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Abstract 

Background Patient-reported outcomes such as health-related quality of life (HRQoL) are increasingly used as 
endpoints in randomized cancer clinical trials. However, the patients often drop out so that observation of the HRQoL 
longitudinal outcome ends prematurely, leading to monotone missing data. The patients may drop out for vari-
ous reasons including occurrence of toxicities, disease progression, or may die. In case of informative dropout, the 
usual linear mixed model analysis will produce biased estimates. Unbiased estimates cannot be obtained unless the 
dropout is jointly modeled with the longitudinal outcome, for instance by using a joint model composed of a linear 
mixed (sub)model linked to a survival (sub)model. Our objective was to investigate in a clinical trial context the conse-
quences of using the most frequently used linear mixed model, the random intercept and slope model, rather than its 
corresponding joint model.

Methods We first illustrate and compare the models on data of patients with metastatic pancreatic cancer. We then 
perform a more formal comparison through a simulation study.

Results From the application, we derived hypotheses on the situations in which biases arise and on their nature. 
Through the simulation study, we confirmed and complemented these hypotheses and provided general explana-
tions of the bias mechanisms.

Conclusions In particular, this article reveals how the linear mixed model fails in the typical situation where poor 
HRQoL is associated with an increased risk of dropout and the experimental treatment improves survival. Unlike the 
joint model, in this situation the linear mixed model will overestimate the HRQoL in both arms, but not equally, mises-
timating the difference between the HRQoL trajectories of the two arms to the disadvantage of the experimental arm.

Keywords Joint model, Informative dropout, Linear mixed model, Random intercept and slope model, Health-related 
quality of life, Longitudinal outcome, Clinical trials, Cancer
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Background
There is a growing interest in using patient-reported 
outcomes (PROs) in addition to objective endpoints 
when assessing the benefit of new treatments or new 
therapeutic strategies. In cancer clinical trials, health-
related quality of life (HRQoL) has become an almost 
standard secondary endpoint and is even sometimes (in 
palliative or supportive care) a primary or co-primary 
endpoint. Usually, HRQoL is assessed by a self-admin-
istered questionnaire at different visit times during care 
and follow-up, and results in a longitudinal outcome 
analyzed using linear mixed models (LMMs).

However, assessment of HRQoL often ends prema-
turely at timepoints that differ between patients. The 
patients may simply stop completing the question-
naires, drop out for various reasons including occur-
rence of toxicities, disease progression, or die. In case 
of informative dropout, i.e., if the dropout is related 
to the HRQoL outcome, an LMM analysis will lead to 
biased estimates [1]. To avoid biases, the joint distri-
bution of the HRQoL and dropout variables must be 
considered, for example through a joint model (JM) 
that consists of a linear mixed (sub)model for the lon-
gitudinal HRQoL outcome and a survival (sub)model 
for the time to dropout. By sharing parameters includ-
ing the random effects, JMs allow for the association 
between a longitudinal outcome and a time to event [2]. 
They have been extensively used to make predictions 
on the occurrence of a clinical event while account-
ing for an endogenous time-dependent covariate (the 
longitudinal outcome), for example predicting pros-
tate cancer recurrence using PSA (prostate-specific 
antigen) measurements [3]. In clinical trials, JMs are 
increasingly applied using a biomarker as the longitu-
dinal outcome. In this context, they can provide more 
efficient estimates of the treatment effect on the longi-
tudinal outcome and of the direct treatment effect on 
survival as well as less biased estimates of the overall 
treatment effect on survival [4]. In addition, JMs have 
been applied using a HRQoL longitudinal outcome 
and in particular have shown that part of the survival 
benefit of a treatment can be masked by the negative 
effect that the treatment has on patients’ HRQoL [5]. 
Nevertheless, applications of JMs where the primary 
interest is in the longitudinal outcome are less frequent; 
among them, those using HRQoL longitudinal out-
comes in clinical trial settings are rare. Indeed, there is 
little knowledge of the impact of taking into account or 
not dropout on the estimation of the parameters that 
characterize the HRQoL outcome trajectory; when, 
how, and why will the usual LMM analysis produce 
misleading results? Will the biases be similar in the two 

treatment arms or could the results affect the between-
arm comparison?

This article studies the practical implications of using 
an LMM to analyze a HRQoL longitudinal outcome in a 
randomized clinical trial where the patients may drop out.

In Section  2, we detail the models that will be com-
pared: the random intercept and slope model, which is 
the most frequently used LMM in clinical trial settings, 
and its corresponding JM. Section 3 deals with PRODIGE 
4/ACCORD 11, a randomized phase II-III clinical trial 
including patients with metastatic pancreatic cancer. We 
apply the two models to data from this trial and derive 
hypotheses on the situations in which using the LMM 
would lead to biased estimates of the HRQoL param-
eters. In Section 4, we conduct a simulation study consid-
ering different scenarios to validate (or invalidate) these 
hypotheses and more generally to study the bias mecha-
nisms in depth. We discuss our findings in Section 5 and 
conclude in Section 6.

Modeling the HRQoL longitudinal outcome
In the following, the longitudinal outcome to be con-
sidered consists of a HRQoL score and the correspond-
ing variable is assumed to be continuous and normally 
distributed.

Linear mixed model (LMM)
The usual approach to analyzing longitudinal HRQoL 
score data consists of using an LMM. According to its 
general form, the HRQoL score of patient i at time t is:

where Y ⋆
i
(t) represents the true score value at time t, β 

and bi are the vectors of the p fixed effects and q random 
effects, Xi(t) and Zi(t) are the respective design vectors 
of size p and q containing the covariates at time t, and 
ϵi(t) is the random error term at time t. It is assumed that 
ϵi(t) ∼ N(0, σ2) and bi ∼ N(0, D) where D is a q × q unstruc-
tured covariance matrix. Furthermore, the ϵi(t) are mutu-
ally independent and independent of bi. Note that Yi(t) is 
only observed at time points tij, j = 1, …, ni where ni is the 
number of HRQoL measurements for patient i, and that 
the tij and ni can vary from a patient to another.

As it is commonly used in clinical trial settings, we 
have focused on the random coefficient model, or ran-
dom intercept and slope model, which specifies the true 
HRQoL score trajectory as a linear function of time as 
follows:

(1)
Yi(t) = Y

⋆
i
(t) +𝜖i(t)

= 𝛽TXi(t)
���

Mean trajectory

+ b
T
i
Zi(t)

���
Individual deviations

+𝜖i(t)
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where D =

(
σ 2
0 σ01

σ01 σ 2
1

)

 . The factor armi equals 1 if 

patient i belongs to the experimental arm receiving the 
new treatment and 0 if patient i belongs to the control 
arm receiving the standard treatment. The fixed intercept 
β0 represents the mean score at inclusion (t =0), the fixed 
slope β1 represents the score change by unit of time in 
the control arm, the interaction effect β2 represents the 
difference between the slopes of the experimental and 
control arms, and the random intercept b0i and random 
slope b1i represent individual deviations from the fixed 
intercept and fixed slope, respectively. Note that β1 + β2 
corresponds to the slope in the experimental arm. Note 
also that there is no arm effect in the model because ran-
domization normally ensures that baseline HRQoL is 
similar between the two arms.

Joint model (JM)
To analyze longitudinal HRQoL score data taking into 
account the fact that observation ends with an event 
(dropout), an alternative approach consists of using a JM 
that links the LMM to a time-to-event model through 
shared parameters. In general, the latter is a propor-
tional hazards model that includes the true current value 
of the longitudinal outcome as a covariate on the hazard 
function:

where λ0(t) is the baseline hazard function, Wi is the 
vector of baseline time-independent covariates that 
includes the treatment arm and possibly other prognostic 
factors or covariates, γ is the vector of the corresponding 
effects, and α is the parameter that represents the associ-
ation between the risk of event and the current true value 
of the longitudinal outcome Y ⋆

i
(t).

We have considered the JM where the (sub)model for 
the longitudinal HRQoL outcome is given by Eqs. (1) and 
(2) and the survival (sub)model is given by:

with γ1 corresponding to the direct treatment effect 
on the risk of event. Note that due to the presence of 
Y
⋆
i
(t) , the quantities given by exp{γ1} and exp{α} are 

conditional hazard ratios (HRs) controlling for the ran-
dom effects. The baseline hazard function was assumed 
to be piecewise constant (application of Section  3) or 
to follow a Weibull distribution (simulation study of 
Section 4).

(2)Y
⋆
i (t) = β0 + β1t + β2{armi × t} + b0i + b1it

(3)�i(t) = �0(t) exp γ T
Wi + α Y

⋆
i (t)

(4)�i(t) = �0(t) exp
{
γ1 armi + α Y

⋆
i (t)

}

Predicted HRQoL score trajectories
From the estimated parameters of each model, one can 
obtain predicted values of the HRQoL score at any time 
t, thus one can depict the predicted HRQoL score trajec-
tories. The predicted HRQoL score trajectory of patient i 
is given by:

However, the interest often lies on the predicted mean 
trajectories rather than on the predicted individual tra-
jectories, that is on plotting on the same graph the mean 
trajectory in the experimental arm:

and the mean trajectory in the control arm:

The PRODIGE 4/ACCORD 11 clinical trial
Description
PRODIGE4/ACCORD11 was a multicenter, randomized, 
phase II-III clinical trial comparing FOLFIRINOX (com-
bination of folinic acid, fluorouracil, irinotecan, and 
oxaliplatin) and gemcitabine (reference regimen) as first-
line chemotherapy for patients with metastatic pancre-
atic cancer. Detailed inclusion and exclusion criteria, as 
well as study design have been previously published [6]. 
Inclusion criteria included a measurable metastatic pan-
creatic adenocarcinoma, an Eastern Cooperative Onco-
logic Group (ECOG) performance status score of 0 or 1, 
and no prior chemotherapy. The primary endpoint for 
the phase III analysis was overall survival, and the sec-
ondary endpoints were progression-free survival, tumor 
response, safety, and HRQoL.

HRQoL assessment
HRQoL was assessed by use of the European Organiza-
tion for Research and Treatment of Cancer (EORTC) 
QLQ-C30 questionnaire (version 3.0) at inclusion, then 
every 2 weeks during treatment, then every 2 months 
until progression, then every 6 months until death or end 
of study. The QLQ-C30 is a 30-item self-administered 
cancer-specific questionnaire composed of five func-
tional scales (physical, role, cognitive, emotional, and 
social functioning), nine symptom scales (fatigue, nau-
sea and vomiting, pain, dyspnea, insomnia, appetite loss, 
constipation, diarrhea, financial difficulties) and a global 
health status/HRQoL scale [7]. The primary endpoint 
for the HRQoL analysis was global health status/HRQoL 
domain, and the secondary endpoints were physical, role, 

(5)Ŷi(t) = β̂0 + β̂1t + β̂2{armi × t} + b̂0i + b̂1it

(6)
Ŷarm=1(t) = E(Y (t)|arm = 1) = β̂0 +

(

β̂1 + β̂2

)

t

(7)Ŷarm=0(t) = E(Y (t)|arm = 0) = β̂0 + β̂1t
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and social functioning, and fatigue and pain. For each 
scale, a standardized score ranging from 0 to 100 was 
calculated from the item responses as recommended by 
the EORTC [8]. A high score for the global health sta-
tus/HRQoL and a functional scale represents respec-
tively a high HRQoL and a high level of functioning and 
so is associated with a good HRQoL level; conversely, a 
high score for a symptom scale represents a high level of 
symptomatology and so is associated with a poor HRQoL 
level.

Main findings
The main findings of the trial have been previously pub-
lished [6]. All analyses were performed on the intention-
to-treat (ITT) population that included 342 patients 
(n = 171 in the FOLFIRINOX experimental arm, n = 171 
in the gemcitabine control arm). Demographic and base-
line disease characteristics were similar in the two treat-
ment arms, except for the number of measurable target 
lung metastases (fewer in the FOLFIRINOX arm than 
in the gemcitabine arm). Significant differences were 
found in overall survival (HR = 0.57, 95% confidence 
interval (CI): [0.45, 0.73], p < 0.001) and in progression-
free survival (HR = 0.47, 95% CI: [0.37; 0.59], p < 0.001) 
in favor of the FOLFIRINOX arm. Median overall sur-
vival was 11.1 months (95% CI: [9.0; 13.1]) in the FOL-
FIRINOX arm and 6.8 months (95% CI: [5.5; 7.6]) in the 
gemcitabine arm. Median progression-free survival was 
6.4 months (95% CI: [5.5; 7.2]) in the FOLFIRINOX arm 
versus 3.3 months (95% CI: [2.2; 3.6]) in the gemcitabine 
arm. However, more adverse events occurred in the FOL-
FIRINOX arm than in the gemcitabine arm. HRQoL in 
the two treatment arms was compared through a time-
to-definitive-deterioration analysis with responder 
thresholds of 10 and 20 points to quantify an individual 
change [9]. A decreased risk of definitive deterioration 
in favor of the FOLFIRINOX arm was found in the six 
scales of interest: the global health status/HRQoL scale 
(HR = 2.3, p < 0.001), the physical (HR = 1.9, p =0.001), 
role (HR = 2.2, p < 0.001), and social (HR = 2.1, p < 0.001) 
functioning scales, and the fatigue (HR = 1.9, p =0.001) 
and pain (HR = 2.7, p < 0.001) symptom scales (values 
given for a 10-point threshold).

Application of the LMM and JM to analyze longitudinal 
HRQoL data
We applied the LMM and the JM described in Section 2 
to data from the PRODIGE 4/ACCORD 11 trial to ana-
lyze the HRQoL score evolution in the two treatment 
arms for each of the six scales of interest. Contrary to 
the LMM, the JM take into account the fact that death 
occurrence stopped the observation of the longitudinal 

HRQoL outcome. The analyses were performed on the 
335 evaluable patients (FOLFIRINOX arm: n = 167, gem-
citabine arm: n = 168) of the ITT population (i.e., with at 
least one HRQoL score measurement).

We used the R package nlme for the LMM (function 
lme) and the R package JM for the joint model (function 
jointModel with a piecewise-constant baseline hazard 
on seven intervals and a pseudo-adaptative Gauss–Her-
mite method with 15 quadrature points to approximate 
the integrals over the random effects). The main estima-
tion results (β1, β2, γ1, and α parameters) are summarized 
in Table 1 and the predicted mean score trajectories are 
depicted in Fig. 1. The results concerning β0 and the vari-
ance parameters can be found in Supplementary Table 1.

Clinical comments
For all scales except physical functioning, both models 
found a tendency toward improvement in the HRQoL 
in the control arm – that is, a score increase ( β̂1 > 0) in 
the global health status/HRQoL and the functional scales 
and a score decrease ( β̂1 < 0) in the symptom scales. Both 
models detected a significant improvement of pain symp-
toms (p <  10−3) but only the LMM found a significant 
improvement of fatigue symptoms (p = 0.016).

Both models found that all dimensions of HRQoL were 
improved in the experimental arm versus the control arm 
(i.e., β̂2 > 0 for the global health status/HRQoL and the 
functional scales and β̂2 < 0 for the symptom scales). Both 
models detected that this arm-by-time effect was signifi-
cant for the global health status/HRQoL (p =  0.013 for 
the LMM and p = 0.006 for the JM); only the JM detected 
a significant effect for the social functioning scale  
(p = 0.036).

For all the HRQoL dimensions, the JM detected a sig-
nificant and protective (i.e., γ̂1 < 0) direct effect of the 
experimental treatment on the risk of death. We found 
that risk of death adjusted for the current HRQoL score 
was multiplied by a HR going from exp(−0.43) =  0.65 
for global health status/HRQoL to exp(− 0.66) = 0.52 for 
physical functioning. This is consistent with the primary 
endpoint analysis that had found a marginal risk of death 
multiplied by a HR of 0.57 in the experimental arm com-
pared with the control arm (see Section 3.3).

For all the HRQoL dimensions, the JM found that 
a poorer level was significantly associated with an 
increased risk of death. This negative association was 
strongest for the global health status/HRQoL scale, with 
an estimated value of α̂ = − 0.029, (p <  10−4), meaning 
that a diminution of 8.33 points, which is the differ-
ence between two adjacent possible score values in this 
scale, corresponds to a risk increase of exp(0.029 × 8.33) 
=  1.27. A consequence of this association can be 
observed in Fig.  1. In the control arm (dotted lines), 
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where HRQoL over time is poorer than in the experi-
mental arm (solid lines), the predicted mean trajecto-
ries go up to approximately 10 months (vs. 20 months in 
the experimental arm). Indeed, the time interval during 
which there are available HRQoL score data is shorter 
in the control arm than in the experimental arm due to 
earlier deaths.

Methodological comments
Compared with the LMM, the JM found that HRQoL 
in the control arm improved less (global health status/
HRQoL: β̂1 =  0.31 vs. 0.63; role functioning: β̂1 =  0.27 
vs. 0.80; fatigue: β̂1 = − 0.78 vs. −1.30; pain: β̂1 = − 1.99 
vs. −2.47), deteriorated more (physical functioning: β̂1 
= − 0.77 vs. −0.33) or deteriorated instead of improved 
(social functioning: β̂1 = − 0.35 vs. 0.11). These results 
suggest that the LMM would overestimate the slope 
parameter β1 in the global health status/HRQoL and 
functional scales and would underestimate it in the 
symptom scales. It is important to note that fatigue 
decreased non-significantly according to the JM while 
the (presumed) underestimation of the LMM made β̂1 
cross the level of significance.

Compared with the LMM, for five out of six scales (all 
except for pain) the JM found a larger difference (in favor 
of the experimental treatment) of the HRQoL score tra-
jectory between arms and smaller associated p-values. 
This result suggests that the LMM would underestimate 
the arm-by-time interaction parameter β2. In addition, 
the larger the direct arm effect γ1 was on the risk of 
death, the larger the difference was between the β2 esti-
mates of the LMM and the JM. It should be noted that 
a consequence of the (presumed) underestimation of the 
arm-by-time interaction effect β2 by the LMM is that this 
model found this effect to be non-significant in the social 
functioning scale, whereas the JM found this effect to be 
significant.

From the previous comments, we can derive the fol-
lowing hypotheses:

• If there is a negative association between HRQoL 
and the risk of event (dropout), then the LMM will 
overestimate (global health status/HRQoL and func-
tional scales) or underestimate (symptomatic scales) 
the time effect β1, leading to an overly optimistic pre-
dicted HRQoL score trajectory in the control arm.

Fig. 1 Predicted mean HRQoL score trajectories in the experimental (solid lines) and control (dotted lines) arms from the LMM and the JM fitting 
to the clinical trial PRODIGE 4/ACCORD 11 data for the six scales of interest. HRQoL, health-related quality of life; JM, joint model; LMM, linear mixed 
model
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• If there is also a protective effect γ1 of the new treat-
ment on the risk of event (dropout), then the LMM 
will underestimate (global health status/HRQoL and 
functional scales) or overestimate (symptomatic 
scales) the arm-by-time interaction effect β2. In par-
ticular, where the HRQoL level over time is better 
in the experimental arm compared with the control 
arm, the LMM will diminish the beneficial treatment 
effect on HRQoL.

A simulation study is needed to validate these state-
ments; this is the purpose of the next section.

Simulation study
We conducted a simulation study to compare both mod-
els under several scenarios. We based the design of the 
simulations on PRODIGE 4/ACCORD 11 and our knowl-
edge about various clinical trials. For each scenario, we 
generated 1000 datasets of 500 patients randomly 
assigned to two treatment arms with 250 patients per 
arm. To compare the models, we calculated for each esti-
mated parameter β̂ the following criteria: the mean value 
β̂ , the bias β̂ − β , the relative bias 

(

β̂ − β

)

/β , the root 

mean square error (RMSE) 

√
(

β̂ − β

)2
 , and the cover-

age rate, i.e., the proportion of samples for which the 95% 
CI includes the true value β.

Design
Visit times
For all patients, there were 15 scheduled visit times for 
HRQoL assessment at: inclusion, month 1, month 2, 
month 3, month 6, month 9, month 12, month 18, and 
then every 6 months until administrative censoring (end 
of study). For each patient i, we generated the individual 
visit times tij where j is the visit number (j = 1, …, 15). At 
inclusion, ti1 = 0 ∀ i, and, for j > 1, the tij were uniformly 
distributed: within ±3 days of scheduled visits in months 
1 to 3, ±7 days of scheduled visits in months 6 to 12, 
and ± 14 days of scheduled visits at later timepoints.

Longitudinal HRQoL outcome and time to dropout
For each patient i, we generated the longitudinal HRQoL 
outcome following the JM defined by Eqs. (1) and (2) 
at the visit times tij, j = 1, …, 15. We then generated the 
dropout time from Eq. (4) using a Weibull distribution 
for the baseline hazard; that is, with λ0(t) = φtφ − 1 exp(γ0) 
where φ was the shape parameter and exp(γ0) corre-
sponded to the scale parameter (we used an exponential 
parametrization for the scale parameter to be consistent 
with the JM package that estimates γ0 using an intercept 
in the exponentiated term of the hazard function). As 

usual inverse transform sampling was not straightfor-
ward, in particular because of the time-varying covariate 
Y⋆(t), we used a method implemented in the R package 
simsurv that allows survival times to be generated from 
complex models such as JMs [10].

If dropout occurred before administrative censoring, 
we removed all the HRQoL data for visit times after the 
time to dropout.

Parameter values
The choice of the parameter values was based on the esti-
mates from the JM applied to the PRODIGE 4/ACCORD 
11 trial data for the global health status/HRQoL scale 
while assuming a Weibull distribution to specify the 
baseline hazard function (main results depicted in Sup-
plementary Table  2). In Scenario 0, all the parameter 
values were set to the estimates from the application 
rounded to the second decimal place; in Scenarios 1, 2, 3, 
4, and 5, some parameter values deviated from the appli-
cation (as detailed in the next section).

Scenarios
General principle
We have considered five different scenarios. The “PROD-
IGE 4/ACCORD 11”-like scenario (Scenario 0) aimed to 
verify that the simulation results were consistent with the 
application results of Section 3.4. The other scenarios (1, 
2, 3, 4, and 5) aimed to confirm and generalize the state-
ments derived from the methodological comparison of 
Section 3.6.

HRQoL trajectory parameters
In all scenarios, the variance parameters were set to the 
rounded estimates from PRODIGE 4/ACCORD 11: 
σ0 =  15.2, σ1 =  2.1, ρ01 = − 0.4 (with ρ01 = σ01/σ0σ1), σ 
= 13.5. In Scenario 0, all other parameters were also set 
to the rounded estimates from this application: β0 = 53.9, 
β1 = 0.3, and β2 = 1.2, corresponding to a HRQoL value 
that increased slightly over time in the control arm and 
substantially in the experimental arm. In the other sce-
narios, the mean HRQoL value at baseline was β0 = 50, 
and then HRQoL values were constant in the control 
arm (β1 =  0) and increased (β2 =  1.5 in Scenarios 1, 2, 
3), were constant (β2 = 0 in Scenario 4), or decreased (β2 
= − 1.5 in Scenario 5) in the experimental arm. The mean 
trajectory of the HRQoL value in each treatment arm is 
depicted in Fig. 2 for all scenarios.

Risk‑of‑dropout parameters
In Scenario 0, the regression parameters were set to the 
rounded estimates from PRODIGE 4/ACCORD 11. The 
arm effect was γ1 = − 0.4, corresponding with a reduced 
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risk of dropout due to the direct effect of the experimental 
treatment, and the association parameter was α = − 0.02, 
meaning that an increase in the HRQoL value was associ-
ated with a reduced risk of dropout. In Scenario 1, risk 
of dropout was the same in both treatment arms (γ1 = 0) 
and there was no association between HRQoL and drop-
out (α =  0). In Scenario 2, the risk of dropout was still 
the same in both treatment arms (γ1 = 0) but the current 
value of HRQoL was negatively associated with the risk 
of dropout (α = − 0.03). In Scenarios 3, 4, and 5, HRQoL 
and dropout were still negatively associated (α = − 0.03) 
and, in addition, the experimental treatment reduced the 
risk of dropout (γ1 = − 0.7).

The Weibull parameters for the baseline hazard func-
tion were set to φ = 1.6 and γ0 = − 2.2 in Scenarios 0, 2, 3, 
4, and 5 based on the PRODIGE 4/ACCORD 11 applica-
tion. We replaced them with φ = 1.7 and γ0 = − 4.1 in Sce-
nario 1, where there was no association between HRQoL 
and dropout (α = 0), in order to obtain an overall hazard 
function comparable to those of the other scenarios.

Figure 3 depicts for each scenario the hazard function 
in both treatment arms with a current HRQoL true value 
set to its theoretical mean – that is, the hazard func-
tion given by: λ0(t) exp {γ1arm + α(β0 + β1t + β2{arm × t})
}. Note that the curves are not the same in Scenarios 3, 
4, and 5, while all the parameters governing the risk of 
dropout are the same. This comes from different values 
of the HRQoL covariate since, as can be seen in Fig.  2, 
the HRQoL trajectory in the experimental arm varies: 
it increases, is constant, and decreases in Scenarios 3, 4, 
and 5, respectively. Depending on the scenario, the mean 
of the median survival times in the 1000 simulations var-
ied from 6.2 to 9 months for the control arm and from 8.7 
to 17 months for the experimental arm (see Supplemen-
tary Table 3).

Results
The results (mean, bias, relative bias, RMSE, and cover-
age rate) concerning the main parameters, β1, β2, γ1, and 
α, are summarized in Table  2; for readability, the table 
also details the results (mean, bias, and relative bias) for 
β1 + β2. Supplementary Table  4 details the results con-
cerning the other parameters (intercept, variance param-
eters, and Weibull parameters). Figure 4 depicts the mean 
of the predicted mean HRQoL trajectories from the two 
models by treatment arm.

As can be seen in Table  2, the JM provided unbiased 
estimates of the main HRQoL parameters in all scenar-
ios, in contrast with the LMM (which provided biased 
estimates in all scenarios other than Scenario 1). The bias 
and RMSE from the LMM were in general also larger 
than those from the JM for the other HRQoL parameters, 
though to a lesser extent than for β1 and β2 (see Supple-
mentary Table  4). The JM also estimated the effects of 
HRQoL and treatment on the risk of dropout, α and γ1, as 
well as the baseline hazard parameters, γ0 and φ, with 
almost zero biases and coverage rates close to 95% for all 
scenarios.

In-depth comments of the results scenario by scenario 
are given below.

Scenario 0
In the “PRODIGE 4/ACCORD 11”-like scenario, HRQoL 
increased slightly over time in the control arm (slope: β1 
= 0.3) and substantially in the experimental arm (slope: 
β1 + β2 = 1.5). The new treatment had a protective effect 
on the risk of dropout (γ1 = − 0.4), and an increase in the 
current value of HRQoL was associated with a reduced 
risk of dropout (α = − 0.02). The results were consistent 
with those found in the global health status/HRQoL scale 
in the application in Section 3: the LMM overestimated 

Fig. 2 Mean trajectories of the true HRQoL score value in both arms considered in the simulation study (i.e., representation of 
E

((

Y
⋆
(

t

))

= β0 + β1t + β2{arm× t} according to t with t the time in months and arm the treatment arm indicator). HRQoL, health-related 

quality of life
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the slope parameter β1 = 0.3 ( β̂1 = 0.603 compared with 
β̂1 = 0.297 with the JM) and underestimated the interac-
tion parameter β2 =  1.2 ( β̂2 =  1.141 compared with β̂2 
= 1.215 with the JM). Consequently, the LMM overesti-
mated the slope in the experimental arm (bias for β1 + β2: 
0.244) but to a lesser extent than in the control arm (bias 
for β1: 0.303). The β1 coverage rate of the LMM deviated 
from the nominal level of 95%, unlike the JM (70.8% vs. 
95.7%).

Scenario 1
Scenario 1 was the scenario of reference for subse-
quent Scenarios 2, 3, 4, and 5. In all these five scenarios, 
HRQoL in the control arm was constant over time and 
HRQoL in the experimental arm increased (Scenarios 1, 

2, 3), was constant (Scenario 4), or decreased (Scenario 
5). HRQoL was independent of risk of dropout (i.e., 
dropout was non-informative) in Scenario 1 (α=0), in 
contrast to Scenarios 2, 3, 4, and 5, so there was no need 
to use the JM rather than using its two linear mixed and 
survival submodels separately. In this scenario, the JM 
performed roughly as well as the LMM regarding the 
HRQoL parameters. The RMSEs were 0.184 (JM) and 
0.183 (LMM) for β1, and 0.253 (both models) for β2. The 
JM also performed well regarding the risk-of-dropout 
parameters, with almost zero biases for γ1 and α.

Scenario 2
Unlike in Scenario 1, in Scenario 2 there was a nega-
tive association between the current value of HRQoL 

Fig. 3 Representation of the hazard functions considered in the simulation study for both arms where the current HRQoL true value is set to its 
theoretical mean, i.e., �

(

t|arm,E
((

Y
⋆
(

t

)))

= �0(t) exp {γ1 arm+ α (β0 + β1t + β2{arm× t})} where λ0(t) = φtφ − 1 exp(γ0) with φ and exp(γ0) the 

shape and scale parameters, respectively, according to t with t the time in months and arm the treatment arm indicator. HRQoL, health-related 
quality of life
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Table 2 Resultsa of the simulation study on the main  parametersb

LMM JM

True Mean Bias RB RMSE Cov. Mean Bias RB RMSE Cov.

SCENARIO 0

HRQoL

 β1 0.3 0.603 0.303 1.010 0.371 70.8 0.297 − 0.003 − 0.011 0.22 95.7

 β2 1.2 1.141 −0.059 − 0.049 0.287 93.1 1.215 0.015 0.012 0.284 93.3

 β1 + β2 1.5 1.744 0.244 0.163 – – 1.512 0.012 0.008 – –

Risk of dropout

 γ1 − 0.4 – – – – – − 0.403 − 0.003 0.007 0.103 93.8

 α −0.02 – – – – – − 0.02 0 0.003 0.003 95.2

SCENARIO 1

HRQoL

 β1 0 −0.007 −0.007 NA 0.183 94.1 −0.008 −0.008 NA 0.184 94.2

 β2 1.5 1.508 0.008 0.005 0.253 93.4 1.508 0.008 0.005 0.253 93.3

 β1 + β2 1.5 1.501 0.001 0.001 – – 1.5 0 0 – –

Risk of dropout

 γ1 0 – – – – – −0.002 −0.002 NA 0.102 93.4

 α 0 – – – – – 0 0 NA 0.002 94.9

SCENARIO 2

HRQoL

 β1 0 0.356 0.356 NA 0.404 52.7 0.004 0.004 NA 0.198 94.3

 β2 1.5 1.465 −0.035 −0.023 0.255 93.1 1.517 0.017 0.011 0.260 93.4

 β1 + β2 1.5 1.821 0.321 0.214 – – 1.521 0.021 0.014 – –

Risk of dropout

 γ1 0 – – – – – −0.003 − 0.003 NA 0.110 94.3

 α −0.03 – – – – – −0.03 0 0 0.003 95.5

SCENARIO 3

HRQoL

 β1 0 0.343 0.343 NA 0.391 53.0 −0.003 −0.003 NA 0.193 94.2

 β2 1.5 1.359 −0.141 − 0.094 0.274 88.6 1.515 0.015 0.01 0.240 93.0

 β1 + β2 1.5 1.702 0.202 0.135 – – 1.512 0.012 0.008 – –

Risk of dropout

 γ1 −0.7 – – – – – − 0.704 −0.004 0.006 0.115 94.4

 α −0.03 – – – – – −0.03 0 0.001 0.003 95.4

SCENARIO 4

HRQoL

 β1 0 0.352 0.352 NA 0.397 51.8 0.002 0.002 NA 0.190 95.2

 β2 0 −0.098 −0.098 NA 0.255 91.7 0.014 0.014 NA 0.241 93.8

 β1 + β2 0 0.254 0.254 NA – – 0.016 0.016 NA – –

Risk of dropout

 γ1 −0.7 – – – – – − 0.706 −0.006 0.009 0.108 94.1

 α −0.03 – – – – – −0.030 0.000 0.002 0.003 94.8

SCENARIO 5

HRQoL

 β1 0 0.342 0.342 NA 0.39 54.2 −0.009 −0.009 NA 0.194 94.8

 β2 −1.5 −1.551 −0.051 0.034 0.245 93.9 −1.482 0.018 −0.012 0.245 94.4

 β1 + β2 −1.5 −1.209 0.291 0.582 – – −1.491 0.009 −0.006 – –

Risk of dropout

 γ1 −0.7 – – – – – −0.7 0 0 0.115 93.9

 α −0.03 – – – – – −0.03 0 −0.003 0.003 94.5

a mean, bias, relative bias (RB), root mean square error (RMSE) and coverage rate (Cov.) based on 1000 generated datasets of 500 patients
b  β1 and β2: time and interaction parameters characterizing the slope of the HRQoL trajectory in the control and experimental arms; γ1 and α: effects of treatment and 
HRQoL on risk of dropout

HRQoL, Health-related quality of life; JM, Joint model; LMM, Linear mixed model
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and risk of dropout (α = − 0.03). This led to an LMM 
mean overestimation of 0.356 for the HRQoL param-
eter β1 (=0), while the bias from the JM estimate was 
almost zero (0.004). The β1 coverage rate using the 
LMM was far from 95% (52.7% vs. 94.3% for the JM). 
For the HRQoL parameter β2, the relative bias from 
the LMM was doubled (in absolute value) compared 
with that from the JM (− 0.023 vs. 0.011). However, 
the absolute bias from the LMM was not substantial 
(− 0.035). This slight underestimation of β2 resulted in 
a slope overestimation that was slightly less important 
in the experimental arm (bias of β1 + β2: 0.321) than in 
the control arm (bias of β1: 0.356). It is noticeable that 
the slope overestimation is less important where the 
risk of dropout is lower; that is, in the experimental 
arm (see Fig. 3). In fact, even though the new treatment 
had no direct effect on the risk of dropout (γ1 = 0), it 
had a protective indirect effect through higher values 
of HRQoL in the experimental arm than in the control 
arm (see Fig. 2).

Scenario 3
In Scenario 3, the LMM behaved as it did in Scenario 2 as 
regards the β1 parameter, giving a bias of 0.343. Indeed, 
the HRQoL trajectory in the control arm was the same in 
the two scenarios, as was the association effect between 
the current value of HRQoL and risk of dropout (α 
= − 0.03). In contrast with Scenario 2, in Scenario 3 the 
new treatment had a protective effect on the risk of drop-
out (γ1 = − 0.7). Consequently, the LMM underestimated 
the interaction parameter β2 by 0.141 on average, with a 
corresponding relative bias of − 0.094 (vs. 0.010 using the 
JM) and a coverage rate of 88.6% (vs. 93% using the JM). 
Notice that, in comparison with Scenario 2, a similar over-
estimation of the slope in the control arm β1 associated 
with a larger underestimation of β2 led to a smaller over-
estimation of the slope governing the HRQoL trajectory 
in the experimental arm (bias of β1 + β2: 0.202). The lower 
bias of the slope β1 + β2 can be related to the decreased 
risk of dropout that is present in the experimental arm 
due to the additional treatment effect (see Fig. 3).

Fig. 4 HRQoL theoretical mean trajectories (in black) and mean of the HRQoL predicted mean trajectories over the simulations (in color) in the 
control arm (dashed lines) and the experimental arm (solid lines), i.e., representation of the functions given by, respectively, β0 + β1t + β2{arm × t} 
and β̂0 + β̂1t + β̂2{arm× t} , according to t with t the time in months and arm the treatment arm indicator. HRQoL, health-related quality of life; JM, 
joint model; LMM, linear mixed model
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Scenarios 4 and 5
As expected, the LMM behaved in Scenarios 4 and 5 as 
it did in Scenario 3 (and 2) as regards the β1 parameter, 
since neither the HRQoL trajectory in the control arm 
nor the association between the current HRQoL value 
and risk of dropout had changed. As in Scenario 3, the 
new treatment was protective on the risk of dropout (γ1 
= − 0.7 in Scenarios 3, 4, and 5) but, instead of benefit-
ing HRQoL (β2 =  1.5 in Scenario 3), it had no effect in 
Scenario 4 (β2 = 0) and was deleterious in Scenario 5 (β2 
= − 1.5). This led to ascending sizes of bias for the slope 
β1 + β2 in Scenarios 3, 4, and 5 (0.202, 0.254, and 0.291, 
respectively), which can be related to the increased risk 
of dropout in the experimental arm due to the indirect 
treatment effect through the HRQoL values. Conversely, 
sizes of bias for β2 descended in the three scenarios 
(− 0.141, − 0.098, and − 0.051, respectively).

Summary and further comments
The results of Scenario 0 confirmed that in the applica-
tion to the PRODIGE 4/ACCORD 11 data, the LMM 
would have overestimated the slope parameter β1 and 
underestimated the interaction parameter β2 in the global 
health status/HRQoL scale. More generally, the results 
of the subsequent scenarios were consistent with the 
hypotheses derived from the application. In the refer-
ence Scenario 1 where there was no association between 
HRQoL and risk of dropout, the LMM performed well 
(as did the JM). In Scenarios 2, 3, 4, and 5, where a low 
current HRQoL value was associated with an increased 
risk of dropout, the LMM produced biased results for 
the HRQoL parameters β1 and β2, which the JM did not. 
In fact, to understand the bias of β2, it should be seen as 
the difference between the biases of the β1 and the β1 + β2 
slopes governing the HRQoL trajectories in the control 
and experimental arms, respectively.

Scenarios 2, 3, 4, and 5 have shown that for a given 
degree of association (namely, α = − 0.03), the size of 
the LMM bias increases with the risk of dropout. Hence, 
the size of the bias varies with the factors affecting the 
risk of dropout, of which there were two in our simula-
tion study: γ1, the direct effect of the treatment, and 
Y
⋆
i
(t) , the current HRQoL value. Scenarios 2 and 3 were 

similar except in the case of the treatment effect γ1: this 
was null in Scenario 2 but protective in Scenario 3. This 
implied a lower risk of dropout in the experimental arm 
in Scenario 3 and, consequently, a lower bias of the slope 
β1 + β2. Similarly, in Scenario 4, nothing differentiated 
the two arms (which had the same constant HRQoL 
trajectories) apart from the effect of the treatment on 
dropout, γ1, which was protective. This implied that the 
slope governing the HRQoL trajectory was less biased 
in the experimental arm (bias of β1 + β2: 0.254) than in 

the control arm (bias of β1: 0.352). Secondly, the size of 
the bias varied with the HRQoL itself, since Y ⋆

i
(t) also 

impacted the risk of dropout. This is obvious in Scenarios 
3, 4, and 5; these scenarios exhibited different HRQoL 
trajectories in the experimental arm but the same direct 
effect of the treatment on the risk of dropout. In these 
scenarios, the HRQoL trajectory in the experimental arm 
was increasing, constant, and decreasing, respectively, 
leading to ascending sizes of bias for the slope govern-
ing the HRQoL trajectory in this arm, β1 + β2. Similarly, 
in Scenario 2 where the treatment had no direct effect on 
the risk of dropout, the risk of dropout was lower in the 
experimental arm than in the control arm because of a 
higher HRQoL trajectory. This led to a slope that was less 
biased in the experimental arm (bias for β1 + β2: 0.321) 
than in the control arm (bias for β1: 0.356). Finally, it can 
be noted that in Scenarios 2, 3, 4, and 5, where the risk 
of dropout in the control arm was the same (since the 
HRQoL score trajectories were the same and, of course, 
there was no treatment effect), the biases for β1, the slope 
governing the HRQoL trajectory in the control arm, were 
similar (0.356, 0.343, 0.352, and 0.342, respectively).

Discussion
This article focuses on the analysis of longitudinal 
HRQoL data in cancer clinical trials where observation 
may be interrupted during treatment or follow-up. We 
have shown that as soon as the risk of dropout is associ-
ated with HRQoL, the LMM typically used for data anal-
ysis will produce biased estimates. Obtaining unbiased 
results cannot be achieved without jointly modeling the 
dropout and the HRQoL longitudinal outcome.

We first compared the LMM with a JM on HRQoL data 
of patients with metastatic pancreatic cancer who may 
drop out before end of study due to death. The JM found 
a significant association between HRQoL and survival 
for the six analyzed scales. Moreover, the two models 
differed in the estimation of HRQoL parameters so that 
the main parameters of interest, β1 and β2, could be sig-
nificant using the JM but non-significant using the LMM 
(social functioning), and vice versa (fatigue). A limitation 
of this application stems from the fact that death is not 
an ordinary dropout since the HRQoL outcome is not 
unobserved but cannot exist after death. Contrary to the 
LMM, the JM account for the dependence between the 
longitudinal outcome and the dropout but both models 
implicitly impute HRQoL data beyond dropout. Actu-
ally, if a longitudinal outcome is truncated by death 
rather than ordinary dropout and if the primary interest 
is in the longitudinal outcome rather than in the survival 
outcome, other kinds of models could be more relevant 
than JMs. In particular, the RCA (regression condition-
ing of being alive) models produce estimates regarding 
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the surviving population [11, 12] but, at our knowledge, 
they have not been implemented in standard software. 
Another alternative would be stratifying the analysis by 
the survival time using pattern mixture models so that 
mean HRQoL trajectories could be plotted by groups 
defined by the time of death [13]. It should be noted 
that, because they use future survival information, pat-
tern mixture models can be used for description but not 
to predict trajectories. Note that pattern mixture mod-
els are also an alternative to take into account ordinary 
dropout as well as selection models, but we found more 
advantages in using joint models [14].

In spite of the limitation we have just mentioned, the 
results of our application made it possible to derive two 
hypotheses on the bias mechanisms arising in presence 
of dropout, which we then confirmed and complemented 
by use of a simulation study.

The first hypothesis was that a negative association 
between HRQoL and risk of dropout would result in an 
overestimation of β1, the slope governing the HRQoL 
score trajectory in the control arm. We confirmed this in 
the simulation study and deduced that the same assertion 
holds for β1 + β2, the slope governing the HRQoL score 
trajectory in the experimental arm. Dropout is informa-
tive: the patients with the lowest levels of HRQoL are 
the most likely to drop out early, so will contribute only 
weakly to the likelihood function. The second hypothesis 
was that a protective effect of the new treatment on the 
risk of dropout would result in an underestimation of 
β2, the arm-by-time interaction effect (slope difference 
between experimental and control arms). The simulation 
study confirmed this and also revealed that to understand 
why and how β2 is biased, the bias of the sum of β1 + β2, 
rather than the bias of β1, should be the focus. No bias for 
β2 means that the slopes in both arms are equally overes-
timated, maintaining the correct difference between the 
slopes. Accordingly, the underestimation of β2 observed 
in the application would be the result of a lower slope 
overestimation in the experimental arm than in the con-
trol arm, due to a longer time before dropout.

Indeed, in addition to the degree of association 
between the current value of HRQoL and risk of dropout 
(α parameter), the simulation study revealed that the size 
of the biases in the HRQoL slope estimates increases with 
the risk of dropout. Thus, the size of the bias depends on 
the factors affecting the risk of dropout; the first is the 
direct effect of the treatment on the risk of dropout, γ1. If 
the treatment has a protective effect, the risk of dropout 
will be lower in the experimental arm than in the con-
trol arm, implying that the bias will be smaller for β1 + β2 
than for β1. The second factor affecting the risk of drop-
out is the longitudinal HRQoL outcome itself, through 
the variable Y ⋆

i
(t) . Consequently, if the HRQoL score 

trajectories are different for the two arms, the slope bias 
will be largest for the arm with the poorest HRQoL val-
ues. HRQoL participates here in an indirect effect of the 
treatment on the risk of dropout. In practice, the direct 
and indirect treatment effects act together, and how the 
slope will be biased in one arm compared with the other 
will in fact depend on the overall treatment effect on the 
risk of dropout.

In a JM, the overall treatment effect corresponds to (the 
logarithm of) a time-varying HR between the experimental 
and control arms. For two patients sharing the same ran-
dom effects, the overall treatment effect in the considered 
JM reduces to γ1 + α  β2t, which corresponds to the sum 
of the direct and indirect treatment effects. This HR has a 
subject-specific interpretation since the model controls for 
the random effects when calculating it. In other applications 
where the focus is on the survival submodel – typically, an 
application where a longitudinal biomarker serves to predict 
progression or death – an estimate of an overall treatment 
effect with a marginal interpretation could be preferred. To 
achieve this, van Oudenhoven et al. [15] recently proposed 
a method that is implemented in the JM package. However, 
the reason for using a JM in the present work was to obtain 
fair estimates of the HRQoL parameters, so we mainly 
focused on the linear mixed submodel.

Our findings could be extended to other JMs in many 
aspects. For example, the survival submodel could be 
adjusted on additional prognostic factors, and the linear 
mixed submodel could include other variables such as 
the treatment arm. In the latter case, the indirect treat-
ment effect on the risk of dropout would take the form 
α(β3 + β2t) where β3 is the baseline arm effect. Our con-
clusions are based on a HRQoL score for which high val-
ues are associated with a high level of HRQoL and low 
values are associated with a poor level of HRQoL, such as 
the scores from the global health status/HRQoL scale or 
the functional scales of the QLQ-C30. The same conclu-
sions hold in the reverse situation of a scale in which high 
values are associated with a poor level of HRQoL and low 
values are associated with a high level of HRQoL, such as 
the score from the symptomatic scales of the QLQ-C30. 
In this case, the association parameter α would be positive 
instead of negative when a poor level of HRQoL is asso-
ciated with an increased risk of dropout. Obviously, the 
present works remains valid for PROs other than HRQoL.

Finally, note that we focused on a LMM and a JM assum-
ing a linear relationship between the HRQoL outcome and 
time (random coefficient model). Nevertheless, we encour-
age the use of models allowing for a flexible trajectory of the 
HRQoL outcome (for example, based on splines). Indeed, 
an analysis assuming a simplistic functional form for the 
HRQoL outcome could miss information and provide mis-
leading results [16]. Note that the bias mechanisms that 
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have been revealed in this article should operate similarly 
in case of flexible models; although the parameters would 
lose their interpretability, our findings could probably by 
extended to the resulting predicted trajectories.

Conclusion
This work suggests avoiding the usual LMM analysis of 
longitudinal HRQoL data in cancer clinical trials where 
patients may drop out. In general, dropout is associated 
with poor rather than good HRQoL, so that the LMM will 
be too optimistic in estimating the HRQoL parameters. In 
particular, the LMM will overestimate the slope governing 
the HRQoL trajectory in both arms. The direct and indirect 
effects of the treatment on the risk of dropout act together, 
potentially in opposite directions, but in general, the overall 
treatment effect is protective; that is, time before dropout is 
longer in the experimental arm. If this is the case, the LMM 
will also misestimate the effect of the treatment over time 
on HRQoL (i.e., the slope difference between experimental 
and control arms). More specifically, the LMM will be more 
optimistic for the control arm than for the experimental 
arm: where there is better HRQoL in the experimental arm, 
the LMM will diminish the beneficial treatment effect on 
HRQoL, and where there is poorer HRQoL in the experi-
mental arm, it will accentuate the deleterious treatment 
effect on HRQoL. Such biases can be avoided using a JM 
and, as the JM is composed of a linear mixed submodel, the 
way of interpreting the HRQoL parameter results will be 
unchanged. On top of that, as the JM is also composed of a 
survival submodel, the JM will provide additional estimates 
and give further insight into the relationship between drop-
out and the longitudinal HRQoL outcome.
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