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 A B S T R A C T

Satellite imagery allows for large-scale monitoring of dynamic coastal processes, with shoreline tracking being 
the most widespread application. Nearshore wave-generated sandbars influence coastal dynamics by acting 
as natural buffers that reduce beach erosion through wave energy dissipation and sediment exchange with 
the aerial beach. Despite their importance, they are often overlooked in satellite-based studies. This paper 
addresses this oversight by introducing the SandBar Index (SBI), a new methodology designed to optimize 
the detection of wave breaking pixels induced by the underlying sandbar while minimizing the SBI value 
pixels from the surrounding environment such as sand, land and water. Wave breaking pixels refer to image 
pixels where breaking waves generate foam, increasing reflectance in optical satellite imagery. Since wave 
breaking typically occurs over submerged sandbars, these pixels act as proxies for their detection. By integrating 
this index into an automated processing framework, long-term time series of sandbar positions are generated 
alongside shoreline positions. To validate our methodology, Sentinel-2 images are used to compare satellite-
derived sandbar positions with in-situ bathymetric data from the Field Research Facility (FRF) in Duck, North 
Carolina (US), over a period of nearly ten years. Validation results show good agreement (STD = 23.2 m - i.e. 
2 Sentinel-2 pixels), demonstrating the ability of the method to capture the onshore and offshore migration of 
sandbars. The flexibility of the SBI allows implementation on different satellite platforms, including Landsat 
and VENμS, demonstrating its transferability. This application lays the groundwork for future studies using over 
40 years of historical satellite data to further investigate long-term sandbar dynamics, but also high-frequency 
dynamics with the concomitantly increasing revisit and resolution of satellite missions. The integration of 
multiple observable metrics from satellite data allows for a more nuanced characterization of the coastal system 
as a dynamic entity.
 

 

1. Introduction

Sandy coasts are dynamic and vulnerable areas increasingly exposed 
to hazards due to intensified oceanographic forcing (Li et al., 2018; 
Barnard et al., 2017; Harley et al., 2017; Masselink et al., 2016) 
and human activities (Dada et al., 2023). Within the nearshore zone, 
sandbars—particularly subtidal ones—form and evolve as a result of 
wave breaking and currents (Wright and Short, 1984). These sandbars 
are subject to constant sediment reorganization, driven by physical 
processes in both transverse and longitudinal directions (Ribas et al., 
2017). The variability in hydrodynamics leads to significant changes in 
coastal bathymetric profiles (Plant et al., 1999; Walstra et al., 2016), 
highlighting the importance of monitoring these submerged features.

Continuous monitoring of sandbars is important for coastal manage-
ment because their different forms (longitudinal, transverse, crescentic) 
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can dissipate wave energy through successive breaking, thereby reduc-
ing coastal erosion during storms. Depending on their shape, they can 
protect the shoreline, the beach face, or the nearshore zone from high 
wave energy impacts. The number, spacing, and shape of these bars 
are influenced by factors such as the slope of the surf zone, sediment 
grain size, tidal range, wave energy and direction, and sediment sup-
ply (Price et al., 2014; Dubarbier et al., 2015; Splinter et al., 2018).
However, their nearshore topography is complex, and their position 
and variability are important for both short- and long-term beach 
stability (Lippmann and Holman, 1990). This knowledge also informs 
beach safety, such as the prediction of rip currents, and is relevant for 
navigation, including boat landings for example.

Wright and Short’s (Wright and Short, 1984) classification scheme, 
widely used for single-bar coasts, identifies six beach states based
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on the morphology of sandbars. These states range from the 2D dis-
sipative state under high-energy conditions (D) to 3D forms under 
intermediate conditions (Longitudinal Bar and Trough, LBT, Rhythmic 
Bar and Beach, RBB, and Transverse Bar and Rip, TBR, Low Tide
Terrace, LTT), and the 2D reflective state under low-energy waves 
(R). During high-energy conditions, sandbars can migrate offshore 
rapidly (O(10 m/day)), leading to beach erosion (Wright and Short, 
1984; Thornton et al., 1996). Conversely, during low-energy periods, 
bars might migrate onshore slowly (O(1 m/day)), resulting in beach 
accretion (Hoefel and Elgar, 2003). The dynamic sandbar migration 
are influenced by the complex impacts of climate change, including 
increased storm frequency and extreme events. These processes can 
accelerate coastal erosion while promoting the formation and offshore 
migration of sandbars, emphasizing the need for continuous mon-
itoring. However, limited data availability remains a challenge, as
long-term coastal monitoring programs based on in situ measurements 
are restricted to a few sites worldwide (e.g., Pianca et al. (2015), Turner 
et al. (2016))

To monitor the positions of submerged sandbar crests, several meth-
ods have been widely used, ranging from seasonal and annual data
collected through echo sounding (Tătui et al., 2016; Yuhi et al., 2016)
to LiDAR surveys (Aleman et al., 2017), satellite imagery (Lafon et al., 
2004), X-band radar (Ruessink et al., 2002), and video techniques (Al-
mar et al., 2010; Lippmann and Holman, 1990). In situ measure-
ments often have spatial limitations, are time-consuming and resource-
intensive, and are frequently hampered by the challenging and po-
tentially dangerous conditions of the surf zone (Almar et al., 2010).
However, the nearshore zone offers many exploitable optical signa-
tures, such as wave breaking, which manifests as bright patches of foam
on the water’s surface. Since waves generally break in shallow waters, 
areas where foam is concentrated can serve to locate submerged sand-
bars (Lippmann and Holman, 1989). However, long-exposure videos 
offer limited spatial (longitudinal) and temporal coverage, making it 
difficult to process sandbar dynamics over long distances along the 
coastline (i.e., several tens of kilometers) or across temporal scales 
ranging from a few days to several seasons.

The increasing access to Earth observation data, particularly multi-
spectral satellite imagery, presents a solution for obtaining long-term 
observations of coastal transformations over the past three decades in 
various locations worldwide. In particular, the emergence of Google 
Earth Engine (Gorelick et al., 2017) has greatly facilitated access to
the growing archive of publicly available satellite images, enabling 
global analyses extending back decades, with data now acquired at least 
every 5 days (Donchyts et al., 2016; Li et al., 2019; Luijendijk et al.,
2018; Mentaschi et al., 2018). The applications of satellite imagery 
have so far primarily been limited to shoreline detection (Gens, 2010;
Vos et al., 2019b; Almar et al., 2023) and bathymetry derived from
coastal satellites (Chybicki, 2017; Almar et al., 2021, 2022). Sandbars
are often overlooked in studies, even though they play an important 
role in coastal dynamics and beach protection, influencing erosion and
accretion processes, and thus directly related to the shoreline (Pianca
et al., 2015; Ribas et al., 2017). Few studies today still use satellite 
images to detect sandbars. To date, there are primarily manual ex-
traction approaches (Athanasiou et al., 2018; Rodríguez-Martín and
Rodríguez-Santalla, 2013), while automatic methods remain rare in the 
literature (Tătui et al., 2016; Do et al., 2021; Janušaitė et al., 2021).

Román-Rivera and Ellis (2019), in their review of coastal bar de-
tection via remote sensing, cite several earlier studies (Lee et al., 
1999; Lafon et al., 2004; Klemas, 2011; Holman and Haller, 2013;
Monteys et al., 2015), but automatic extraction remains a challenge. 
Janušaitė et al. (2021) proposes a fully automated algorithm based
on a GIS for extracting the morphological features of sandbars in 
images from PlanetScope and RapidEye satellites. Aside from the work 
of Janušaitė et al. (2021) and Tătui et al. (2016), using very high-
resolution (VHR) satellite images, no other study to date addresses the 
automatic extraction of sandbar positions using publicly available HR
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satellite data such as Sentinel-2 or Landsat. The radiometric resolution 
for the VHR satellites is often limited to red, green, blue, and a NIR 
band in some cases, and thus the spectral indices for VHR satellites are
mostly a multiplication of the three visible bands (blue, green, and red), 
combined with a methodology similar to that used to estimate water 
depth (Stumpf et al., 2003).

The method proposed is not computationally expensive and can 
examine local beaches or any around the world from any laptop with 
a connection to the internet. Long-term satellite missions, such as 
Landsat and Sentinel-2, can provide over 40 years of freely accessible 
medium-resolution optical imagery, enabling in-depth coastal studies 
at different spatio-temporal scales. Thus, the objectives of our study 
are to develop a new spectral index, the SandBar Index (SBI), which 
maximizes the pixels of white foam while minimizing those of other 
environments (land, sand, and water) along perpendicular profiles to 
the coast. Furthermore, the automatic extraction process of sandbar 
positions are explained through the analysis of wave breaking pat-
terns, addressing the steps of preprocessing, detection, and extraction. 
This method is then validated using Sentinel-2 satellite images. The 
discussion section addresses the limitations of this approach and its 
transferability to other optical satellite sensors, including the Landsat 
and VEN𝜇S satellites, followed by the conclusions.

2. Study area

Located on the northern Outer Banks of North Carolina, FRF-site 
is a prominent site for coastal monitoring, recognized internationally 
for its long-term data collection. Since 1981, extensive bathymetric 
surveys have been conducted at intervals ranging from biweekly to 
monthly, covering a 1-kilometer stretch of shoreline from the surf zone 
to the dune. These surveys are performed using specialized amphibious 
vehicles such as the Coastal Research Amphibious Buggy (CRAB) or the 
Lighter Amphibious Resupply Cargo (LARC) vehicle with RTK-GPS and
an acoustic sensor (Birkemeier and Mason, 1984; Forte et al., 2018).

The research conducted at FRF-site has shown that sandbar dy-
namics are episodic (Lippmann et al., 1993), with sandbars migrating 
offshore during short, intense periods of elevated wave heights, signifi-
cantly above the annual average (Anderson et al., 2023). However, not 
every storm that meets these criteria results in a change in the sandbar 
state (Ruessink et al., 2009), reflecting the complexity of sandbar 
dynamics and the influence of storm conditions on coastal morphology. 
This site, characterized by a microtidal regime, is located on the ex-
posed eastern coastline of the United States, where coastal processes are
influenced by relatively small tidal ranges. A local coordinate system is 
defined for the facility, with the 𝑦-axis oriented alongshore with a 18.2◦
counterclockwise from true north and the origin located at the southern 
edge of the property (36.1776◦ N, 75.7497◦ W).

3. Methods

3.1. Formulation of the SandBar index (SBI)

An index is generated by combining spectral bands from a single 
acquisition. Physically, each illuminated object has a unique reflec-
tive signature across the electromagnetic spectrum. By selecting the 
appropriate combination of spectral bands, an index enhances the 
visibility of certain features, making them stand out more clearly in 
the image. This is the principle behind how indices function, as they 
help to differentiate specific objects within a scene. Spectral water 
indices are used in remote sensing to distinguish land pixels from water 
pixels. Primarily used for shoreline detection, they help monitor coastal 
changes such as beach accretion and erosion. The NDWI (Normal-
ized Difference Water Index) (Gao, 1996) and the MNDWI (Modified
NDWI) (Xu, 2006) leverage reflectance differences in near-infrared, 
green, and short-wave infrared bands to enhance water detection. The 
AWEI (Automated Water Extraction Index) and its variant AWEIsh 
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Fig. 1. (a) Sentinel-2 acquisition at FRF-site, on October 7, 2022. (b) Cross-shore coastal spectral response of the blue, green, red and NIR bands, and (c) SandBar Index (SBI). The 
shoreline is indicated by a gray dashed line. (d) Comparison of SBI estimated values (orange) with the four bands (blue, green, red, and NIR) over the four intertidal environments: 
land, sand, water, and white-water.
 

 

 

 

 

 

 

 

 
 

 

 

(AWEI for Shadow) (Feyisa et al., 2014) further improve water classifi-
cation in complex environments by reducing interference from built-up 
areas and shadows. Sandbars, which influence wave dynamics and
sediment transport, are often obscured by breaking waves, making their 
identification challenging. the foam created by these waves can serve 
as a visual marker, as waves break upon the sandbars when present. In
fact, Lippmann and Holman (1989) demonstrated that wave breaking 
patterns can reveal sandbar positions. The proposed spectral index
focuses on identifying foam pixels relative to other land cover types.

To ensure broad applicability, the index is built using the four 
spectral bands common to most multispectral satellites: blue, green, 
red, and near-infrared (NIR). This choice allows compatibility across 
sensors, as not all satellites include shortwave infrared (SWIR) bands.
For instance, while Landsat and Sentinel-2 have SWIR bands, the 
VEN𝜇S satellite, despite its high spatial resolution (4–5 m) and 2-day
revisit frequency, does not include SWIR.

The index is defined using multiple linear regression applied to
spectral data from fifty Sentinel-2 images that capture areas with active 
wave action and white-water foam. Spectral responses are recorded 
across four classified zones: ‘‘land’’, ‘‘sand’’, ‘‘water’’, and ‘‘white-
water’’. Regression analysis determines optimal coefficients that max-
imize the spectral response of white-water. The result is an optimized 
spectral index, named the SandBar Index (SBI), specifically designed 
to highlight white foam areas, and minimize other (land, sand and
water): 
SBI = 2 × (B − R) + G − 0.25 × NIR (1)

B, R, G, and NIR represent the reflectance values of the respective 
spectral bands: blue, red, green, and near-infrared. The coefficients in 
the equation have been rounded to make the index more user-friendly. 
The linear regression is not site-specific; the same coefficients can be 
used for all sites.

Fig.  1(a) presents a Sentinel-2 acquisition at FRF-site, in Duck, 
North Carolina (US), with a cross-shore profile corresponding to profile 
3 
number 229 from the local coordinate system. The cross-shore profile is 
indicated by a solid orange line, with the origin located at the profile’s 
starting point on land, marked by a red star. Fig.  1(b) shows the spectral 
responses of the four bands along this profile, also highlighting the four 
different environments: land, sand, water and white water.

In the land zone, the blue, green, and red bands display relatively 
consistent average radiance (∼850), while the NIR band shows signifi-
cantly higher radiance (∼2700). Near the sand zone, the radiance of all
bands increases due to the higher reflectance of sand. However, in the 
water zone, the NIR band is nearly zero (∼200) due to strong absorp-
tion, while the visible bands decrease but maintain moderate values 
(∼1000). This absorption, particularly in the NIR range, contributes 
to the distinct spectral behavior observed in water. In the white-water 
zone, characterized by breaking waves, the blue, green, and red bands
exhibit high radiance (∼2500), while the NIR band shows a relatively 
high radiance of about ∼1700. Notably, the blue and green bands
consistently show higher radiance in aquatic zones than the red band,
which exhibit higher values on land.

Fig.  1(c) displays the spectral response after applying the SBI index 
along the same profile demonstrating the maximization of white water 
pixels while minimizing those from other environments. Furthermore, 
the histogram in Fig.  1(d) shows that pixels corresponding to land and
sand are significantly reduced, while the response in the water zone 
is largely unaffected, as the radiance in this area was already low.
However, the white-water pixels show a clear increase, reflecting the 
SBI index’s ability to identify the breaking wave foam pixels.

Normalization is applied using the 90th percentile of the data rather 
than the absolute maximum because it can be influenced by outliers, 
such as excessive reflections or sensor errors, which do not represent 
typical conditions. By focusing on the 90th percentile, the impact of 
these outliers is minimized, ensuring that the normalization process 
accurately reflects the typical range of values in the image. The result 
is a Normalised SandBar Index (NSBI): 

NSBI =
SBI − SBI𝑚𝑖𝑛 (2)
SBI90 − SBI𝑚𝑖𝑛
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Normalization of the index is applied because satellites like Landsat,
VEN𝜇S, and Sentinel-2 exhibit similar responses to different environ-
ments along a cross-shore profile but produce different values. This 
step enhances the reliability of the spectral index across various satellite 
systems.

3.2. Sandbar position extraction

An adaptable algorithm has been developed to automatically extract 
sandbars at decameter resolution from multispectral satellite images. 
It has been tested specifically on pre-processed Sentinel-2 images to
demonstrate its capabilities. The process begins with pre-processing 
the satellite image, followed by local downloading via platforms like
Google Earth Engine and Theia. Once downloaded, the NSBI is calcu-
lated using Eqs.  (1) and (2). The analysis begins by extracting NSBI
values along all cross-shore profiles from local system coordinate. To 
support sandbar detection, the shoreline position is also determined 
using the SCoWI (Subtractive Coastal Water Index), as outlined in 
Bergsma et al. (2024). By combining the NSBI with the SCoWI, the al-
gorithm offers a more robust method for locating sandbars and provides 
insight into their position relative to the shoreline.

3.2.1. Pre-processing
Google earth engine. This section outlines the use of Google Earth 
Engine (GEE) for pre-processing and downloading images, as well as
identifying products suitable for coastal detection. GEE is an online 
geospatial computing platform developed by Google that facilitates 
large-scale analysis of satellite images and geospatial datasets (Gorelick 
et al., 2017). It provides access to a vast archive of historical and
current satellite images along with powerful data processing tools, 
supporting environmental research and natural resource management. 
The Python API of GEE is used to download satellite images, allowing 
convenient access to publicly available Top Of Atmosphere (TOA)
reflectance images from various collections, as detailed by  Chander 
et al. (2009). NASA offers images with a 30-meter resolution and a
16-day revisit frequency through Landsat 5 (TM), 7 (ETM+), 8 (OLI),
and 9 (OLI-2) satellites, which provide reliable spectral reflectance 
and geometric precision. Similarly, the European Space Agency (ESA)
offers Sentinel-2 images with a 10-meter resolution and a 5-day revisit 
period, classified as Level-1C, equivalent to Landsat’s Tier 1. While 
other satellites, such as Landsat 1 to 3, exist, their 80-meter resolution 
or discontinuous records are unsuitable for coastal studies (Vos et al., 
2019a). Thus, all Tier 1 TOA satellite images from Landsat 4, 5, 7,
and 8 collections, along with Sentinel-2 Level-1C scenes covering the 
study sites is retrieved. GEE is particularly valuable for our sandbar 
detection process, as it allows selective downloading of only the region 
of interest (ROI) from satellite images, reducing storage requirements. 
For calculating the SBI, only the blue, green, red, and near-infrared 
(NIR) spectral bands are downloaded. For Landsat 7, 8, and 9 data, the 
available panchromatic band is used to enhance the spatial resolution 
of the spectral bands from 30 meters to 15 meters through a data
fusion method based on principal component analysis (Tu et al., 2001).
This fusion allows for more detailed analysis for sandbar detection. 
In contrast, Landsat 5 (TM) lacks a panchromatic band, so bilinear 
interpolation is applied to downsample the 30-meter spectral bands
to 15 m. To further refine data quality, a cloud cover threshold is 
applied using GEE’s built-in tools. However, this threshold applies to
the entire satellite image, which may lead to rejecting images that are
cloud-free in the ROI. To address this, all images are included with 
overall cloud coverage below 90% in our analysis and apply a custom 
function developed by Graffin et al. (submitted to Communications 
Earth & Environment) to filter out images with cloud cover specifically 
within the ROI (see Fig.  2). In addition to cloud interference, another 
challenge arises from the presence of skyglint. Skyglint happens when 
the satellite’s field of view aligns with scattered sunlight from the 
atmosphere, creating bright spots or streaks that can distort the image 
data and lead to additional outliers.
4 
Theia. In addition to using Google Earth Engine (GEE) for Landsat and
Sentinel-2 images, VEN𝜇S (Vegetation and Environment monitoring on
a New Micro-Satellite), a joint mission between the French (CNES,
French Space Agency) and Israeli (ISA, Israel Space Agency) space 
agencies, is retrieved via the Theia platform, a French data distribu-
tion service developed by CNES and hosted by the CESBIO (Space 
Biosphere Agency). Since VEN𝜇S is not available on GEE, Theia is used 
to download Level-1C VEN𝜇S images, which provide a 5-meter spatial 
resolution with a 2-day revisit frequency. These high-resolution images 
are particularly suited for monitoring coastal environments. Theia’s 
platform allows easy access to VEN𝜇S data, ensuring reliable geometric 
precision and spectral reflectance, making it an important complement 
to our Landsat and Sentinel-2 datasets for coastal detection.

3.2.2. Sandbars detection and extraction
Satellite-derived position. The sandbar satellite-derived position extrac-
tion process starts with using an existing network of cross-shore profiles 
from the local coordinate system, as the objective is to validate the SBI
sandbar detection method. For each cross-shore profile, NSBI values are
extracted. Data were then interpolated to 2 m resolution oriented to 
the cross-shore direction of the local coordinate system and smoothed 
with a length scale of 30 m to remove noise associated with sensor 
and other small-scale variations. Without this step, directly analyzing 
the NSBI profiles would yield sandbar positions that appear coarse and
pixelated, directly linked to the resolution limitations of the satellite’s 
optical imagery.

To identify sandbar positions, peaks within the NSBI values are de-
tected without strict thresholds, just a prominence value is set (promi-
nence = 0.2), enabling the algorithm to filter out minor fluctuations 
and noise. This process ensures that only distinct peaks are identified.

At the FRF-site, the beach alternates between single-bar and double-
bar systems. During energetic wave conditions, the inner sandbar un-
dergoes net offshore migration (NOM) (Anderson et al., 2023), moving 
seaward. In some cases, the high-energy conditions also generate a new
sandbar closer to the shore, leading to the formation of a double-bar 
system.

Fig.  3(a) illustrates the detection across all profiles while Fig. 
3(b) shows an example of the NSBI values along profile number 274
on December 29, 2017, highlighting detected peaks corresponding to 
wave breaking positions. In wave-dominated coasts, shore breaking 
can be mistaken for sandbar-induced breaking. To remove this am-
biguity, NSBI detections within 40 m of the shoreline are excluded,
with this threshold being adjustable based on site-specific conditions. 
Shoreline positions are determined using the method developed by
Bergsma et al. (2024), specifically designed for sandy beaches. This 
approach combines a newly developed multispectral index (SCoWI)
with Otsu’s threshold refinement method to derive sub-pixel shoreline 
positions (Otsu, 1979). Fig.  3(b) also illustrates an example where a
point is excluded due to its proximity to the shoreline.

Fig.  4 demonstrates how the wave breaking detected peaks are
classified. In this case, waves are breaking on both sandbars. The 
method classifies the first breaking peak as shore break, as it occurs 
within the 40-meter buffer zone. The second peak, being closest to 
the shore, corresponds to the inner bar, while the third, the farthest 
from the shore, is attributed to the outer sandbar. When more than two 
sandbars are present, the method applies the same logic.
In situ position. The sandbar in situ positions are identified using the 
elevation anomaly, which is defined as the difference between each 
profile and the median profile over the entire Sentinel-2 period. This 
approach serves to detrend the signal, making it easier to identify 
peaks. Indeed, some sandbars do not present obvious peaks, and so 
harder to detect directly from an elevation profile. First, the data were 
interpolated to 2 m resolution oriented to the cross-shore direction of 
the local coordinate system. Once the elevation anomaly is calculated, 
the global maximum is identified—potentially multiple maxima in the 
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Fig. 2. Image filtering based on cloud coverage at FRF-site, modified after Graffin et al. (submitted to Communications Earth & Environment). The Sentinel-2 acquisition is shown 
both (a) without and (c) with cloud coverage, accompanied by the corresponding SCoWI value histograms (b) and (d). The mean peak value (solid red line) represents the average 
of occurrences at both the land-pixel mode peak and the sea-pixel mode peak. The noise value (solid black line) represents the average of all SCoWI values occurring between the 
two peaks. If the ratio between the mean peak and the noise value falls below 5, the image is discarded.

Fig. 3. (a) Sentinel-2 acquisition at FRF-site, on December 12, 2017. (b) Cross-shore coastal spectral response of the NSBI, where the cross-shore zero origin corresponds to the 
local coordinate origin at profile number 274. (c) Detection area zoom.
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Fig. 4. (a) Sentinel-2 acquisition at FRF-site on October 17, 2020. (b) Cross-shore coastal spectral response of the NSBI, where the cross-shore zero corresponds to the local 
coordinate origin at profile number 731.
Fig. 5. In situ sandbar position detection using elevation anomaly method and correction based on elevation profile for profile 274 on January 18, 2024, where the cross-shore 
ero corresponds to the NAVD88 reference elevation.
 
 

 

 

 

 

 

 

case of a double-bar system. However, the position detected on the 
elevation anomaly does not precisely correspond to the actual sandbar 
position, as there is often an offshore offset in the cross-shore direction. 
To correct for this, the detected position is mapped back onto the 
original elevation profile, and its cross-shore position is adjusted to
align with the local maximum. The Fig.  5 illustrates an example from
January 18, 2024, for profile number 274, where the offshore offset 
can exceed 40 m.

4. Validation

The validation focuses on the Sentinel-2 period, spanning nearly
ten years from July 26, 2015, to November 17, 2024, during which 
819 images were acquired. To improve the analysis, a cloud-filtering 
function developed by Graffin et al. (submitted to Communications 
Earth & Environment) is applied, reducing the number of usable images 
to 610. For validation, a dual approach is used: single-date validation 
to assess performance at specific times and time-series validation to
evaluate accuracy over time.

4.1. Single date validation

For the single-date validation, the satellite-derived sandbar position 
is compared to the in situ position within a window of ± two days. Two 
6 
examples of a double-bar system are provided in Fig.  6. Figs.  6(a) and
(c) show the performance of the automated detection method for two 
satellite dates, separated by two days, alongside in situ measurements. 
Figs.  6(b) and (d) illustrate an example of cross-shore NSBI intensity 
profile and the local bathymetry along profile 274. Clearly, there are
local maxima in the NSBI intensity distribution in the vicinity of the 
shoreline and the bar(s).

Fig.  6(b) shows wave breaking on both sandbars whereas Fig.  6(c)
shows breaking only on the inner bar. Comparing the elevation of 
the outer bar in Figs.  6(b) and 6(d), it is found at −2 m and -4 m,
respectively, suggesting that the outer bar is too deep for waves to 
break on it. For additional information, the instantaneous water level 
is shown as a horizontal dashed blue line. The reference of 0 m is 
relative to the North American Vertical Datum of 1988 (NAVD88).
To obtain the instantaneous water level, the NAVD88 reference was 
first converted to Mean Sea Level (MSL), and the instantaneous tidal
height corresponding to the time of satellite image acquisition was then 
added. The correction to convert NAVD88 to MSL is 0.128 m and the 
tidal levels, with a 1-hour temporal resolution, were obtained from the 
NOAA tide gauge station in Duck, North Carolina (ID 8651370; NOAA 
(2025)).

In the first example, where wave breaking occurs on both the inner 
and outer sandbars, the broader wave breaking area leads to less precise 
detection of the sandbar position, resulting in higher STD value for 
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Fig. 6. Sentinel-2 acquisition at FRF-site ((a) February 21, 2021 and (c) January 20, 2024). Cross-shore NSBI intensity and bathymetry, where the cross-shore zero corresponds 
to the local coordinate origin at profile number 274 ((b) and (d), respectively).
the inner bar (STD = 19.8 m). This wider dissipation zone spreads 
the intensity peak over a larger area, reducing cross-shore positional 
accuracy. Conversely, the outer bar experiences less wave breaking 
overall, but when wave breaking does occur, it tends to be more 
localized. This localized breaking improves precision, as the satellite 
image captures the event more accurately, with less spread and less 
uncertainty in the intensity peak (STD = 10.50 m). In the second 
example, where wave breaking occurs on the inner bar, the results show 
better performance (STD = 10.40 m).

Despite the overall reasonable accuracy of the sandbar position 
relative to ground-truth data, a consistent negative bias is observed, 
with satellite-derived sandbar positions generally located closer to the 
shore than in situ measurements. Such a negative bias is not uncommon 
and may be attributed to wave breaking dynamics. The sandbar crest 
7 
positions, determined using the SBI index based on the peak intensity 
of white-water foam, can differ from in situ measurements by a varying 
distance over time. This distance typically ranges around 10 meters 
and depends on factors such as offshore wave height, water level, 
and bathymetry (van Enckevort and Ruessink, 2001). Given the spatial 
resolution of 10 m, this discrepancy may not be significant in the 
context of satellite-based monitoring, but it remains an aspect that 
should be better understood and addressed in future research endeav-
ors. Additionally, this example highlights the necessity of excluding 
points detected too close (within 40 m) to the shoreline from being 
classified as sandbars, as the bathymetry clearly demonstrates that 
these points do not correspond to submerged sandbar features but only 
shore-break.
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Fig. 7. Validation plots showing the comparison between satellite-derived and in situ sandbar positions for the cross-shore profile number 914 from the local coordinate system. 
n each row, the top and bottom panels represent the sandbar position time series with (a) ±15 days window and (b) ±5 days window. R2, RMSE, STD and bias are shown in 
(c) and (d), respectively). Note that the higher positive values correspond to the seaward direction, and the cross-shore zero corresponds to the first shoreline of the time series 
etected by SCoWI.
 

 

 

 
 
 

 
 

 

 

 

 

 

 

 

 

4.2. Time series validation

To complement the spatial validation on certain dates, a temporal 
validation is done. The ±2 day window is extended to ±15 days,
increasing the validation points number. Outliers are removed using the 
Interquartile Range (IQR) method, which identifies and excludes data
points that fall significantly outside the central range of the dataset. 
Specifically, the IQR is calculated as the difference between the third 
quartile (Q3) and the first quartile (Q1), and values lying beyond 1.5
times the IQR from these quartiles are considered outliers. This step 
filter out images contaminated by cloud or skyglint that may introduce 
anomalous values, as they can have a similar spectral response to white 
foam. However, since these anomalies can appear in areas where wave 
breaking is not possible, the IQR method effectively removes them. 
Nonetheless, some outliers may still persist, but they are accounted for 
in the validation of the method.

The positions of sandbars derived from in situ data are compared 
with those obtained from satellite observations. Fig.  7(a) illustrates an
example of results along profile number 914. The elevation anomaly
highlights the emergence of new sandbars near the shore, followed
by their migration into deeper waters. This movement often occurs in 
the form of episodic jumps, where the bars shift to greater distances 
from the shore. However, this migration pattern exhibits considerable 
temporal variability, with different bars emerging and disappearing at
varying times (Anderson et al., 2023). In situ sandbar positions are
shown in black, while those derived from satellite data are represented 
in red. The correlation of these 103 points shows a bias centered at 0,
indicating that the RMSE is equal to the STD of 23.11 m.

In Fig.  7(b), the effect of reducing the window to ±5 days is also 
examined. This naturally results in fewer points for validation but 
improves precision, with the STD decreasing from 23.11 m to 18.27 m.
Ultimately, regardless of the window size, the precision remains within 
approximately two Sentinel-2 pixels (i.e., 20 m).

Fig.  8 illustrates a map showing the position of the local beach 
profiles, color-coded based on their R2, STD, and the number of val-
idation points. These metrics are derived by comparing satellite-based 
sandbar positions with in situ sandbar position data. The R2 value,
which averages 0.8 across the profiles, indicates a strong correlation 
between the two datasets, reflecting the reliability of the satellite data
for sandbar position estimation. The average bias for the remaining 29
 

8 
profiles is centered around zero. This is why only the STD is presented 
in Fig.  8, as it effectively captures the degree of error dispersion. With 
an STD equal to 23.19 m, the data are both precise and accurate.

The spatial variability observed in Fig.  8 is interesting, though not 
immediately obvious. The pier acts as a physical barrier disrupting 
seasonal alongshore sediment transport, primarily from the south in 
the summer and from the north in winter. This disruption leads to 
a seasonal accumulation of sediments on the upstream side of the 
pier (Pianca et al., 2015). The influence of the pier dominates the local 
shoreline behavior, creating a balance between sediment transport and
accumulation (Miller and Dean, 2007).

Beyond these spatial patterns, the quality of the sandbar detection 
appears to be related to the number of validation points. As seen in 
the validation map, profiles with a higher number of points tend to 
exhibit higher R2 scores and lower STD values, indicating both greater 
accuracy and precision.

The validation time series uses windows of ±15 days, meaning the 
sandbars could have experienced significant displacement within this 
period. Also, it is important to highlight that Sentinel-2 has a spatial res-
olution of 10 m, and while the detection method achieves a positional 
accuracy of approximately 20 m, this remains within an acceptable 
range considering the spatial scale of the feature and the rapid changes 
it can undergo (O(10 m/day) under high-energy conditions (Wright and
Short, 1984; Thornton et al., 1996) and O(1 m/day) during low-energy 
periods (Hoefel and Elgar, 2003)). By reducing the time window to 
5 days, positional accuracy improves because shorter intervals better 
capture sandbar positions before significant displacement occurs.

5. Discussion

5.1. Cross-satellite applicability and transferability

While Sentinel-2 now provides a decade of data, its time series
remains too short to assess long-term coastal changes. To extend 
observations over longer periods, other satellites, such as Landsat with 
over 40 years of archives, can be used. Since the SBI was designed 
to work with any satellite carrying visible (B, G, R) and NIR bands,
its application remains possible across different satellite missions. 
Like most optical satellites, Sentinel-2, Landsat, and VEN𝜇S are sun-
synchronous. Over the FRF-site area, they typically pass between 15:10
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Fig. 8. FRF-site maps showing the 29 validation profile and the validation scores (R2, STD, and validation points number N) between the time series of cross-shore sandbar position 
xtracted via SBI method and the in situ measurements. On each subplot, the histogram shows the distribution of validation scores.
Fig. 9. Showcases the transferability of the SBI index across satellites: (a) Landsat 5, (b) Landsat 7, and (c) VEN𝜇S. The orange bars in the histograms display the positional error 
between the extracted and measured sandbar positions, while the green bars indicate the positional error between the sandbar position extracted from Sentinel-2 and the other 
atellite.
 

 
 

 
 

and 16:10 GMT, with slight variations depending on the specific 
satellite and orbital cycle. VEN𝜇S offers a 2-day revisit, enabling high-
frequency coastal monitoring, unlike Sentinel-2 and Landsat. However, 
its coverage is limited to specific sites and requires a request to CNES.
At the FRF-site, it operated from April 4, 2019, to October 17, 2020.

To evaluate the SBI index across different sensors, it is applied to
VEN𝜇S and Landsat, with the resulting sandbar positions compared to
those from Sentinel-2 and the closest in situ data. In some instances, 
9 
satellites pass over the same area just minutes apart (Fig.  9b-c), allow-
ing for direct comparison. For Landsat 5 (1984–2013), no Sentinel-2 
images are available, so validation relies solely on in situ data (Fig.  9a). 
Since Landsat 7, 8, and 9 share the same resolution, only a Landsat 7
example is presented. After the Scan Line Corrector (SLC) failure in May
2003, Landsat 7 images exhibit alternating black bands due to data loss, 
but sandbar detection remains possible (Fig.  9b), explaining the gaps 
in L7-derived positions.
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Fig.  9(b) shows sandbar detection using Landsat 7 and Sentinel-2 
on December 29, 2017, with only a few minutes difference (15:43 and
15:46 GMT). The comparison reveals a seaward bias of 5.2 m and an
STD of 12.7 m, with Sentinel-2 positions slightly farther offshore than 
Landsat 7. When compared to in situ data (December 11, 2017), the 
Landsat 7 positions show a bias of −6.6 m (towards shore) and an STD 
of 10.2 m. While the calm wave conditions between December 11 and
29, 2017 (𝐻𝑠 = 0.61 m, 𝑇𝑝 = 7.2 s, 𝑇𝑚 = 7.0 s, data from the 8 m depth 
wave gauge) might not entirely account for the observed discrepancy, 
the STD values suggest that the sandbar detection remains consistent. 
Fig.  9(c) compares the sandbar positions derived from VEN𝜇S and
Sentinel-2 on December 24, 2019 (15:59 and 15:53 GMT). The analysis 
reveals a bias of −19.6 m (towards shore) and an STD of 13.9 m,
suggesting that VEN𝜇S positions are generally closer to the shore, 
possibly due to its higher resolution (5 m), which might make it more 
sensitive to variations in sandbar positions. When compared to in situ 
data (January 10, 2020), the difference shows a bias of −4.1 m (towards 
shore) and an STD of 18.2 m. The calm to moderate wave conditions 
(𝐻𝑠 = 0.68 m, 𝑇𝑝 = 9.7 s, 𝑇𝑚 = 8.2 s) might also not entirely account 
for the observed discrepancy. Finally, Fig.  9(a) presents the difference 
between Landsat 5 (April 24, 1999) and in situ data (April 19, 1999).
The analysis shows a bias of −8 m (towards shore) and an STD of 
27.4 m. Despite the relatively calm wave conditions (𝐻𝑠 = 0.59 m, 𝑇𝑝
= 5 s), the higher STD compared to the other satellites is likely due to
the lower resolution of Landsat 5 (30 m, resharpened to 15 m).

Validation on Landsat 5 and 7 yields STD values of 27 m and
12 m, respectively, which are reasonable considering their lower reso-
lution compared to Sentinel-2, while VEN𝜇S, with its higher resolution,
achieves an STD of 18 m. The obtained STD values fall within the 
expected margins, demonstrating the reliability of the sandbar position 
detection method across different satellite sensors (Lippmann and Hol-
man, 1989). Additionally, by leveraging multiple satellites, it may be 
possible to improve temporal resolution, offering a more continuous 
and detailed approach to coastal monitoring.

5.2. Limitations

A major limitation of using satellites for sandbar detection is their 
inability to capture time-averaged images, unlike video techniques. 
While sandbar detection has traditionally relied on temporally av-
eraged images from coastal video systems (Lippmann and Holman,
1989; Aarninkhof and Ruessink, 2004), satellites only provide snap-
shots during wave breaking. This lack of smoothing out individual
waves introduces uncertainty, particularly in dynamic environments 
where sandbar positions can change rapidly over short time scales.

Another key limitation is the absence of wave breaking in calm
wave conditions. Without wave breaking over the sandbars, the wave 
breaking SBI index becomes ineffective, potentially obscuring crucial 
morphological details of the bars and their interaction with the shore-
line. However, alternative methods, such as analyzing water color, may 
offer useful insights into sandbar positions, even in the absence of 
breaking waves (Stumpf et al., 2003).

An additional consideration in this context is the exclusion of sand-
bar detections within 40 meters of the shoreline to mitigate the ambigu-
ity between shore break and sandbar-induced breaking. This threshold 
was chosen based on site-specific conditions at FRF-site, a microti-
dal beach, where this distance is appropriate considering the 10 m
resolution of the satellite images. However, for larger, macrotidal envi-
ronments where sandbars are often closer to the shore, this threshold 
may not be suitable. The 40 m limit is adjustable and could be modified
depending on the study site’s characteristics. For studies focusing on
net offshore migration (NOM) for example, which require the identifi-
cation of sandbars near the shoreline, this parameter may need further 
adjustment to ensure the accurate detection of sandbar dynamics.

Furthermore, for this validation, the local coordinate system is used, 
where profile are spaced approximately 50 meters apart. Increasing 
10 
the number of profiles improves the detection method. However, the 
distance between profiles is constrained by the image resolution, as 
spacing smaller than the resolution would not provide additional value. 
A finer longshore spacing between profiles will captures the longshore 
variability of the sandbar. Future analyses could explore transitions 
between the different beach states as classified by  Wright and Short 
(1984).

Conclusions

This paper demonstrates the potential of the SBI spectral index, 
specifically designed to maximize wave breaking pixels, for automati-
cally extracting instantaneous sandbar positions from satellite data. By
relying solely on physical reflectance, the method is independent of ex-
ternal data, stable across a range of coastal environments, and requires 
no prior training. Using freely available satellite imagery, specifically 
Sentinel-2, we validate 10-years sandbar dynamics at the FRF-site in 
Duck, North Carolina (US). The method shows no systematic bias in 
sandbar position validation over time, with an accuracy of 23.2 m
(STD), approximately two Sentinel-2 pixels, and a strong correlation 
(R2 = 0.8), which is consistent with the dynamic nature of sandbars 
influenced by hydrodynamic wave processes. While this study primarily 
focuses on Sentinel-2, the method is adaptable to other satellites such 
as Landsat and VEN𝜇S, offering promise for the rapid and stable mon-
itoring of coastal dynamics from the 1980s to the present. However, 
the effectiveness of this method depends on image quality (spatial 
and radiometric resolution) and environmental conditions (e.g., water 
transparency, skyglint, cloud cover, small breaking waves). As satellite 
resolution improves, this method can be extended to a broader range of 
coastal sites and temporal scales, yielding valuable insights into long-
term coastal dynamics. Additionally, incorporating water color analysis 
could refine sandbar detection, particularly in non-breaking conditions.
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