of ML monitoring, which is
the focus of our work, they mostly discuss detection mechanisms

(uncertainty estimation, outlier detection, and adversarial attacks
detection).

Rahman et al. [27] journeyed closer to our thematic, presenting
a taxonomy for runtime monitoring of ML robotic perception.
They organize existing approaches to detect runtime failures into
three categories: approaches using past examples of failures to
predict future ones, approaches detecting inconsistencies in the
perception outputs, and uncertainty estimation approaches. Sim-
ilarly, Zhang et al. [28] discussed detection approaches, classi-
fying them based on their primary objectives: failure rejection,
unknown rejection, and fake rejection.

The surveys presented above are constructed in a bottom-up fash-
ion: they first identify existing works and organize them into rele-
vant categories. This methodology leads to discussions about ML
monitoring that are incomplete, as most of the existing litera-
ture deals with the detection of unsafe predictions. Traditional
safety engineering, however, recognizes error detection as just
one component of runtime monitoring and other aspects are also
crucial to designing and implementing safe monitors. Therefore,
our study was constructed in a top-down fashion, where we first
identified primary safety considerations for SM design to frame
our survey’s structure: threat identification, requirement elici-
tation, error detection, recovery mechanisms, and performance
evaluation. This methodology allows us to go beyond detection
mechanisms, highlight areas often overlooked in other surveys,
and uncover specific areas where research is lacking from a safety
perspective.

Furthermore, unlike other taxonomies that focus on targeted
threats, our categorization of detection mechanisms is con-
structed around how the monitors are integrated within the
entire system. We distinguish between internal monitors, which
are inherent parts of the ML itself, and external monitors, acting
independently from the monitored model. Furthermore, exter-
nal monitors are classified based on the type of input they ana-
lyze – ML input, ML internal representation, or ML output. We
believe that this taxonomy offers greater clarity, especially given
the generic nature of many mechanisms that may be deployed
against multiple types of threats [29].

3 | What Threats Are Being Addressed
by Safety Monitors?

The identification of potential threats is pivotal when designing a
dependable SM. Should the safety analysis reveal that a threat is
likely to occur for a specific application, this should be reflected in
the monitor’s evaluation protocol. Different kinds of threats can
affect the ML-based perception functions. Offline threats, such
as poor feature engineering [30], label noise [31], inadequate ML
testing [32], or bad model maintenance [33], emerge during the
ML model development phase. While it is crucial to adhere to
robust software engineering practices during SM development,
this section mostly focuses on runtime threats, which occur dur-
ing live operations.

The objective of an SM is to detect unsafe ML predictions and
implement corrective actions to prevent catastrophic outcomes.
Such hazardous predictions can arise from different types of

3 of 20

input data, which we term runtime threats. This section presents
a taxonomy of runtime threats for perception functions, inspired
by existing literature [34–39]. Adverse input data are classified
as threats if they can be detected or mitigated using similar
approaches. Throughout this section, we present runtime threats
and discuss their specificities concerning detection, reaction, and
evaluation.

Before diving into the different threats, we wish to emphasize
that, in our recent work [29], we challenged the prevailing
understanding of runtime threats in the context of monitor-
ing. A significant portion of NN monitoring research centers
on Out-Of-Distribution (OOD) detection, emphasizing the
monitor’s role in flagging data diverging from the training
distribution. However, we highlighted the inherent ambiguity
in defining “OODness”: not all OOD data are inherently dan-
gerous and not all in-distribution data are safe. We advocate
for evaluating monitors based on their proficiency in detect-
ing incorrect predictions. Nonetheless, the notion of threats
delineated in this section remains crucial for SM design and
evaluation. Given that a monitor’s efficacy in error detection
might fluctuate across diverse threats, it’s paramount that every
potential threat–identified through a rigorous safety analysis–is
considered during the monitor’s testing phase.

3.1 | In-Distribution Errors

Modern deep-learning architectures have achieved impressive
results in many perception tasks. According to the latest leader
board on papers with code1, the top-performing model for seman-
tic segmentation on Cityscapes [40] has a mean intersection over
the union of 84.5% [41], the best model for image classification on
ImageNet [42] has a top-1 accuracy close to 91%, and the leader
for object detection on COCO [43] has a mean average precision
around 63% [44]. These benchmarks were established on the test
splits of these datasets, assumed to derive from the same distri-
bution as the training data, denoted as In-Distribution (ID) data.
While these results are excellent and allow researchers to build
useful applications, even the best computer vision models are not
flawless. To guarantee the system’s safety, an SM should be able
to handle these errors.

Beyond this fundamental model generalization issue, there is
another problem: the data incompleteness. Rare conditions tend
to be underrepresented since the training data only account for a
small subset of all real-world possibilities [45]. Such data, present-
ing different characteristics than the training data, are considered
Out-Of-Distribution (OOD) [46] and are discussed as different
types of threats in the coming sections. There is no unified nam-
ing convention for the threats presented hereafter in the litera-
ture, but we strive to propose clear definitions to avoid ambiguity.

3.2 | Novelty Threats

A new input data encountered at runtime is considered “novel”
when its category/label does not refer to any of the predefined
categories known by the model [46]. For example, Blum et al.
[47] studied the problem of semantic segmentation of a driving
scene and trained their model on the Cityscapes dataset [40].

At runtime, when a dog crosses the road, its corresponding pixels
are considered novelty as they do not belong to the predefined set
of classes of Cityscapes. Hence, when a novelty input is presented
to an ML perception model, it cannot return a correct answer.

The above example shows that facing novelty inputs is common
for autonomous systems evolving in unstructured environments.
Hence, it is crucial to equip ML perception models with defen-
sive mechanisms against this runtime threat. A typical strategy
consists of building classification models with rejection [48], with
the ability to reject uncertain predictions such as objects outside
the network scope. Regarding the recovery after detecting novelty
threats, the actions implemented should not rely on the possibil-
ity of obtaining a better estimate of the correct prediction. Con-
crete approaches to detect novelty threats, recover from them,
and evaluate the ability of an SM to address them are discussed
in Sections 5, 6, and Section 7, respectively.

3.3 | Distributional Shift Threats

A distributional shift occurs when the marginal distribution of
the runtime input data are different from the training distribu-
tion, while the label generation mechanism remains unchanged
[38]. Regarding safety monitoring, we distinguish two types of
shifts: covariate and semantic.

3.3.1 | Covariate Shift

A covariate shift is a condition that decreases the ML perfor-
mance through time in dynamic environments [49]. In other
words, covariate shift threats are new data presenting different
characteristics in their composition but for which the semantic
content is not different from training. For images, such threats are
also called corruptions or perturbations and were presented and
discussed extensively by Hendricks and Dietterich [50]. These
deteriorated data can come from:

• Failure in exteroceptive sensors. These perturbations come
from hardware defects and include various errors such as
pixel traps, shifted pixels, and Gaussian noise. There are spe-
cific approaches to identify sensor faults [51], which can be
addressed by tuning the sensor parameters [52] or having a
backup sensor system [53].

• Changes in external conditions. For autonomous systems
evolving in unstructured environments, the training data
cannot cover all possible real-world conditions. For example,
outdoor perception functions should work for different
kinds of weather (e.g., snow, fog) and lighting conditions
(e.g., night, sunset). As illustrated in the disengagement
reports by major companies, such external factors influence
the perception performance and can reduce the safety of
autonomous vehicles [54].

To deal with these two covariate shift types, both traditional sig-
nal processing [55] and modern deep learning approaches [56]
have been used to detect and reduce data noise. However, the
techniques used against covariate shift threats depend highly on
the amount of noise in the data.

4 of 20 Computational Intelligence, 2025

3.3.2 | Semantic Shift

A semantic shift threat refers to images showcasing objects that:

• presents different attributes than known members of this
category, such as a pedestrian detector trained in summer
encountering individuals wearing winter clothes [57],

• displays uncommon interactions between known classes
and their surroundings, like an overturned truck [58].

In contrast to novelty threats, semantic shift only includes data
where the objects align with the model’s predefined categories.
While one might see a semantic shift as a particular case of covari-
ate shift, its distinct challenges in safety monitoring set it apart.
Notably, semantic shifts cannot be handled with denoising or
backup sensors. Instead, some studies have explored the detec-
tion of object attributes that remain consistent across varying
environments [59]. For instance, when confronting a pedestrian
detector with shifts in clothing attributes, detecting faces rather
than full bodies could be more effective. Though not designed
for ML monitoring, such approaches hold promise for identifying
model failures linked to semantic shift threats.

3.4 | Adversarial Threats

An adversarial input is an intentional modification of
in-distribution data to make ML models fail with high con-
fidence [60, 61]. In real-world scenarios, these malicious attacks
can be made by applying modifications on targeted physical
objects such as painting black lines on the road to force the ML
model to interpret it as a road lane [62].

Adversarial threats can lead to serious safety issues if applied
against the perception functions of critical systems. Therefore,
they should be handled by specific SMs as they are likely to fool
generic monitoring approaches. However, specific hardening
approaches, such as gradient hiding and defensive distilla-
tion, have been developed to identify them or increase model
robustness [35].

4 | How to Derive Safety Monitors From Safety
Objectives?

Safety monitoring guarantees that some safety properties are
not violated despite potential faults occurring in the main sys-
tem. The elicitation and modeling of these properties are essen-
tial steps in designing safety monitors. For instance, Machin
et al. [13] used a HAZOP-UML hazard analysis [63] to iden-
tify high-level safety objectives expressed in natural language.
These high-level objectives are then converted to low-level safety
requirements, expressed formally in the system’s state space, and
observable by the monitor. For a mobile robotic platform in a stan-
dard industrial setting, an example of a high-level safety objec-
tive is “the robot platform must not collide with a human.” A
low-level safety requirement can be derived by comparing the
braking distance with the distance of any obstacle sensed by a
laser. In this example, the low-level requirements are easy to
express and implement since the sensor signal can be interpreted
in terms of the high-level requirement.

The high-level safety objectives can still be identified using
standard hazard analysis tools for complex systems involv-
ing machine learning perception. However, converting them
into low-level monitoring requirements is not straightforward.
Indeed, expressing and implementing a high-level requirement
in raw sensors can result in solutions that are too conservative
or even infeasible to be deployed at runtime. For example, if we
consider an emergency braking system (EBS) implemented in an
autonomous vehicle:

• Using simple sensor signals such as a laser is not enough
to capture the semantic information required to distin-
guish between pedestrians and other moving vehicles. Such
semantic information is crucial for EBS to perform two very
different low-level requirements: to stop the ego vehicle
when the EBS identifies an object as a pedestrian, or slightly
decelerate the ego vehicle when the EBS identifies an object
as a moving vehicle. Therefore, stopping the car for all sensed
objects is too conservative, which would significantly alter the
availability of the system.

• Using complex sensor signals such as RGB image pixels from
camera sensors is not enough to guarantee that a high-level
objective is not violated. That is, measuring the pixels alone
is infeasible to perform the EBS task since such raw RGB
values cannot give insightful information for the EBS to per-
form a high-level requirement such as avoiding a collision.

Hence, we should specifically monitor the ML function respon-
sible for localizing pedestrians. In other words, the system-level
safety objectives should be expressed as variables related to the
ML model (input, activation, output).

As explained above, most current works on ML monitoring
focus on detecting when a model is wrong and should not be
trusted. This is a good generic formulation of the problem, agnos-
tic of the system in which the model is embedded. However,
we believe that using information from the application con-
text to refine the low-level monitor requirements is a promising
research direction. In particular, the hazard analysis of the system
could be used to identify safety-critical regions of the ML model
input/output space or to understand under which system config-
uration an ML error is hazardous. In addition, building monitors
for specific subregions of the state space might allow us to come
up with more effective local monitors and better allocation of
resources.

Although this lead has not yet been explored for ML monitoring,
some research from ML safety could serve as a first step toward
building better specific monitors. In their work, Dreossi et al.
[64, 65] propose to identify regions in the state space where a
failure of the ML model results in a violation of a formal specifica-
tion. For an autonomous vehicle use case, they show that errors of
an ML-based obstacle detection model are only threats for certain
state configurations (speed and distance to other vehicles). On the
other hand, Salay et al. [66] introduced an approach called Clas-
sification Failure Mode Effects Analysis (CFMEA) to study the
safety of an ML classifier. It serves to identify the kind of errors
that can lead to a safety-critical situation. For example, CFMEA
can assess the severity of different control actions based on
different classification errors in an autonomous vehicle scenario.

5 of 20

This approach represents a promising research direction for run-
time monitoring of ML perception functions. For example, know-
ing that an ML failure would only cause catastrophic events in
some subsets of the state space could help to collect better data to
design monitors in these specific regions.

5 | Which Detection Mechanisms Can be Used
for Safety Monitoring?

Traditional monitors analyze both exteroceptive (e.g., distance)
and proprioceptive (e.g., speed) sensors to detect safety threats.
They apply simple rules on sensor data based on formal speci-
fications [13]. However, for complex perception functions, these
monitors struggle to interpret raw sensor signals like image pix-
els. This section discusses recent strategies to detect errors in ML
model signals. Yet, even in ML-augmented autonomous systems,
traditional monitoring remains indispensable to handle other
sensors and ensure the system’s proper functioning.

Despite its significance, the specific field of ML safety mon-
itoring has received limited research attention. Nonetheless,
various ML techniques, hailing from subfields like uncer-
tainty estimation, anomaly detection, ensemble methods, or

multimodal perception, show potential as SM detection mech-
anisms. This section delves into such prospective approaches,
encompassing those not specifically designed for safety monitors.

This section presents a comprehensive taxonomy of detection
mechanisms. Our categorization of detectors revolves around the
manner in which they are assimilated into the complete sys-
tem (Figure 3). Within each category, we outline the primary
approaches and assess their advantages and limitations. How-
ever, it is important to mention that current research does not
allow us to reach definitive conclusions regarding the efficacy
of these techniques. Indeed, the literature currently presents a
varied landscape with differing evaluation methods and con-
flicting experimental results. Notably, a study by Ferreira et al.
[37] revealed unsatisfactory results for several evaluated methods
despite the good results presented in the original papers.

5.1 | Internal Mechanisms

Internal detection mechanisms are approaches where the ML
model itself is trained to predict its failures. In other words,
the NN is designed to return both predictions and informa-
tion regarding the trust in these predictions. We classify internal
mechanisms into three families of approaches.

FIGURE 3 | Taxonomy of detection mechanisms. A visual representation of the different types of approaches to detect a failure of a critical ML-based
perception function [67–110].

6 of 20 Computational Intelligence, 2025

5.1.1 | Uncertainty Estimation

Uncertainty estimation in deep learning has been widely studied
recently [111–113]. Most deep learning models produce a single
output value per input data. Uncertainty estimation approaches
replace point estimate predictions with a probability distribu-
tion over the output space. These probabilities can then be used
to evaluate the risk of trusting the prediction. For example, for
deep learning classifiers, the outputs of the softmax layer define
a probability distribution over the possible classes. However, the
community has widely questioned using raw softmax output as
an uncertainty proxy. Softmax is merely a normalization tech-
nique, not designed to represent meaningful probabilities, and
thus often yields overconfident predictions [78, 114].

In Bayesian Deep Learning, the weights of an NN are treated
as random variables, and the objective is to learn their distribu-
tions from the training data. Then, using the Bayes rule, one can
compute the distribution of the predictions. Traditional Bayesian
statistics [115, 116] is a natural way to reason about uncertainty
in predictive models but comes with a prohibitive computational
cost to be used in practice. Recently, various approaches have
been proposed to compute approximate Bayesian inference on
large ML models, including Variational Inference [117–120],
Laplace approximation [99], and sampling methods [121]. For a
detailed review of Bayesian deep learning, we refer the reader to
the following works [111, 122].

Bayesian deep learning has been applied to various perception
tasks related to autonomous systems, including object detection
[123], semantic segmentation [67, 124], end-to-end vehicle con-
trol [68], or visual odometry [69]. Of the techniques available,
those based on Monte-Carlo Dropout [11, 125] are particularly
popular due to their simplicity of implementation. This approach
retains Dropout layers during inference, enabling stochastic pre-
dictions. By repeatedly running the model and analyzing predic-
tion statistics, it evaluates uncertainty.

In theory, a clear understanding of model uncertainty is truly all
that is required for constructing robust SMs for ML models. How-
ever, methods that provide provably accurate uncertainty esti-
mates are intractable for real-time tasks in autonomous systems.
To circumvent this challenge, various approximation methods
have been introduced. Depending on their level of simplification,
they either remain too computationally expensive or fail to offer
reliable uncertainty estimates suitable for safety-critical systems.
However, given the rapid advancements in this research area, the
landscape could change soon.

5.1.2 | Incorporating Domain Knowledge

Domain knowledge can be leveraged to improve the training
of ML models. It can be incorporated into the architecture and
training process in the form of logical or numerical constraints
[126]. For example, a pioneering work proposed to build an
object detection model by training a hierarchy of classifiers using
lexical-semantic networks to represent prior knowledge about
inter-class relationships [127]. This architecture can be used to
detect anomalies in the runtime predictions. Likewise, informa-
tion about the relationship among different superpixels of an

image is used in [70] to build a robust classification pipeline.
The superpixel relationships are modeled using a graph neu-
ral network, which processes the image jointly with a convolu-
tional neural network in the final architecture. This additional
information in the model itself can be used to detect incoher-
ence in the final predictions. Ramanathan et al. [71] build an
action retrieval model by incorporating other small linguistic,
visual, and logical consistency-based actions to effectively iden-
tify relationships between unobserved actions from known ones.
Other such approaches include attempts to incorporate symbolic
knowledge [72], as well as first-order fuzzy logic to reason about
logical formulas describing general properties of the data [73].

Such domain-aware approaches are notably effective as they are
specifically tailored to monitor relevant elements to a particular
application. However, their limitation lies in their lack of univer-
sality. Each application or task requires a unique design, demand-
ing considerable expert effort for every subsequent model. At
times, crafting them to fit certain tasks might even be unattain-
able. Moreover, such niche approaches seem to have a higher rate
of false positives, as indicated by Ferreira et al. [37].

5.1.3 | Learning With Rejection

In the setup of selective classification—also called classification
with rejection—input data can either be classified among one
of the predefined categories or be rejected, that is, the system
produces no prediction. Such rejection mechanisms can actu-
ally be viewed as built-in safety monitors as they allow to reject
uncertain predictions at runtime. This kind of approach has been
presented as a promising way to control the confidence in the
monitored model in critical autonomous driving scenarios [10].
These approaches are internal mechanisms as they consist of
modifying the model and learning algorithm to account for rejec-
tion. In other words, the predictor and the rejection function
are trained jointly and are part of a single unified model. Sev-
eral approaches have been proposed to integrate rejection options
to traditional ML models such as support vector machine [128],
K-nearest neighbors [129], and boosting [74]. Recently, Geifman
and El-Yaniv [75] presented Selectivenet, a neural network archi-
tecture optimized to perform classification and rejection simulta-
neously. Several other approaches have been introduced recently
for learning with rejection, as discussed in more detail in the
recent survey by Hendrickx et al. [130].

Utilizing an integrated model for prediction and rejection has its
advantages. When optimized together, these elements can boost
performance for specific tasks, potentially reducing inherent
biases due to synergistic training. However, the drawback of
such integrated techniques is that any alteration to the monitor
requires a complete model retraining, further taxing computa-
tional resources. We also believe that learning with rejection
does not align well with today’s machine learning landscape,
where leveraging open-source models as a foundation is com-
mon. Indeed, such an approach prevents seamlessly integrating
a monitor without the labor-intensive need for total retraining.
Finally, while such unified models might diminish bias, there
is a counter-argument in favor of diversifying the design. By
separating the prediction and monitoring processes, a blend
of expertise—spanning data scientists to safety experts—can

7 of 20

collaborate, fostering a multifaceted, bias-resistant system.
Designing a good rejection-enabled model requires specific
expertise beyond basic machine learning knowledge, which
might not always be easy to find.

5.2 | External Mechanisms

External detection mechanisms are independent components in
charge of monitoring the behavior of an ML model during execu-
tion. As they are not directly tied to the ML model, they are not
required to be trained jointly and can be developed later by spe-
cific safety teams. We identified different mechanisms in the lit-
erature that differ in their position in the ML perception pipeline.
In particular, external detection mechanisms can monitor the
ML model inputs, internal representations, outputs, or even data
from other sources.

5.2.1 | Monitoring the DNN Inputs

Some approaches predict failures of an ML perception model
by monitoring its inputs, for example, the raw images. These
approaches are independent of the monitored ML model, as they
characterize the expected operational conditions under which a
neural network can be used and discard new abnormal input data
before the perception function processes them. Next, we present
the existing approaches.

5.2.1.1 | Traditional Approaches. Traditional signal-
processing approaches can be used to identify an anomalous sen-
sory input before it enters the ML model [101]. These approaches
characterize some statistical patterns of “normal” data (i.e., from
the training set) and compare them with new online inputs.
In particular, for images, one can identify noise patterns of the
camera and standard lighting conditions and detect abnormal
images using standard image processing [102]. This kind of
approach has been used to identify water droplets in images for
autonomous driving scenarios [103].

These approaches are good at detecting sensor defects and vari-
ations in external conditions like lighting and weather. Yet, they
fall short of identifying subtle changes in complex signals, such
as novelty classes or semantic shifts.

5.2.1.2 | Input Reconstruction. Recent techniques have
relied on unsupervised deep learning to identify anomalous
images. They start by training an auto-encoder that learns a
lower-dimensional latent representation of the images and how
to reconstruct the original images from it. Then, at runtime, the
auto-encoder can be used to decide if a new image is an outlier
by comparing its reconstruction error to a fixed threshold defined
during training [104–106, 131]. Another approach consists of
training an outlier detection model on the latent representation
of the auto-encoder to predict the nonconformity of new inputs
[107]. In practice, this family of approaches was used to identify
unexpected conditions, such as weather changes, to anticipate
the misbehavior of an autonomous vehicle within a simulation
environment [132]. Finally, Feng and Easwaran [133] proposed
to detect unusual movements in real-time by combining opti-
cal flow operation with representation learning via a variational
auto-encoder.

Compared to conventional techniques, these methods have a
higher likelihood of detecting semantic shifts in data, given
their reliance on deep representation learning from the train-
ing dataset. However, two neural networks trained on the same
dataset may not necessarily learn identical features [134]. Relying
on such an auto-encoder could introduce an additional bias if its
generalization diverges from that of the model being monitored.

5.2.1.3 | Introspection. A well-explored technique in the
robotics domain aims at predicting future failures at runtime. For
instance, Gurau et al. [135] proposed two models that predict
perception performance from observations gathered over time.
Then, the monitor can switch control to a human operator if the
robot’s perception system is predicted to underperform. Kuhn
et al. [136] proposed an introspective approach to predict future
disengagements of the car by learning from previous disengage-
ment sequences. They monitor both input images and other state
data from the car.

Relative to other input monitoring methods, these techniques
stand out as they strive to assimilate the underlying knowledge of
the monitored ML. They learn a fresh data representation to iden-
tify unsafe input under the supervision of the model itself. How-
ever, it appears that these methods could be enhanced by access-
ing additional details about the monitored model, like its activa-
tions, which might aid in devising superior models for detecting
unsafe input data.

5.2.1.4 | Insights Regarding Input Monitoring. Input
monitoring techniques present the advantage of being indepen-
dent of the monitored neural network, which facilitates the soft-
ware engineering process. Yet, this very independence can be a
double-edged sword, making it challenging to anticipate ML fail-
ures on specific inputs without direct model inspection. Such
techniques are effective when the operational design domain
(ODD) is clearly defined and the predictor is reliably error-free
within its ODD. Otherwise, employing techniques tailored to the
specific predictor is advantageous, as they are more likely to cap-
ture the model’s true strengths and vulnerabilities.

5.2.2 | Monitoring the DNN Internal Representations

Other detection approaches monitor the values from the ML
model’s hidden layers. The underlying principle is that the train-
ing data alone does not fully encapsulate the model’s understand-
ing and that crucial information is embedded within the model’s
weights. This can be justified intuitively by the fact that different
models behave differently with new inputs, even when trained on
the same dataset [134, 137]. This section discusses approaches to
monitor neural network activations at runtime.

5.2.2.1 | Continuous Layer Values. Several works have
proposed to detect unreliable predictions by analyzing the output
values of certain layers for novel input data. Rahman et al. [90]
trained a binary anomaly classifier on features extracted from a
hidden layer of a neural network. Another recent work proposed
truncating feature activations from the penultimate layer, before
the classification head, to get better uncertainty estimates [91].
Adopting a different methodology, Lukina et al. [92] employed a

8 of 20 Computational Intelligence, 2025

centroid-based clustering technique on the internal representa-
tions of a designated layer to characterize known inputs, lever-
aging the distance to cluster centers as an indicator to filter out
atypical data at runtime. Finally, Wang et al. [138] proposed
to monitor the neurons within a faster R-CNN by represent-
ing distributions of activation patterns and calculating the
Kullback–Leibler divergence between them.

The raw values of internal layers activation contain rich infor-
mation about the data being processed. Initial layers capture raw
data intricacies while subsequent layers focus on data interpreta-
tion. Yet, the volume of features extracted from these layers can be
extensive, leading to significant computational demands, which
might be unfeasible for some constrained real-time applications.

5.2.2.2 | Binary Layer Activations. To reduce the memory
usage of internal representation monitors, other works have pro-
posed looking only at the binary activations of a given layer. As
ReLU is one of the most popular activation functions in deep neu-
ral networks, one can inspect whether a new input is triggering an
activation of a specific neuron or not, that is, nonzero value. The
advantage of considering such binary variables is that they can be
stored easily using binary decision diagrams [93] or abstraction
boxes [94–96]. Then, abnormal data are identified by comparing
activation patterns encountered at runtime to those recorded dur-
ing training.

5.2.2.3 | Coherence Between Layers. Several works have
explored the potential of simultaneously examining multiple hid-
den layers. Wang et al. [97] introduced Dissector, a tool designed
to ascertain if the outputs across different layers yield consistent
decisions. Schorn and Gauerhof [98] proposed an approach called
FACER, which builds a feature vector capturing activations from
various layers by summing the values of each feature map. Simi-
larly, Lee et al. [99] fitted class conditional Gaussian distributions
to both low-level and upper-level features of the deep learning
model and defined a confidence score based on the Mahalanobis
distance. Another innovative approach consists of tracking the
model’s internal representations backward to build a saliency
map of a given input [100]. The patterns of this map are then com-
pared with the ones obtained for the training set within the same
category. Recently, Wang et al. [139] proposed ViM (Virtual-logit
Matching), combining a feature-based class-agnostic score and
a logits-based class-dependent score, which obtained very good
results for detecting out-of-distribution data.

Leveraging multiple hidden layers often proves advantageous,
primarily because it alleviates the challenge associated with opti-
mal monitoring layer selection. Yet, this approach compounds
the issues related to computational time. As such, striking a bal-
ance between the number of layers to incorporate and the sys-
tem’s inherent constraints becomes pivotal.

5.2.2.4 | Insights Regarding Internal Layers Monitoring.
The activations within internal layers provide an invaluable
insight into a model’s comprehension of the data it processes,
making them pivotal for crafting effective monitors. However,
the challenge lies in pinpointing the right layer for monitoring to
ensure optimal outcomes—a decision far from straightforward.
Marrying the ideal layer with the most suitable monitoring
transformation is equally vital. Owing to these intricate

selections, current results showcase significant variance. Dif-
ferent methodologies and layers excel for varying datasets, but
the community has yet to converge on definitive guidelines
on which techniques and layers best serve specific scenarios.
Consequently, formulating an effective internal layer monitor
remains a challenging endeavor.

5.2.3 | Monitoring the DL Outputs

Some detection approaches monitor the ML outputs. For
example, for classification tasks, the output contains information
about the target class and the model’s confidence associated with
this label.

5.2.3.1 | Manipulation of Softmax Confidence. A
straightforward strategy to monitor deep neural network
outputs consists of properly establishing what values of the
(softmax) confidence score can be considered reliable [78].
Several enhancements over this baseline have been proposed to
address the calibration issues from softmax confidence scores.
Liang et al. [79] presented ODIN, which uses temperature scal-
ing and small input perturbations to separate the softmax scores
between in- and out-of-distribution data. Hsu et al. [80] modified
this approach to function without requiring out-of-distribution
examples and further enhanced detection capabilities using
confidence score decomposition. A more recent methodology,
DOCTOR, aimed to characterize the optimal discriminator,
focusing solely on the softmax probability [36]. Finally, Liu
et al. [140] questioned softmax’s efficacy for reliable uncertainty
estimation, suggesting an alternative energy score for logit
transformation.

The main advantage of these techniques lies in their straight-
forward implementation, only requiring attention to the neu-
ral network’s outputs, and ensuring minimal computational and
memory burden. They have shown promise in detecting threats
such as novelty, covariate shifts, and adversarial attacks. How-
ever, their performance appears to drop for the task of detecting
actual model errors. It’s also worth noting that these strategies
primarily cater to monitoring classification models.

5.2.3.2 | Consistency Checking. Several approaches focus
on verifying the spatial or temporal consistency of a sequence
of predictions. One primary method involves employing expert
knowledge to establish constraints on output sequences. For
instance, Kang et al. [81] built a monitor for object detection by
identifying flickering, that is, an object should not keep appear-
ing and disappearing in successive frames of a video. Another
strategy, showcased by Harper et al. [82], translates the offi-
cial highway code’s rules and clauses into logical assertions for
monitoring.

Alternatively, these patterns can be learned from data. Chen et al.
[83] proposed a logical framework to evaluate both temporal and
spatial coherence of bounding box predictions to identify erro-
neous detections. Temporal coherence focuses on how bounding
box labels evolve across sequential frames, while spatial coher-
ence learns standard bounding box sizes at various locations. On
another note, Guerin et al. [84] proposed a consistency monitor

9 of 20

tailored for objects under periodic motion, like those on produc-
tion lines. They train a Gaussian process to estimate the probabil-
ity for a bounding box to be at a particular location at a specific
time and use it to discard erroneous detections. Finally, Rabiee
and Biswas [141] detect failures of stereo vision-based percep-
tion through inconsistencies in plans generated by a vision and
a supervisory sensor.

These techniques are primarily tailored for object detection tasks.
One of the advantages of these methods is the potential to gather
samples for subsequent ML training, either through human
annotation or weak supervision.

5.2.3.3 | Ensemble Methods. Using an ensemble of ML
models is a conventional approach to enhance robustness. An
effective ensemble should consist of models that are “good,” “in-
dependent,” and “sufficiently numerous.” For complex ML used
in perception tasks, such ensembles can be composed of mod-
els with the same architecture but trained to identify different
aspects of the data or with different architectures trained with
the same data [142]. For deep neural networks, Gontijo et al.
[137] conducted a study about the influence of different train-
ing parameters on what the model knows, which can be used to
maximize the ensembling benefits.

While neural network ensembles are commonly used to enhance
the robustness of ML systems, they can also serve as effective
tools for monitoring predictions. Ensembles provide additional
information, such as the level of agreement among individual
components, which can be valuable for assessing an ML system’s
confidence in its predictions. When computational resources are
not a limiting factor, building ensembles of deep neural networks
presents a promising approach to monitor the coherence between
individual models and mitigate the propagation of errors from a
single neural network.

In practice, different voting strategies were proposed to address
anomaly detection. Yahaya et al. [85] weights each model vote
based on its performance and a score for what is considered nor-
mal. Roitberg et al. [86] leverage the estimated uncertainty of
each prediction to measure novelty. Roy et al. [143] present a
runtime monitor based on predictive processing and dual-process
theory. They developed a bottom-up neural network comprising
two layers: 1. a feature density model that learns the joint dis-
tribution of the original inputs, outputs, and the model’s expla-
nation for its decisions. 2. a graph Markov neural network that
captures an even broader context.

5.2.3.4 | Robustness to Input Perturbation. To verify if a
new input can be considered safe, it was proposed to measure
its sensitivity to input perturbations. Such perturbations can be
applied either to the data (e.g., image compression [87]) or to the
ML model itself through random mutations [88]. Another possi-
bility is to check the stability of a model within a radius distance
calibrated during the training [89]. The underlying hypothesis for
these approaches is that, for valid input, the outputs of the neural
network should be robust to small perturbations.

This approach is mostly used to detect adversarial inputs, but
it has also been used for practical scenarios involving critical
systems. For example, Zhang et al. [144] proposed DeepRoad,

a GAN-based metamorphic testing and input validation frame-
work for autonomous driving systems.

Similarly to ensemble methods, a primary limitation of these
techniques is their need for multiple neural network forward
passes for each input. This can lead to extended processing times
or substantial computing resource demands, which may not suit
many autonomous systems, especially those with real-time and
power efficiency constraints.

5.2.3.5 | Insights About Output Monitoring. Observing
the neural network outputs has the inherent benefit of directly
reflecting the essential information relayed to the system’s deci-
sion module. In contrast, the output layer, compared to early
internal representations, contains less granular details, necessi-
tating the incorporation of additional context for optimal detec-
tion outcomes.

5.2.4 | External Sensors

To conclude this section, we present one last family of approaches
to detect DNN failures. It aims at checking whether the ML pre-
dictions are consistent with signals coming from other sensors.
This way, Zhou et al. [76] proposed to use an additional LIDAR
sensor to monitor the runtime behavior of a semantic segmenta-
tion model. By checking the consistency of geometric properties
between the predicted segmentation map and the LIDAR points,
they can measure the segmentation model’s accuracy at runtime.
Similarly, Ramanagopal et al. [77] used a second camera to moni-
tor the results of an object detection model. Inconsistencies in the
object detector outputs between a pair of similar images are used
as a hypothesis to detect false negatives, that is, missed detections.
Finally, Li et al. [145] present an approach to monitor extrinsic
camera calibration quality by using inertial measurement unit
(IMU) data to capture mismatches of road image features.

These techniques are very powerful in detecting inconsistencies
in ML predictions, bolstering the safety of autonomous systems
with ML-driven perception. However, their effectiveness is pri-
marily confined to ML tasks with a geometrical component, like
segmentation or detection. For purely semantic tasks, such as
classification, simple sensor signals cannot be used to provide
adequate monitoring.

5.3 | Combined Detection Approaches

Various approaches have combined monitors to build more
robust detection systems. Loquercio et al. [108] proposed to mon-
itor data and model uncertainty using distinct mechanisms. Data
uncertainty is assessed by propagating sensor noise characteris-
tics through the network, while model uncertainty is assessed
using Monte-Carlo Dropout [11]. The cumulative uncertainty is
obtained by combining both sources using stochastic Assumed
Density Filtering. Buerkle et al. [110] presented an approach
using two types of detection mechanisms called sensor checks
(monitoring model input with an auto-encoder) and plausibil-
ity checks (monitoring spatiotemporal coherence of model pre-
dictions). Meanwhile, Cofer et al. [109] integrated four distinct
monitors for end-to-end aircraft taxiing, harmonizing data from

10 of 20 Computational Intelligence, 2025

various sensors, standard computer vision algorithms, and input
reconstruction approaches to forge a resilient neural network
monitoring mechanism. Lastly, Guerin et al. [7] combined three
monitors for drone emergency landings: Monte-Carlo Dropout,
local resolution enhancement, and classification hierarchy.

Throughout this section, we’ve delved into a myriad of recent
techniques for detecting unsafe predictions. These methods each
bring unique qualities to the table, addressing various data types,
tasks, implementation nuances, and integration methodologies.
While the individual efficacy of these techniques in the realm of
safe autonomous systems is still under examination, their collec-
tive use holds substantial promise in bolstering safety and paving
the way for system certification. However, pinpointing the opti-
mal amalgamation of these strategies remains a challenge, neces-
sitating a profound understanding of prevailing methodologies,
proper identification of potential threats through safety analy-
sis, and a good understanding of system constraints and require-
ments. Through this survey, we aspire to assist in this complex
endeavor by offering safety experts a complete view of the exist-
ing methodologies and illuminating potential pathways for the
creation of more proficient combined monitors.

6 | Which Recovery Mechanisms Can be Used
to Build Safety Monitors?

In Section 5, we explored a plethora of methods aimed at detect-
ing unsafe predictions stemming from ML-based perception
functions. When activated, these detection mechanisms raise a
safety alert to the autonomous system, necessitating immedi-
ate and appropriate measures to avoid hazardous situations. In
most ML monitoring studies, the basic alert is a basic flag, and
more complex actions are usually not investigated. We call such
actions recovery mechanisms, and this section is dedicated to their
detailed examination.

6.1 | Switching the Control System

The most straightforward and widely used approach when
detecting a potentially dangerous error is to switch to a simpler
control algorithm, not relying on the faulty ML perception
component. Phan et al. [146] proposed the neural simplex archi-
tecture, which switches from a high-performance ML-based
controller to a simpler safe controller when unsafe behavior
is detected. Adapting this architecture to ML-based perception
functions would be highly valuable but challenging. Indeed, in
many practical scenarios, it is hard to design simple controllers
that do not rely on ML for state estimation. As a result, for
complex autonomous systems relying on visual perception, the
default recovery actions often consist of switching back control to
a human driver [106] or triggering an emergency braking [109].
The former can be hazardous when a fast reaction is required.
The latter might not be safe for specific scenarios, for example,
autonomous cars driving on the highway. We believe that the
challenging task of coming up with control procedures to bring
complex autonomous systems back to safety is of significant
importance and should receive more attention.

6.2 | Immediate Prediction Enhancement

For some specific threats, adapted safety measures can be used
to improve the predictions of the ML-based perception function
and increase confidence in the system.

6.2.1 | Input Reconstruction

A family of approaches consists of improving the quality of the
ML inputs. These techniques are used when one can identify
the cause of the wrong prediction and mostly consist of remov-
ing the specific type of noise. Recently, most image-denoising
approaches use autoencoders, trained to reconstruct the original
image without the identified noise pattern [147]. For example,
image dehazing algorithms can be used to react to fog or smoke
[148]. Other approaches have been proposed to react to dif-
ferent light exposure conditions [149, 150], saturation [151],
water drops [103, 152], or even more standard Gaussian noise
or impulse noise [153, 154]. Other works proposed to enhance
the original image by increasing its resolution artificially [155] by
using convolutional neural networks [156] and generative adver-
sarial networks [157, 158]. Furthermore, to deal with images
having chunks of pixels damaged by sensor failures, image
inpainting techniques can be used [159]. Finally, to handle
errors related to incomplete color information (mosaic-styled
images), some works have applied demosaicing techniques [160]
or gradient-based feature extraction [161].

6.2.2 | Changing Final Prediction

To respond to the detection of an adversarial example, Al-Afandi
and Horvath [162] proposed to exclude the predicted classes (cor-
responding to the attack) and to study the resulting loss land-
scape to recover the original class. On the other hand, Li et al.
[163] proposed an approach to reverse the effect of an adversar-
ial attack on a classifier by studying the behavior of adversar-
ial examples and establishing a mapping between true classes
and predicted classes. Whether similar approaches can be used
to respond to different kinds of threats is still an open question
that is worth investigating. For example, the work by Salay et al.
[66] could be extended to downgrade classification at runtime, for
example, if a high classification uncertainty is detected between
the classes “car” and “truck,” the prediction could be changed to
the sup-class “vehicle.”

6.2.3 | Using Alternative Components

When an error is detected in the state estimation, a possible
approach is to substitute some components of the perception
pipeline and recompute its output. For example, when a sensor
failure is causing the perception error, one can rely on existing
backup sensors to still compute the expected prediction [164].
When high uncertainty is detected, one might use sensors with
higher resolution locally (spatially or temporally) to get a better
prediction [7]. However, these high-resolution sensors might not
be usable in the regular operation pipeline because of processing

11 of 20

time or energy consumption constraints. Another idea is to use
an ensemble of ML models with different coverage mechanisms
to replace unsafe predictions [137].

6.3 | Impact on Long-Term System
Enhancement

Finally, we also discuss how runtime threats identified by a mon-
itoring detection mechanism can be used to improve the system’s
safety in the long run. A common strategy in the industry is
to store a huge amount of frames while the system is running
for posterior offline labeling and model retraining [165]. Post-
labeling is usually done manually, using other sensors, or auto-
matically using other ML models. Specific continual-learning
approaches exist for model retraining, particularly to avoid catas-
trophic forgetting when incorporating novel classes [166, 167]. If
one chooses to collect data detected as unsafe by a monitoring
system for retraining, it will have a positive long-term impact on
the safety of the system.

Although these approaches do not guarantee the immediate
safety of the system, they are essential to reduce safety-critical
errors in the long run. In addition, storing data detected as threats
can also be useful for building relevant datasets to test future
developments of safety-critical systems.

7 | How to Evaluate Safety Monitors?

A proper evaluation protocol for safety monitoring should
ensure that the Safety Monitor (SM) presents the following
characteristics:

1. It guarantees that the system never reaches any safety-
critical state.

2. It maintains a high availability of the system.

3. It complies with the runtime constraints of the system (exe-
cution time, hardware capacity).

This section delves into the evaluation practices adopted for ML
safety monitoring. We first examine the assessment methods
for detection mechanisms. Being generic modules, they often
permit independent evaluations detached from the complete
system. Then, we explore the existing evaluation protocols used
for approaches that monitor ML components at the system level.
Finally, we discuss how the impact of research on SM could be
increased by standardizing evaluation methodologies.

7.1 | Evaluation of Detection Mechanisms

Most detection approaches intend to identify unsafe input data,
which are likely to produce erroneous output when processed by
the ML model. Ensuring the efficacy and safety of these methods
necessitates the crafting of pertinent test datasets, coupled with
the application of appropriate evaluation metrics. This section is
dedicated to elucidating these crucial aspects.

7.1.1 | Evaluation Datasets

In this section, we present how datasets are built to evaluate
safety monitoring detection mechanisms. This process can be
seen as fault injection, focusing on the threats presented in
Section 3.

7.1.1.1 | Novelty Detection. Novelty detection aims at
identifying when the label of an input does not belong to any
of the predefined classes handled by the ML model. Thus, to
evaluate the capacity of an SM to identify novel inputs, most
approaches have used modified versions of standard image clas-
sification datasets such as Imagenet [42], MNIST [168] or CIFAR
[169]. In particular, two main strategies can be used to create
novelty detection datasets. The first one consists of merging two
datasets with nonoverlapping class labels. One dataset is used
to fit the model (training split), and its test split represents the
in-distribution data for evaluation, while the other dataset serves
as novelty data. This approach was used for the experiments of
many papers on out-of-distribution detection [37, 78–80, 91, 98,
99, 170]. The second strategy splits a single dataset into two sub-
sets with disjoint labels [86, 92, 94–96, 104, 105]. Recently, Wang
et al. [139] attempted to build a less ambiguous novelty bench-
mark dataset by asking two independent human annotators to
label novelty images for ImageNet.

7.1.1.2 | Distributional Shift Detection. A distributional
shift occurs when the marginal distribution of the runtime input
data differs from the training distribution, while the label set
does not change. It can come from sensor failures, changes in
external conditions, or modifications to the environment itself.
Thus, most papers have relied on injecting perturbations to test
images to evaluate runtime detection mechanisms for detecting
such shifted data. Several papers have proposed to inject artifi-
cial corruption [50] into standard image classification datasets
[37, 78–80, 90, 98] Others have injected faults into realistic
autonomous systems scenarios. Some have used autonomous
vehicle simulators, such as CARLA [171], to simulate different
kinds of driving conditions (weather, light) [39, 107, 133]. Oth-
ers have applied artificial perturbations to existing real-world
datasets for autonomous driving [76, 83, 100, 144] or UAV emer-
gency landing [7].

7.1.1.3 | Adversarial Detection. This setting represents an
intentional modification of in-distribution data to make a deep
learning model fail. The main approach to evaluate an SM detec-
tor at this task consists of applying an adversarial attack (see
Section 3.4 for examples) to the test dataset under evaluation to
constitute a binary classification dataset containing both normal
and attacked images. This has been applied to standard image
datasets [37, 87–89] and simulated autonomous driving scenar-
ios [100, 107].

7.1.2 | Evaluation Metrics

In Section 3, we highlighted two competing perspectives in the
domain of unsafe ML prediction detection. One view centers
on out-of-distribution (OOD) detection, which seeks to recog-

12 of 20 Computational Intelligence, 2025

nize specific runtime threats, assuming that all standard data
should be embraced, while any altered data should be excluded.
In contrast, the out-of-model-scope (OMS) detection focuses on
pinpointing the ML model’s actual prediction errors. This latter
perspective has been adopted in several research works [36, 37,
78, 81, 93, 97]. In our recent work [29], we argue for broader
adoption of OMS detection, postulating that the concept of
“OODness” is ambiguous and that in-distribution errors should
also be addressed by competent monitors. Despite these distinct
paradigms, the evaluation datasets remain consistent across both
views.

Detection mechanisms are binary classifiers, hence, switching
between these perspectives boils down to toggling the binary
monitoring labels. Then, the performance of a monitoring
approach is gauged through standard binary classification met-
rics. In this work, we consider that a True Positive (TP) is a
rejected invalid input, while a True Negative (TN) is an accepted
valid input. A quick rundown of binary classification metrics
includes:

• Accuracy: Proportion of correctly classified inputs. It can be
misleading when the dataset is not balanced.

• FP rate: Proportion of valid inputs that were rejected.

• FN rate: Proportion of invalid inputs that were missed.

• TPR@95TNR: TP Rate when the TN Rate is 0.95. It repre-
sents the probability of finding invalid data when the rejec-
tion threshold is set so that 95% of valid data are accepted.

• AUROC: Area Under the Receiver Operating Characteristic
(TPR against FPR). AUROC is threshold-independent and
represents the probability that rejection scores of valid inputs
are lower than invalid ones.

• Precision: Proportion of rejected inputs that were invalid.

• Recall: Proportion of invalid inputs that were rejected.

• AUPR: Area Under the Precision-Recall curve. AUPR is bet-
ter than AUROC when the positive class and negative class
have greatly differing base rates.

• P@80R: Precision when the recall is set to 0.8 [90].

• F1-score: Harmonic mean of the precision and recall. This
score represents a unified performance evaluation when the
rejection threshold has been fixed.

• Matthews Correlation Coefficient: It accounts for all cate-
gories of the confusion matrix (TP, FP, TN, FN).

When the monitored model addresses a different task than classi-
fication (e.g., regression), the definition of prediction failure is not
as straightforward. For example, a neural network predicting the
steering angle of a vehicle for the next time step will always com-
mit some degree of error, and defining failure requires choosing
a threshold for these errors. For such cases, to assess the perfor-
mance of a detection mechanism, one can compare the values
of task-specific metrics between accepted and rejected images.
Examples of such metrics include average precision for object
detection, mean squared error for regression tasks, and intersec-
tion over union for semantic segmentation.

Furthermore, it’s crucial to account for the detection mecha-
nism’s computational performance in terms of execution time
and memory usage to gauge the overall system overhead when
integrating such safety monitors.

7.2 | System-Level Evaluation

When an ML-based perception component is embedded into the
control loop of an autonomous system, not all prediction errors
will lead to the same outcomes. For example, some perception
errors can generate catastrophic events (e.g., missing a pedestrian
crossing a road) [66]. In contrast, others might not even change
the system’s behavior (e.g., detecting a tree as a street lamp). In
addition, Haq et al. [172] showed that offline testing (unit tests)
is more optimistic than online testing (simulation) since several
safety violations that were identified in simulation could not be
identified offline. For this reason, it is important to evaluate how
well a safety monitor is performing within the context of the sys-
tem in which it is integrated.

Recent works have designed safety monitors in a real-world
application context, where the impact of a prediction by the
perception component can be assessed. For such cases, it is
thus possible to evaluate different aspects of the performance of
an SM, such as the added safety and the loss of system avail-
ability. An example was proposed by Stocco et al. [106, 132]
where the monitor is implemented in a simulation environ-
ment for an end-to-end autonomous driving scenario. This way,
they can play the same scenarios with and without the mon-
itor and evaluate when critical misbehavior has been avoided
(added safety) and when interventions were unnecessary (loss of
availability). Another simulation-based SM evaluation was con-
ducted by Cofer et al. [109] for an aircraft taxiing application.
On their experimental dataset, they were able to avoid all the
cases where the neural network led the aircraft to exit the run-
way thanks to their safety monitoring system. On another note,
Guerin et al. [7] evaluated safety monitors for a drone emergency
landing scenario. By defining a safety score for any landing zone,
they can compare the emergency landing system with and with-
out the monitors. Different monitors can be compared based on
their safety benefits to the system. Guerin et al. [173] endeav-
ored to provide a theoretical foundation for evaluating ML moni-
tors within autonomous systems. They delineated three metrics:
Safety Gain, Residual Hazard, and Availability Loss, and demon-
strated their computation across various examples of ML-enabled
systems.

7.3 | Evaluation Coverage

When performing evaluation, we need to consider two different
scenarios: simulated, and real-world scenarios. Each presents dis-
tinct advantages and challenges.

To test perception functions, it is frequent to use a simulation
environment [106, 108, 110]. This allows to reset the environment
to a previous configuration and compare the responses to differ-
ent perception and monitoring outputs. However, the existence
of a reality/simulation gap is frequent. Indeed, there are usu-
ally significant differences between simulation environments and

13 of 20

real-world scenarios, where new, unexpected threats can happen
[174]. On the other hand, when evaluating a perception func-
tion on real images, the collected data never represent all possible
threats to which a safety-critical system might be exposed. Nev-
ertheless, an exhaustive safety analysis of the system might help
cover a higher proportion of these threats [175].

Even when evaluations are conducted in representative test sce-
narios, it is hard to evaluate the performance of a perception
function, and safety monitor as the ground truth is often not avail-
able at runtime. This is often referred to as the oracle problem
[176]. As a result, all frames and sensor values must be recorded
for off-line labeling and performance and safety evaluation. Such
evaluations need to be done periodically to avoid a decrease in
ML performance and system safety due to dataset shifts [177].

7.4 | Evaluation for Certification

Specific evaluation and certification procedures for autonomous
systems were proposed in the literature. Myers and Saigol [178]
developed a framework to assess the safety of autonomous driv-
ing by applying two types of outcome-scoring rules: prescriptive
and risk-based. The first contains measurable rules, which must
always be verified, while the second contains undesirable out-
comes that must not occur too often. De Gelder and Den Camp
[179] proposed a certification scenario for self-driving vehicles,
considering three stakeholders: the applicant, the assessor, and
the road/vehicle authority. The applicant applies for the approval
of one specific autonomous vehicle. The assessor assesses this
vehicle and advises the authority, who sets the requirements and
approves the vehicle for road testing. De Gelder et al. [180] pro-
posed a risk analysis expressed as the expected number of injuries
in a potential collision to compare it to road crash statistics. The
authors decompose the quantified risk into the three aspects stip-
ulated by the ISO-26262 and ISO/DIS-21448 standards: exposure,
severity, and controllability. On another note, Guerin et al. [3]
assessed the requirements to certify UAV operations in urban
environments using a document called Specific Operations Risk
Assessment (SORA) [181], which provides guidelines to develop
and certify safe UAV operations.

8 | Conclusion and Open Challenges

Machine Learning solutions are being used increasingly to build
perception functions for autonomous systems, but they cannot
be trusted for safety-critical applications. Safety Monitors aim to
ensure that the system always remains in a safe state despite the
occurrence of faults. This work presents a comprehensive survey
about safety monitoring of ML perception functions, addressing
every step of the development process, that is, threat identifica-
tion, requirements elicitation, detection of failure and reaction,
and evaluation. We present existing works related to SM and
highlight the current gaps in the literature to reach the level of
integrity required for such safety-critical systems. After conduct-
ing this extensive study, we consider that the field’s biggest limi-
tations and open challenges are the following.

8.1 | Defining Safety Monitoring Objectives

More research should be conducted regarding how to formu-
late the monitoring requirements to reflect the outcomes of
the safety analysis and other relevant properties of the system.
To illustrate this, we can mention a result from Ferreira et al.
[37] which showed that most detection mechanisms based on
out-of-distribution detection (threat identification) suffer from a
high number of false positives and false negatives when consid-
ering their ability to detect a failure of the ML model. This limita-
tion results from a misalignment between SM specifications and
system-level objectives. Indeed, not all threats lead to errors, and
some in-distribution images lead to wrong predictions.

8.2 | Choosing Detection and Reaction
Mechanisms

Different types of detection and reaction mechanisms were pre-
sented in this work. Such approaches must be properly combined
with the task at hand to build a good safety monitor, which is
difficult due to the vast possibilities. This choice is highly depen-
dent on the application context, but we believe that meaning-
ful research could be proposed to map task characteristics to
detection/reaction mechanisms. For example, identifying that
certain generic detection mechanisms are suitable for specific
kinds of threats would be useful. Likewise, it would be valuable to
study whether specific recovery actions can improve the perfor-
mance of the ML model when combined with specific detection
mechanisms.

8.3 | Combining Safety Monitoring
Architectures

It is probably desirable to use several monitoring approaches
for different aspects of the perception task. For example, spe-
cific detection mechanisms could be responsible for different
regions of the input space or different types of threats. Addition-
ally, strategies that are not purely based on data, such as plau-
sibility checks [182], model assertion [183], and classification
failure mode and effects analysis [66], can be applied to com-
plement data-based monitors. Studying how to combine several
safety monitors and verify the consistency of their outputs is an
important open challenge for the field.

8.3.1 | Implementation Constraints

The safety monitors discussed in this work are expected to per-
form within embedded systems. Hence, it is essential to design
SMs that can function under limited computing power and
memory. Additionally, they must adhere to the system’s energy
consumption constraints. Being executed at runtime, SMs also
need to meet stringent execution time criteria to ensure seamless
synchronization with the primary system being monitored.

14 of 20 Computational Intelligence, 2025

8.3.2 | Standardized Evaluation

As explained earlier, many different test datasets and evaluation
metrics are used by practitioners who select evaluation proce-
dures based on their own needs and use cases. Such evaluation
scenarios might differ between domains (e.g., automotive, avion-
ics, naval), making it difficult to compare different safety moni-
toring approaches. We believe that the development of a unified
benchmarking framework, including different autonomous sys-
tem use cases and evaluation metrics, is a promising research
direction. Indeed, it will foster the development of safety monitor-
ing approaches that will help certify safety-critical systems that
rely on ML models.

8.3.3 | Certification

With the increasing use of ML approaches, solutions such as
safety monitors will be an important tool to certify future criti-
cal autonomous systems. Hence, the community needs to start
addressing the challenges mentioned above. As a first step, we
believe that building unified evaluation benchmarks and metrics,
reflecting the different aspects highlighted in this survey would
greatly help to develop SM better suited to the safety-critical con-
text. To go further and be able to certify perception components
and their safety monitors, one needs to establish the impact of
perception errors on the safety of the entire system, which is an
unsolved problem.

Acknowledgments

This research has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement No 812.788 (MSCA-ETN SAS). This
publication reflects only the authors’ view, exempting the European
Union from any liability. Project website: http://etn-sas.eu/.

This research has also benefited from the AI Interdisciplinary Institute
ANITI. ANITI is funded by the French “Investing for the Future—PIA3”
program under the Grant agreement No ANR-19-PI3A-0004.

Disclosure

The authors have nothing to report.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The authors have nothing to report.

Endnotes
1 https://paperswithcode.com/sota.

References

1. M. G. Calvi, Runtime Monitoring of Cyber-Physical Systems Using
Data-Driven Models (2019).

2. T. Haidegger, “Autonomy for Surgical Robots: Concepts and
Paradigms,” IEEE Transactions on Medical Robotics and Bionics 1,
no. 2 (2019): 65–76.

3. J. Guérin, K. Delmas, and J. Guiochet, “Certifying Emergency Land-
ing for Safe Urban UAV,” in 7th International Workshop on Safety and
Security of Intelligent Vehicles (SSIV 2021) at IEEE/IFIP Intern. Conf. On
Dependable Systems and Networks (DSN) (IEEE, 2021), 55–62.

4. C. Premebida, R. Ambrus, and Z.-C. Marton, Intelligent Robotic Percep-
tion Systems. In: Hurtado Efren Gorrostieta, Ed (Applications of Mobile
RobotsRijeka, 2018).

5. Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking Deep Reinforcement Learning for Continuous Control,” in Inter-
national Conference on Machine Learning (PMLR, 2016), 1329–1338.

6. A. Brunetti, D. Buongiorno, G. F. Trotta, and V. Bevilacqua, “Com-
puter Vision and Deep Learning Techniques for Pedestrian Detection and
Tracking: A Survey,” Neurocomputing 300 (2018): 17–33.

7. J. Guerin, K. Delmas, and J. Guiochet, “Evaluation of Runtime Moni-
toring for UAV Emergency Landing,” in 2022 International Conference on
Robotics and Automation (ICRA) (IEEE, 2022), 9703–9709.

8. K. Varshney and H. Alemzadeh, “On the Safety of Machine Learning:
Cyber-Physical Systems, Decision Sciences, and Data Products,” Big Data
5, no. 3 (2017): 246–255.

9. J. M. Faria, “Machine Learning Safety: An Overview,” in Proceedings of
the 26th Safety-Critical Systems Symposium, York, UK (SCSC, 2018), 6–8.

10. S. Mohseni, M. Pitale, V. Singh, and Z. Wang, “Practical Solutions for
Machine Learning Safety in Autonomous Vehicles,” in Proceedings of the
Workshop on Artificial Intelligence Safety (CEUR, 2020), 162–169.

11. Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” in International
Conference on Machine Learning (ICML), new York, United States (PMLR,
2016), 1050–1059.

12. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE Trans-
actions on Dependable and Secure Computing 1, no. 1 (2004): 11–33.

13. M. Machin, J. Guiochet, H. Waeselynck, J.-P. Blanquart, M. Roy, and
L. Masson, “SMOF: A Safety Monitoring Framework for Autonomous
Systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems
48, no. 5 (2018): 702–715.

14. J. Rushby, “Kernels for Safety,” Safe and Secure Computing Systems 13
(1989): 210–220.

15. C. Pace and D. Seward, “A Safety Integrated Architecture for an
Autonomous Safety Excavator,” in International Symposium on Automa-
tion and Robotics in Construction (IAARC, 2000).

16. S. Roderick, B. Roberts, E. Atkins, and D. Akin, “The Ranger Robotic
Satellite Servicer and Its Autonomous Software-Based Safety System,”
IEEE Intelligent Systems 19, no. 5 (2004): 12–19.

17. F. Py and F. Ingrand, “Dependable Execution Control for Autonomous
Robots,” in 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No. 04CH37566) (IEEE, 2004), 1136–1141.

18. J. Fox and S. Das, “Safe and Sound,” Artificial Intelligence in Haz-
ardous Applications 307 (2000).

19. P. Klein, “The Safety-Bag Expert System in the Electronic Railway
Interlocking System Elektra,” in Operational Expert System Applications
in Europe (Elsevier, 1991), 1–15.

20. S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer,
and G. Hirzinger, “Towards the Robotic co-Worker,” in Robotics Research
(Springer, 2011), 261–282.

21. L. Masson, Safety Monitoring for Autonomous Systems: Interactive Elic-
itation of Safety Rules (PhD Thesis, 2019).

22. Z. Xu and J. H. Saleh, “Machine Learning for Reliability Engineering
and Safety Applications: Review of Current Status and Future Opportu-
nities,” Reliability Engineering and System Safety 211 (2021): 107530.

15 of 20

http://etn-sas.eu/
http://etn-sas.eu/
https://paperswithcode.com/sota

23. K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. Albuquerque,
“Deep Learning for Safe Autonomous Driving: Current Challenges and
Future Directions,” IEEE Transactions on Intelligent Transportation Sys-
tems 22, no. 7 (2020): 4316–4336.

24. L. Hou, H. Chen, G. Zhang, and X. Wang, “Deep Learning-Based
Applications for Safety Management in the AEC Industry: A Review,”
Applied Sciences 11, no. 2 (2021): 821.

25. A. Pandharipande, C.-H. Cheng, J. Dauwels, et al., “Sensing and
Machine Learning for Automotive Perception: A Review,” IEEE Sensors
Journal 23, no. 11 (2023): 11097–11115.

26. S. Mohseni, H. Wang, Y. Xiao Chaowei, W. Z. Zhiding, and J. Yadawa,
“Taxonomy of Machine Learning Safety: A Survey and Primer,” ACM
Computing Surveys 55, no. 8 (2022): 1–38.

27. Q. M. Rahman, P. Corke, and F. Dayoub, “Run-Time Monitoring of
Machine Learning for Robotic Perception: A Survey of Emerging Trends,”
IEEE Access 9 (2021): 20067–20075.

28. X.-Y. Zhang, G.-S. Xie, X. Li, T. Mei, and C.-L. Liu, “A Survey on Learn-
ing to Reject,” Proceedings of the IEEE 111, no. 2 (2023): 185–215.

29. J. Guerin, K. Delmas, R. S. Ferreira, and J. Guiochet,
“Out-Of-Distribution Detection Is Not all You Need,” in The 37th
AAAI Conference on Artificial Intelligence (2023) (AAAI, 2023).

30. S. Alasadi and W. S. Bhaya, “Review of Data Preprocessing Techniques
in Data Mining,” Journal of Engineering and Applied Sciences 12, no. 16
(2017): 4102–4107.

31. A. J. Bekker and J. Goldberger, “Training Deep Neural-Networks
Based on Unreliable Labels,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing, China (IEEE, 2016), 2682–2686.

32. E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ml
Test Score: A Rubric for ml Production Readiness and Technical Debt
Reduction,” in 2017 IEEE International Conference on Big Data (Big Data)
(IEEE, 2017), 1123–1132.

33. D. Sculley, G. Holt, D. Golovin, et al., “Hidden Technical Debt in
Machine Learning Systems,” in Advances in Neural Information Process-
ing Systems (NeurIPS), Montreal, Canada (NeurIPS, 2015), 2503–2511.

34. M. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A Review
of Novelty Detection,” Signal Processing 99 (2014): 215–249.

35. A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, “Adversarial Attacks and Defences: A Survey,”
2018 arXiv preprint arXiv:1810.00069.

36. F. Granese, M. Romanelli, D. Gorla, C. Palamidessi, and P. Piantanida,
“DOCTOR: A Simple Method for Detecting Misclassification Errors,”
Advances in Neural Information Processing Systems 34 (2021): 5669–5681.

37. R. S. Ferreira, J. Arlat, J. Guiochet, and H. Waeselynck, “Benchmark-
ing Safety Monitors for Image Classifiers With Machine Learning,” in
2021 IEEE 26th Pacific Rim International Symposium on Dependable Com-
puting (PRDC) (IEEE, 2021), 7–16.

38. Z. Shen, J. Liu, Y. He, et al., “Towards Out-of-Distribution Generaliza-
tion: A Survey,” (2021), arXiv preprint arXiv:2108.13624.

39. R. S. Ferreira, J. Guérin, J. Guiochet, and H. Waeselynck, “SiMOOD:
Evolutionary Testing Simulation With Out-of-Distribution Images,” in
2022 IEEE 27th Pacific Rim International Symposium on Dependable Com-
puting (PRDC) (IEEE, 2022), 68–77.

40. M. Cordts, M. Omran, S. Ramos, et al., “The Cityscapes Dataset for
Semantic Urban Scene Understanding,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2016).

41. Y. Yuan, X. Chen, X. Chen, and J. Wang, “Segmentation Transformer:
Object-Contextual Representations for Semantic Segmentation,” in Euro-
pean Conference on Computer Vision (ECCV) (ECVA, 2021).

42. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A Large-Scale Hierarchical Image Database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition (IEEE, 2009), 248–255.

43. T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft Coco: Com-
mon Objects in Context,” in European Conference on Computer Vision
(Springer, 2014), 740–755.

44. Z. Liu, H. Hu, Y. Lin, et al., “Swin Transformer V2: Scaling Up Capac-
ity and Resolution,” 2021 arXiv Preprint arXiv:2111.09883.

45. S. Shafaei, S. Kugele, M. H. Osman, and A. Knoll, “Uncertainty in
Machine Learning: A Safety Perspective on Autonomous Driving,” in
International Conference on Computer Safety, Reliability, and Security
(SAFECOMP) (Springer, 2018), 458–464.

46. J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized Out-of-Distribution
Detection: A Survey,” 2021 Preprint arXiv:2110.11334.

47. H. Blum, P.-E. Sarlin, J. Nieto, R. Siegwart, and C. Cadena,
“Fishyscapes: A Benchmark for Safe Semantic Segmentation in
Autonomous Driving,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops (IEEE/CVF, 2019).

48. F. Condessa, J. Bioucas-Dias, and J. Kovačević, “Performance Mea-
sures for Classification Systems With Rejection,” Pattern Recognition 63
(2017): 437–450.

49. R. S. Ferreira, G. Zimbrão, and L. Alvim, “AMANDA:
Semi-Supervised Density-Based Adaptive Model for Non-Stationary
Data With Extreme Verification Latency,” Information Sciences 488
(2019): 219–237.

50. D. Hendrycks and T. Dietterich, “Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations,” in International
Conference on Learning Representations (2019).

51. E. Khalastchi, M. Kalech, and L. Rokach, “Sensor Fault Detection and
Diagnosis for Autonomous Systems,” in Proceedings of the 2013 Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (Cite-
seer, 2013), 15–22.

52. C. Micheloni and G. L. Foresti, “Active Tuning of Intrinsic Camera
Parameters,” IEEE Transactions on Automation Science and Engineering
6, no. 4 (2009): 577–587.

53. S. Surya and R. Ravi, “Deployment of Backup Sensors in Wireless
Sensor Networks for Structural Health Monitoring,” in 2018 2nd Interna-
tional Conference on Trends in Electronics and Informatics (ICOEI) (IEEE,
2018), 1526–1533.

54. A. Sinha, S. Chand, V. Vu, H. Chen, and V. Dixit, “Crash and Disen-
gagement Data of Autonomous Vehicles on Public Roads in California,”
Scientific Data 8, no. 1 (2021): 1–10.

55. M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Harris, “Survey
of Image Denoising Techniques,” in Proceedings of GSPX (Proceedings of
GSPX, 2004), 27–30.

56. C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin, “Deep Learn-
ing on Image Denoising: An Overview,” Neural Networks 131 (2020):
251–275.

57. A. Rasouli, I. Kotseruba, and J. K. Tsotsos, “It’s Not all About Size:
On the Role of Data Properties in Pedestrian Detection,” in Proceedings of
the European Conference on Computer Vision (ECCV) Workshops (ECVA,
2018).

58. R. Stumpf, “Autopilot Blamed for Tesla’s Crash Into Overturned
Truck,” 2020.

59. J. Zhang, L. Lin, J. Zhu, et al., “Attribute-Aware Pedestrian Detection
in a Crowd,” IEEE Transactions on Multimedia 23 (2020): 3085–3097.

60. N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep Learn-
ing in Computer Vision: A Survey,” IEEE Access 6 (2018): 14410–14430.

16 of 20 Computational Intelligence, 2025

61. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial Examples in
the Physical World,” in Artificial Intelligence Safety and Security (Chap-
man and Hall/CRC, 2018), 99–112.

62. A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang,
“Attacking Vision-Based Perception in End-To-End Autonomous Driving
Models,” Journal of Systems Architecture 110 (2020): 101766.

63. J. Guiochet, D. Martin-Guillerez, and D. Powell, “Experience With
Model-Based User-Centered Risk Assessment for Service Robots,” in
2010 IEEE 12th International Symposium on High Assurance Systems
Engineering (IEEE, 2010), 104–113.

64. T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional Falsification of
Cyber-Physical Systems With Machine Learning Components,” Journal
of Automated Reasoning 63, no. 4 (2019): 1031–1053.

65. T. Dreossi, D. J. Fremont, S. Ghosh, et al., “Verifai: A Toolkit for the
Formal Design and Analysis of Artificial Intelligence-Based Systems,” in
International Conference on Computer Aided Verification (Springer, 2019),
432–442.

66. R. Salay, M. Angus, and K. Czarnecki, “A Safety Analysis Method for
Perceptual Components in Automated Driving,” in 2019 IEEE 30th Inter-
national Symposium on Software Reliability Engineering (ISSRE) (IEEE,
2019), 24–34.

67. P.-Y. Huang, W.-T. Hsu, C.-Y. Chiu, T.-F. Wu, and M. Sun, “Efficient
Uncertainty Estimation for Semantic Segmentation in Videos,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV) (ECVA,
2018), 520–535.

68. C. Hubschneider, R. Hutmacher, and J. M. Zöllner, “Calibrating
Uncertainty Models for Steering Angle Estimation,” in 2019 IEEE Intelli-
gent Transportation Systems Conference (ITSC) (IEEE, 2019), 1511–1518.

69. G. Costante and M. Mancini, “Uncertainty Estimation for
Data-Driven Visual Odometry,” IEEE Transactions on Robotics 36,
no. 6 (2020): 1738–1757.

70. G. Chhablani, A. Sharma, H. Pandey, and T. Dash, “Superpixel-Based
Domain-Knowledge Infusion in Computer Vision,” 2021 arXiv Preprint
arXiv:2105.09448.

71. V. Ramanathan, C. Li, J. Deng, et al., “Learning Semantic Relation-
ships for Better Action Retrieval in Images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (IEEE, 2015),
1100–1109.

72. J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Broeck, “A Semantic
Loss Function for Deep Learning With Symbolic Knowledge,” in Inter-
national Conference on Machine Learning (PMLR, 2018), 5502–5511.

73. I. Donadello, L. Serafini, and A. S. Garcez, “Logic Tensor Networks for
Semantic Image Interpretation,” in IJCAI International Joint Conference
on Artificial Intelligence (IJCAI, 2017), 1596–1602.

74. C. Cortes, G. DeSalvo, and M. Mohri, “Boosting With Abstention,”
Advances in Neural Information Processing Systems 29 (2016): 1660–1668.

75. Y. Geifman and R. El-Yaniv, “Selectivenet: A Deep Neural Net-
work With an Integrated Reject Option,” in International Conference on
Machine Learning (PMLR, 2019), 2151–2159.

76. W. Zhou, J. S. Berrio, S. Worrall, and E. Nebot, “Automated Evalu-
ation of Semantic Segmentation Robustness for Autonomous Driving,”
IEEE Transactions on Intelligent Transportation Systems 21, no. 5 (2019):
1951–1963.

77. M. S. Ramanagopal, C. Anderson, R. Vasudevan, and
M. Johnson-Roberson, “Failing to Learn: Autonomously Identify-
ing Perception Failures for Self-Driving Cars,” IEEE Robotics and
Automation Letters 3, no. 4 (2018): 3860–3867.

78. D. Hendrycks and K. Gimpel, “A Baseline for Detecting Misclassi-
fied and Out-of-Distribution Examples in Neural Networks,” 2016 arXiv
Preprint arXiv:1610.02136.

79. S. Liang, Y. Li, and R. Srikant, “Enhancing the Reliability of
Out-Of-Distribution Image Detection in Neural Networks,” in Interna-
tional Conference on Learning Representations (2018).

80. Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized Odin: Detecting
out-Of-Distribution Image Without Learning From Out-of-Distribution
Data,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (IEEE/CVF, 2020), 10951–10960.

81. D. Kang, D. Raghavan, P. Bailis, and M. Zaharia, “Model Assertions
for Debugging Machine Learning,” in NeurIPS MLSys Workshop, vol. 10
(NeurIPS, 2018).

82. C. Harper, G. Chance, A. Ghobrial, S. Alam, T. Pipe, and K. Eder,
“Safety Validation of Autonomous Vehicles Using Assertion-Based Ora-
cles,” 2021 arXiv Preprint arXiv:2111.04611.

83. Y. Chen, C.-H. Cheng, J. Yan, and R. Yan, “Monitoring Object Detec-
tion Abnormalities via Data-Label and Post-Algorithm Abstractions,” in
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE, 2021), 6688–6693.

84. J. Guérin, A. M. de Paula Canuto, and L. M. G. Goncalves, “Robust
Detection of Objects Under Periodic Motion With Gaussian Process Fil-
tering,” in 2020 19th IEEE International Conference on Machine Learning
and Applications (ICMLA) (IEEE, 2020), 685–692.

85. S. W. Yahaya, A. Lotfi, and M. Mahmud, “A Consensus Novelty Detec-
tion Ensemble Approach for Anomaly Detection in Activities of Daily
Living,” Applied Soft Computing 83 (2019): 105613.

86. A. Roitberg, Z. Al-Halah, and R. Stiefelhagen, “Informed Democ-
racy: Voting-Based Novelty Detection for Action Recognition,” in British
Machine Vision Conference (BMVA, 2018).

87. Y. Kantaros, T. Carpenter, S. Park, et al., “VisionGuard: Runtime
Detection of Adversarial Inputs to Perception Systems,” 2020 arXiv
Preprint arXiv:2002.09792.

88. J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang, “Adversarial Sample
Detection for Deep Neural Network Through Model Mutation Testing,”
in 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE) (IEEE, 2019), 1245–1256.

89. J. Liu, L. Chen, A. Mine, and J. Wang, “Input Validation for Neu-
ral Networks via Runtime Local Robustness Verification,” 2020 arXiv
Preprint arXiv:2002.03339.

90. Q. M. Rahman, N. Sünderhauf, and F. Dayoub, “Did You Miss the
Sign? A False Negative Alarm System for Traffic Sign Detectors,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE, 2019), 3748–3753.

91. Y. Sun, C. Guo, and Y. Li, “ReAct: Out-Of-Distribution Detection With
Rectified Activations,” in Advances in Neural Information Processing Sys-
tems, ed. M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and V. J.
Wortman (Curran Associates, Inc., 2021), 144–157.

92. A. Lukina, C. Schilling, and T. A. Henzinger, “Into the Unknown:
Active Monitoring of Neural Networks,” in International Conference on
Runtime Verification (Springer, 2021), 42–61.

93. C.-H. Cheng, G. Nührenberg, and H. Yasuoka, “Runtime Monitoring
Neuron Activation Patterns,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Florence, Italy (IEEE, 2019), 300–303.

94. T. A. Henzinger, A. Lukina, and C. Schilling, “Outside the Box:
Abstraction-Based Monitoring of Neural Networks,” in 24th Euro-
pean Conference on Artificial Intelligence-ECAI 2020 (IOS press, 2020),
2433–2440.

95. R. S. Ferreira, J. Guerin, J. Guiochet, and H. Waeselynck, “SENA:
Similarity-Based Error-Checking of Neural Activations,” in 26th Euro-
pean Conference on Artificial Intelligence-ECAI 2023 (IOS press, 2023).

96. C. Wu, Y. Falcone, and S. Bensalem, “Customizable Reference Run-
time Monitoring of Neural Networks Using Resolution Boxes,” 2021 arXiv
Preprint arXiv:2104.14435.

17 of 20

97. H. Wang, J. Xu, C. Xu, X. Ma, and J. Lu, “Dissector: Input Validation
for Deep Learning Applications by Crossing-Layer Dissection,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE)
(IEEE, 2020), 727–738.

98. C. Schorn and L. Gauerhof, “FACER: A Universal Framework for
Detecting Anomalous Operation of Deep Neural Networks,” in 2020
IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC) (IEEE, 2020), 1–6.

99. K. Lee, K. Lee, H. Lee, and J. Shin, “A Simple Unified Frame-
work for Detecting Out-of-Distribution Samples and Adversarial
Attacks,” Advances in Neural Information Processing Systems 31 (2018):
11060–11066.

100. V. Chen, M.-K. Yoon, and Z. Shao, “Task-Aware Novelty Detec-
tion for Visual-Based Deep Learning in Autonomous Systems,” in 2020
IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2020), 11060–11066.

101. J. Ndong and K. Salamatian, “Signal Processing-Based Anomaly
Detection Techniques: A Comparative Analysis,” in Proc. 2011 3rd Inter-
national Conference on Evolving Internet (IARIA, 2011), 32–39.

102. S. S. Kim and A. L. N. Reddy, “Image-Based Anomaly Detection
Technique: Algorithm, Implementation and Effectiveness,” IEEE Journal
on Selected Areas in Communications 24, no. 10 (2006): 1942–1954.

103. H. Liao, D. Wang, C. Yang, and J. Shine, “Video-Based Water Drop
Detection and Removal Method for a Moving Vehicle,” Information Tech-
nology Journal 12, no. 4 (2013): 569–583.

104. M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, “Adversarially
Learned One-Class Classifier for Novelty Detection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (IEEE,
2018), 3379–3388.

105. T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan,
and S. Vernekar, “Improving Reconstruction Autoencoder
Out-of-Distribution Detection With Mahalanobis Distance,” (2018),
arXiv Preprint arXiv:1812.02765.

106. A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour
Prediction for Autonomous Driving Systems,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering
(ACM/IEEE, 2020), 359–371.

107. F. Cai and X. Koutsoukos, “Real-Time out-Of-Distribution Detection
in Learning-Enabled Cyber-Physical Systems,” in 2020 ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS) (IEEE, 2020),
174–183.

108. A. Loquercio, M. Segu, and D. Scaramuzza, “A General Frame-
work for Uncertainty Estimation in Deep Learning,” IEEE Robotics and
Automation Letters 5, no. 2 (2020): 3153–3160.

109. D. Cofer, I. Amundson, R. Sattigeri, et al., “Run-Time Assurance for
Learning-Based Aircraft Taxiing,” in 2020 AIAA/IEEE 39th Digital Avion-
ics Systems Conference (DASC) (IEEE, 2020), 1–9.

110. C. Buerkle, F. Geissler, M. Paulitsch, and K.-U. Scholl,
“Fault-Tolerant Perception for Automated Driving A Lightweight
Monitoring Approach,” 2021 arXiv Preprint arXiv:2111.12360.

111. J. Mena, O. Pujol, and J. Vitrià, “A Survey on Uncertainty Estimation
in Deep Learning Classification Systems From a Bayesian Perspective,”
ACM Computing Surveys 54, no. 9 (2021): 1–35.

112. J. Gawlikowski, C. R. N. Tassi, M. Ali, et al., “A Survey of Uncertainty
in Deep Neural Networks,” 2021 arXiv Preprint arXiv:2107.03342.

113. D. Ulmer, “A Survey on Evidential Deep Learning for Single-Pass
Uncertainty Estimation,” 2021 arXiv Preprint arXiv:2110.03051.

114. M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential Deep Learning
to Quantify Classification Uncertainty,” in Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems (NeurIPS,
2018), 3183–3193.

115. M. Seeger, Bayesian Modelling in Machine Learning: A Tutorial
Review (EPFL, 2006).

116. G. E. P. Box and G. C. Tiao, Bayesian Inference in Statistical Analysis
(John Wiley & Sons, 2011).

117. W. Chen, Y. Shen, H. Jin, and W. Wang, “A Variational Dirich-
let Framework for Out-of-Distribution Detection,” 2018 arXiv Preprint
arXiv:1811.07308.

118. D. Milios, R. Camoriano, P. Michiardi, L. Rosasco, and M. Filippone,
“Dirichlet-Based Gaussian Processes for Large-Scale Calibrated Classifi-
cation,” Advances in Neural Information Processing Systems 31 (2018).

119. A. Malinin and M. Gales, “Predictive Uncertainty Estimation via
Prior Networks,” Advances in Neural Information Processing Systems 31
(2018).

120. S. Rossi, P. Michiardi, and M. Filippone, “Good Initializations of
Variational Bayes for Deep Models,” in International Conference on
Machine Learning (PMLR, 2019), 5487–5497.

121. M. Welling and Y. W. Teh, “Bayesian Learning via Stochastic Gradi-
ent Langevin Dynamics,” in Proceedings of the 28th International Confer-
ence on Machine Learning (ICML-11) (Citeseer, 2011), 681–688.

122. E. Goan and C. Fookes, “Bayesian Neural Networks: An Introduction
and Survey,” in Case Studies in Applied Bayesian Data Science (Springer,
2020), 45–87.

123. D. Feng, A. Harakeh, S. Waslander, and K. Dietmayer, “A Review
and Comparative Study on Probabilistic Object Detection in Autonomous
Driving,” IEEE Transactions on Intelligent Transportation Systems 23, no.
8 (2021): 9961–9980.

124. J. Mukhoti and Y. Gal, “Evaluating Bayesian Deep Learning Methods
for Semantic Segmentation,” 2018 arXiv Preprint arXiv:1811.12709.

125. Y. Gal, J. Hron, and A. Kendall, “Concrete Dropout,” Advances in
Neural Information Processing Systems 30 (2017).

126. T. Dash, S. Chitlangia, A. Ahuja, and A. Srinivasan, “Incorporating
Domain Knowledge Into Deep Neural Networks,” 2021 arXiv Preprint
arXiv:2103.00180.

127. M. Marszalek and C. Schmid, “Semantic Hierarchies for Visual
Object Recognition,” in 2007 IEEE Conference on Computer Vision and
Pattern Recognition (IEEE, 2007), 1–7.

128. G. Fumera and F. Roli, “Support Vector Machines With Embedded
Reject Option,” in International Workshop on Support Vector Machines
(Springer, 2002), 68–82.

129. M. E. Hellman, “The Nearest Neighbor Classification Rule With a
Reject Option,” IEEE Transactions on Systems Science and Cybernetics 6,
no. 3 (1970): 179–185.

130. K. Hendrickx, L. Perini, D. Plas, W. Meert, and J. Davis, “Ma-
chine Learning With a Reject Option: A Survey,” 2021 arXiv Preprint
arXiv:2107.11277.

131. F. Cai, J. Li, and X. Koutsoukos, “Detecting Adversarial Examples
in Learning-Enabled Cyber-Physical Systems Using Variational Autoen-
coder for Regression,” in 2020 IEEE Security and Privacy Workshops
(SPW) (IEEE, 2020), 208–214.

132. A. Stocco and P. Tonella, “Towards Anomaly Detectors That Learn
Continuously,” in 2020 IEEE International Symposium on Software Relia-
bility Engineering Workshops (ISSREW) (IEEE, 2020), 201–208.

133. Y. Feng and A. Easwaran, “Robust Out-of-Distribution Motion
Detection and Localization in Autonomous CPS: Wip Abstract,”
in Proceedings of the ACM/IEEE 12th International Conference on
Cyber-Physical Systems (ACM/IEEE, 2021), 225–226.

134. J. Guérin, S. Thiery, E. Nyiri, O. Gibaru, and B. Boots, “Combining
Pretrained CNN Feature Extractors to Enhance Clustering of Complex
Natural Images,” Neurocomputing 423 (2021): 551–571.

18 of 20 Computational Intelligence, 2025

135. C. Gurău, D. Rao, C. H. Tong, and I. Posner, “Learn From Experi-
ence: Probabilistic Prediction of Perception Performance to Avoid Fail-
ure,” International Journal of Robotics Research 37, no. 9 (2018): 981–995.

136. C. B. Kuhn, M. Hofbauer, G. Petrovic, and E. Steinbach, “Introspec-
tive Black Box Failure Prediction for Autonomous Driving,” in 2020 IEEE
Intelligent Vehicles Symposium (IV) (IEEE, 2020), 1907–1913.

137. R. Gontijo-Lopes, Y. Dauphin, and E. D. Cubuk, “No One Repre-
sentation to Rule Them All: Overlapping Features of Training Methods,”
2021 arXiv Preprint arXiv:2110.12899.

138. X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-Esrgan: Training
Real-World Blind Super-Resolution With Pure Synthetic Data,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(IEEE/CVF, 2021), 1905–1914.

139. H. Wang, Z. Li, L. Feng, and W. Zhang, “ViM: Out-Of-Distribution
With Virtual-Logit Matching,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (IEEE/CVF, 2022),
4921–4930.

140. W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-Based
Out-of-Distribution Detection,” Advances in Neural Information
Processing Systems 33 (2020): 21464–21475.

141. S. Rabiee and J. Biswas, “IVOA: Introspective Vision for Obstacle
Avoidance,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE, 2019), 1230–1235.

142. S. Theodoridis, Machine Learning: A Bayesian and Optimization Per-
spective (Academic press, 2015).

143. A. Roy, A. Cobb, D. Bastian Nathaniel, B. Jalaian, and S. Jha, “Run-
time Monitoring of Deep Neural Networks Using Top-Down Context
Models Inspired by Predictive Processing and Dual Process Theory,” in
AAAI 2022 Workshop on Designing Artificial Intelligence for Open Worlds
(AAAI, 2022).

144. M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deep-
Road: GAN-Based Metamorphic Testing and Input Validation Frame-
work for Autonomous Driving Systems,” in 2018 33rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) (IEEE,
2018), 132–142.

145. B. Li, X. Xiao, Y. Zhang, H. Li, and H. Wang, “Camera-IMU Extrinsic
Calibration Quality Monitoring for Autonomous Ground Vehicles,” IEEE
Robotics and Automation Letters 7, no. 2 (2022): 4614–4621.

146. D. Phan, N. Paoletti, R. Grosu, N. Jansen, S. A. Smolka, and S. D.
Stoller, “Neural Simplex Architecture,” in NASA Formal Methods: 12th
International Symposium (Springer, 2020), 97–114.

147. L. Gondara, “Medical Image Denoising Using Convolutional Denois-
ing Autoencoders,” in 2016 IEEE 16th International Conference on Data
Mining Workshops (ICDMW) (IEEE, 2016), 241–246.

148. K. H. Abdulkareem, N. Arbaiy, A. A. Zaidan, et al., “A New Standard-
isation and Selection Framework for Real-Time Image Dehazing Algo-
rithms From Multi-Foggy Scenes Based on Fuzzy Delphi and Hybrid
Multi-Criteria Decision Analysis Methods,” Neural Computing and Appli-
cations 33 (2021): 1029–1054.

149. Q. Yan, D. Gong, J. Q. Shi, et al., “High Dynamic Range Imaging via
Gradient-Aware Context Aggregation Network,” Pattern Recognition 122
(2022): 108342.

150. Q. Yan, D. Gong, J. Q. Shi, et al., “Dual-Attention-Guided Network
for Ghost-Free High Dynamic Range Imaging,” International Journal of
Computer Vision (2021): 1–19.

151. Z. Liu, W. Lin, X. Li, et al., “ADNet: Attention-Guided Deformable
Convolutional Network for High Dynamic Range Imaging,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (IEEE/CVF, 2021), 463–470.

152. R. Qian, R. T. Tan, W. Yang, J. Su, and J. Liu, “Attentive Genera-
tive Adversarial Network for Raindrop Removal From a Single Image,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (IEEE, 2018), 2482–2491.

153. Y. Zhou, J. Jiao, H. Huang, et al., “When Awgn-Based Denoiser Meets
Real Noises,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI, 2020), 13074–13081.

154. C. Zhang and P. Gao, “Countering Adversarial Examples: Com-
bining Input Transformation and Noisy Training,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (IEEE/CVF,
2021), 102–111.

155. Z. Wang, J. Chen, and S. Hoi, “Deep Learning for Image
Super-Resolution: A Survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence 43, no. 10 (2020): 3365–3387.

156. W. Shi, J. Caballero, F. Huszár, et al., “Real-Time Single Image and
Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neu-
ral Network,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (IEEE, 2016), 1874–1883.

157. C. Ledig, L. Theis, F. Huszár, et al., “Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Network,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(IEEE, 2017), 4681–4690.

158. R. Marinescu, D. Moyer, and P. Golland, “Bayesian Image Recon-
struction Using Deep Generative Models,” in NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications (NeurIPS, 2021).

159. C. Saharia, W. Chan, H. Chang, et al., “Palette: Image-To-Image Dif-
fusion Models,” in NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications (NeurIPS, 2021).

160. Z. Ni, K.-K. Ma, H. Zeng, and B. Zhong, “Color Image Demosaicing
Using Progressive Collaborative Representation,” IEEE Transactions on
Image Processing 29 (2020): 4952–4964.

161. W. Zhou, L. Zhang, S. Gao, and X. Lou, “Gradient-Based Feature
Extraction From Raw Bayer Pattern Images,” IEEE Transactions on Image
Processing 30 (2021): 5122–5137.

162. J. Al-Afandi and A. Horváth, “Class Retrieval of Adversarial
Attacks,” in Workshop on Adversarial Machine Learning in Real-World
Computer Vision Systems and Online Challenges (AML-CV) (IEEE/CVF,
2021).

163. C. Y. Li, R. Sánchez-Matilla, A. S. Shamsabadi, R. Mazzon, and
A. Cavallaro, “On the Reversibility of Adversarial Attacks,” in 2021
IEEE International Conference on Image Processing (ICIP) (IEEE, 2021),
3073–3077.

164. G. Kakamanshadi, S. Gupta, and S. Singh, “A Survey on Fault Tol-
erance Techniques in Wireless Sensor Networks,” in 2015 International
Conference on Green Computing and Internet of Things (ICGCIoT) (IEEE,
2015), 168–173.

165. K. Andrej, “Tesla Autonomous Driving Talk at CVPR 2021,” 2021.

166. G. Ven and A. S. Tolias, “Three Scenarios for Continual Learning,”
2019 arXiv Preprint arXiv:1904.07734.

167. Y. Liu, B. Schiele, and Q. Sun, “Adaptive Aggregation Networks
for Class-Incremental Learning,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (IEEE/CVF, 2021),
2544–2553.

168. L. Deng, “The MNIST Database of Handwritten Digit Images for
Machine Learning Research [Best of the Web],” IEEE Signal Processing
Magazine 29, no. 6 (2012): 141–142.

169. A. Krizhevsky and G. Hinton, Learning Multiple Layers of Features
From Tiny Images (University of Toronto, 2009).

170. A. Shafaei, M. Schmidt, and J. J. Little, “A Less Biased Evaluation
of Out-of-Distribution Sample Detectors,” in 30th British Machine Vision
Conference (BMVA, 2019).

19 of 20

171. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning (PMLR, 2017), 1–16.

172. F. U. Haq, D. Shin, S. Nejati, and L. C. Briand, “Comparing Offline
and Online Testing of Deep Neural Networks: An Autonomous Car Case
Study,” in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST) (IEEE, 2020), 85–95.

173. J. Guerin, R. S. Ferreira, K. Delmas, and J. Guiochet, “Unifying Eval-
uation of Machine Learning Safety Monitors,” in 2022 IEEE 33rd Inter-
national Symposium on Software Reliability Engineering (ISSRE) (IEEE,
2022), 414–422.

174. L. Zandbergen, Evaluating the Simulation Gap for Training off-Road
Self-Driving (University of Amsterdam, Amsterdam, 2021).

175. M. Borg, C. Englund, K. Wnuk, et al., “Safely Entering the Deep: A
Review of Verification and Validation for Machine Learning and a Chal-
lenge Elicitation in the Automotive Industry,” Journal of Automotive Soft-
ware Engineering 1, no. 1 (2019): 1–19.

176. G. Jahangirova, “Oracle Problem in Software Testing,” in Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ACM, 2017), 444–447.

177. S. Rabanser, S. Günnemann, and Z. Lipton, “Failing Loudly: An
Empirical Study of Methods for Detecting Dataset Shift,” Advances in
Neural Information Processing Systems 32 (2019).

178. R. Myers and Z. Saigol, “Pass-Fail Criteria for Scenario-Based Testing
of Automated Driving Systems,” 2020 arXiv Preprint arXiv:2005.09417.

179. E. De Gelder and C. O. O. Den, “Procedure for the Safety Assess-
ment of an Autonomous Vehicle Using Real-World Scenarios,” 2020 arXiv
Preprint arXiv:2012.00643.

180. E. De Gelder, H. Elrofai, A. K. Saberi, J.-P. Paardekooper, C. O. O.
Den, and S. B. De, “Risk Quantification for Automated Driving Systems
in Real-World Driving Scenarios,” IEEE Access 9 (2021): 168953–168970.

181. Joint Authorities for Rulemaking of Unmanned Systems (JARUS),
“JARUS Guidelines on Specific Operations Risk Assessment (SORA)
v2.0.,” (2019), Guidelines: EASA.

182. J. Kontos, Á. Vathy-Fogarassy, and B. Kránicz, “Phase Plane-Based
Approaches for Event Detection and Plausibility Check of Vehicle
Dynamics,” in 2021 IEEE 25th International Conference on Intelligent
Engineering Systems (INES) (IEEE, 2021), 31–36.

183. D. Kang, D. Raghavan, P. Bailis, and M. Zaharia, “Model Asser-
tions for Monitoring and Improving ML Models,” Proceedings of Machine
Learning and Systems 2 (2020): 481–496.

20 of 20 Computational Intelligence, 2025

	Safety Monitoring of Machine Learning Perception Functions: A Survey
	ABSTRACT
	1 | Introduction
	2 | Related Work
	3 | What Threats Are Being Addressed by Safety Monitors?
	3.1 | In-Distribution Errors
	3.2 | Novelty Threats
	3.3 | Distributional Shift Threats
	3.3.1 | Covariate Shift
	3.3.2 | Semantic Shift

	3.4 | Adversarial Threats

	4 | How to Derive Safety Monitors From Safety Objectives?
	5 | Which Detection Mechanisms Can be Used for Safety Monitoring?
	5.1 | Internal Mechanisms
	5.1.1 | Uncertainty Estimation
	5.1.2 | Incorporating Domain Knowledge
	5.1.3 | Learning With Rejection

	5.2 | External Mechanisms
	5.2.1 | Monitoring the DNN Inputs
	5.2.1.1 | Traditional Approaches
	5.2.1.2 | Input Reconstruction
	5.2.1.3 | Introspection

	5.2.1.4 | Insights Regarding Input Monitoring

	5.2.2 | Monitoring the DNN Internal Representations
	5.2.2.1 | Continuous Layer Values

	5.2.2.2 | Binary Layer Activations
	5.2.2.3 | Coherence Between Layers
	5.2.2.4 | Insights Regarding Internal Layers Monitoring
	5.2.3 | Monitoring the DL Outputs
	5.2.3.1 | Manipulation of Softmax Confidence
	5.2.3.2 | Consistency Checking
	5.2.3.3 | Ensemble Methods
	5.2.3.4 | Robustness to Input Perturbation
	5.2.3.5 | Insights About Output Monitoring
	5.2.4 | External Sensors
	5.3 | Combined Detection Approaches
	6 | Which Recovery Mechanisms Can be Used to Build Safety Monitors?
	6.1 | Switching the Control System
	6.2 | Immediate Prediction Enhancement
	6.2.1 | Input Reconstruction
	6.2.2 | Changing Final Prediction
	6.2.3 | Using Alternative Components

	6.3 | Impact on Long-Term System Enhancement

	7 | How to Evaluate Safety Monitors?
	7.1 | Evaluation of Detection Mechanisms
	7.1.1 | Evaluation Datasets
	7.1.1.1 | Novelty Detection

	7.1.1.2 | Distributional Shift Detection
	7.1.1.3 | Adversarial Detection
	7.1.2 | Evaluation Metrics

	7.2 | System-Level Evaluation
	7.3 | Evaluation Coverage
	7.4 | Evaluation for Certification
	8 | Conclusion and Open Challenges
	8.1 | Defining Safety Monitoring Objectives
	8.2 | Choosing Detection and Reaction Mechanisms
	8.3 | Combining Safety Monitoring Architectures
	8.3.1 | Implementation Constraints
	8.3.2 | Standardized Evaluation
	8.3.3 | Certification

	Acknowledgments
	Disclosure
	Conflicts of Interest
	Data Availability Statement
	Endnotes
	References

