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Abstract CoupledModel Intercomparison Project phases 5 and 6 (CMIP5/6) projections display substantial
inter‐model diversity in the future tropical Indian Ocean warming magnitude and spatial pattern. Here, we
investigate the underlying physical mechanisms in 46 CMIP5/6 models using an upper‐ocean heat budget
framework that separates surface net air‐sea flux changes into forcing and feedback components. The multi‐
model mean (MMM) basin‐averaged warming is primarily driven by reduced evaporative cooling due to weaker
surface winds related to reduction of both summer and winter monsoonal circulations and increased near‐
surface relative humidity, with inter‐model variations in these parameters controlling warming diversity. The
MMM warming pattern features a weakening equatorial gradient, resembling a positive Indian Ocean Dipole
phase, and a strengthening interhemispheric gradient, both of which also dominate inter‐model spread. Ocean
dynamics modulate the amplitude of the MMM IOD‐like pattern and its inter‐model variability through the
Bjerknes feedback, which couples the zonal equatorial SST gradient, equatorial winds, and thermocline slope.
Interactions with the tropical Pacific may further contribute to this response. Meanwhile, stronger
climatological winds enhance evaporative cooling in the Southern Hemisphere, reducing warming there, and
strengthening theMMM interhemispheric SST gradient. The diversity in this interhemispheric gradient is linked
to variations in cross‐equatorial wind changes and their impact on latent heat flux forcing. This interhemispheric
gradient strengthening is part of a broader pan‐tropical pattern, with similar features in the Pacific and Atlantic
Oceans. These findings clarify the relative roles of thermodynamic processes and ocean dynamics in shaping
future tropical Indian Ocean warming.

Plain Language Summary The Tropical Indian Ocean is expected to warm further in the future, but
the amount and pattern of warming vary widely across climate models. These differences matter because they
shape regional weather, climate, and marine ecosystems in different ways. This study examines what drives
Tropical Indian Ocean warming and why model projections differ. We find that weakening surface winds and
higher near‐surface humidity reduce evaporative cooling, allowing more heat to build up and driving overall
warming. The warming pattern has two key features: (a) a decreasing temperature difference between the
warmer eastern and cooler western equatorial Indian Ocean and (b) an increasing temperature difference
between the warmer Northern and cooler Southern Indian Ocean. The east‐west pattern is shaped by ocean‐
atmosphere interactions that control how heat moves within the ocean, with possible influences from changes in
the Pacific Ocean. The north‐south contrast, also observed in the Pacific and Atlantic, occurs because stronger
winds in the Southern Hemisphere increase evaporation, limiting warming there and enhancing the temperature
contrast with the Northern Hemisphere. These findings improve our understanding of regional climate change
and help refine future climate projections.

1. Introduction
The Tropical Indian Ocean (TIO) has been steadily warming since the 1950s, primarily driven by anthropogenic
forcing (Masson‐Delmotte et al., 2021). Climate models from the Coupled Model Intercomparison Project
(CMIP) project a basin‐wide warming of nearly 3°C by the end of the 21st century under high‐emission scenarios
(Figure 1; Gopika et al., 2020). This warming has profound regional and global consequences. Regionally, it
affects atmospheric circulation (Sharma et al., 2023), monsoonal rainfall (Sandeep &Ajayamohan, 2014), natural
climate variability (Cai et al., 2014), tropical cyclones (Bell et al., 2020), and ocean productivity (Roxy
et al., 2016). Globally, it may strengthen the Atlantic overturning circulation (Hu & Fedorov, 2019) and increase
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droughts occurrence in the Sahel (Beal et al., 2020). Given these far‐reaching impacts, understanding the
mechanisms driving the TIO warming is essential for improving climate predictions and guiding adaptation
strategies.

Previous studies have identified two primary mechanisms driving the average TIOwarming (Dong & Zhou, 2014;
Dong et al., 2014; Du & Xie, 2008; Zhang & Li, 2014). First, increased downward longwave radiation, amplified
by the water vapor feedback, plays a key role: a warmer atmosphere holds more water vapor, which is a
greenhouse gas that amplifies the warming. Second, reduced evaporative cooling due to basin‐wide surface wind
reduction further amplifies this warming. These warming mechanisms are partially offset by a negative feedback.
In which, increased evaporation due to warmer sea surface temperatures (SSTs) damps the warming through
increased latent heat uptake. However, the relative importance of these drivers varies across studies, reflecting
differences in methods and data sets.

The TIO warming is not spatially uniform, and this uneven warming pattern influences regional rainfall and
atmospheric circulation. Regions that warm more than the tropical average experience reduced stability and
increased rainfall, a phenomenon known as the “warmer‐get‐wetter” paradigm (Xie, 2020; Xie et al., 2010). This,
in turn, affects atmospheric and oceanic circulation patterns, as well as the distribution of tropical cyclones.
Relative Sea Surface Temperature (RSST), defined as local SST minus its tropical average, is a useful metric for
assessing atmospheric stability changes (e.g., Izumo et al., 2020; Johnson & Xie, 2010). CMIP models project an
enhanced warming in the western equatorial TIO and Arabian Sea, with comparatively weaker warming in the
eastern equatorial TIO (Figures 1a and 1b; Cai et al., 2014; Sharma et al., 2023). This pattern, resembling the
positive phase of the Indian Ocean Dipole (IOD; e.g. Saji et al., 1999), is often referred to as “IOD‐like” (e.g.,
Zheng et al., 2013). It is characterized by a reduced equatorial SST gradient and a weakening of the TIO zonal
atmospheric circulation (e.g., Held & Soden, 2006). Alongside this zonal asymmetry, warming is generally
stronger in the northern TIO (Figures 1a and 1b), intensifying the interhemispheric SST gradient. This enhanced
gradient shifts the Intertropical Convergence Zone northward (Byrne et al., 2018) and increases summer
monsoonal rainfall (B. Wang et al., 2020).

The warming pattern in the tropical Indian Ocean results from a complex interplay of flux adjustments and ocean
dynamics (Liu et al., 2015; Xie et al., 2010). A key process is the positive Bjerknes feedback (Bjerknes, 1969),
whereby ocean dynamics amplify an IOD‐like pattern by reducing the equatorial rainfall gradient, inducing
easterly winds, and steepening the thermocline slope (e.g., Liu et al., 2015; Zhang & Li, 2014). Yet, the
mechanisms that initiate this pattern remain debated. One hypothesis suggests that mean tropical warming
weakens theWalker circulation, thereby generating equatorial easterly anomalies that trigger the IOD‐like pattern
via ocean dynamics (Ma et al., 2012; Sharma et al., 2023). Another proposes that the ocean dynamical thermostat
mechanism (Clement et al., 1996) brings cooler subsurface waters to the surface in the eastern equatorial Indian
Ocean during fall, limiting regional warming (Liu et al., 2015; Xie et al., 2010). Additionally, a stronger negative
evaporative feedback over the warmer eastern region compared to the cooler west has also been advanced as a
trigger (e.g., Liu et al., 2015; Zhang & Li, 2014). Overall, consensus on the relative roles of these mechanisms
remains elusive.

Even less is understood about the mechanisms driving TIO interhemispheric SST gradient changes. Some studies
attribute these changes to latent heat forcing, because the stronger southern hemisphere winds lead to more
evaporative cooling, an effect possibly reinforced by the wind‐evaporation‐SST feedback (Xie et al., 2010).
Others highlight the role of low‐cloud cover and associated shortwave radiation changes, particularly in the
southern TIO (Sharma et al., 2023).

Previous studies of the TIO warming mechanisms have typically focused on either individual models (e.g., Dong
et al., 2014; Liu et al., 2015; Sharma et al., 2023; Xie et al., 2010) or the Multi‐Model Mean (hereafter, MMM)
response (e.g., Du & Xie, 2008; Zhang & Li, 2014). However, there is substantial inter‐model diversity in CMIP
projections. Under high‐emission scenarios, 2100 basin‐averaged warming ranges from +1.7°C to +4.2°C
(Figure 1b). Similarly, projections for changes in equatorial zonal SST gradient (ZGRAD) range between 0°C and
− 1°C, while interhemispheric SST gradient (MGRAD) changes range from 0°C to +0.5°C (Figure 1b). Un-
derstanding the drivers behind these SST pattern variations is crucial for narrowing uncertainties in projected
rainfall (Long et al., 2016; Ma & Xie, 2013). Although studies have examined the causes of inter‐model diversity
in SST patterns over regions such as the tropical Pacific (Ying &Huang, 2016a, 2016b), tropical Atlantic (Long &
Xie, 2015) and Arctic (Yim et al., 2017), similar analyses for the TIO remain limited.
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Here, we investigate both the MMM and CMIP5 and CMIP6 inter‐model diversity. Beyond exploring the drivers
of the IOD‐like warming pattern and its variability across models, we provide detailed analyses of an underex-
plored yet prominent TIO warming pattern: the strengthening of the interhemispheric SST gradient. Central to our
approach is a heat budget framework inspired by Zhang and Li (2014, hereafter ZL14), which decomposes surface
net air‐sea flux changes into feedback (SST‐dependent) and forcing (SST‐independent) components, allowing a
clear distinction between their respective influence. We further advance this framework by explicitly separating
downward longwave flux into forcing and feedback components, addressing a limitation in ZL14, which excluded
feedback contributions from downward longwave flux. Recent research (Pendergrass et al., 2018; Shakespeare &
Roderick, 2022; Vargas Zeppetello et al., 2019) demonstrates that most of the downward longwave warming
arises from feedback processes. Incorporating this component challenges previous findings that overemphasized
the role of downward longwave forcing (Dong et al., 2014; ZL14). Additionally, this work extends the ZL14
methodology by deriving equations for both SST changes and RSST changes, enabling a detailed analysis of
spatial variations in TIO warming. These methodological advancements collectively provide novel insights into
the magnitude and spatial structure of TIO warming and its inter‐model diversity.

This paper is organized as follows. Section 2 describes the data sets and processing methods. Section 3 reviews
the ZL14 method, extends it to incorporate downwelling longwave flux feedback, and derives equations for the
basin‐average SST and RSST changes. Section 4 investigates the mechanisms behind the TIO basin‐average
warming, while Section 5 explores the factors shaping the TIO warming spatial pattern. Section 6 summarizes
the findings and discusses their implications in the context of previous studies.

2. Data Sets and Processing
We analyze outputs from 46 CMIP simulations (Table 1), comprising 18models from CMIP5 (Taylor et al., 2012)
and 28 models from CMIP6 (Eyring et al., 2016). The model selection was based on the availability of key
variables at a monthly frequency, including SST, surface heat flux components, near‐surface wind speed, surface
air temperature and humidity, cloud fraction, wind stress, precipitation, and sea surface height. Future projections
were analyzed using unmitigated emission scenarios with an 8.5Wm− 2 radiative forcing: the RCP8.5 scenario for
CMIP5 and SSP585 for CMIP6. For models with multiple ensemble members, only the first ensemble member
was used.

All simulations were interpolated to a 1° × 1° grid over the TIO region (30°− 120°E, 20°S–30°N). Because some
models were already on standardized grids, they exhibited discontinuities in latent and sensible heat fluxes near
coastlines. To address this, an ad‐hoc coastal mask was applied to all variables and models, resulting in the

Figure 1. CMIP5/6 projected changes in the Tropical Indian Ocean (TIO). (a) Multi‐Model Mean (MMM) projected changes for Sea Surface Temperature (SST, °C,
shaded), precipitation (mm·day− 1, contours) and wind stress (N·m− 2, vectors). (b) Distribution of the projected changes in basin‐averaged SST, zonal equatorial SST
gradient (ZGRAD) and meridional inter‐hemispheric SST gradient (MGRAD) across models. Horizontal lines indicate the MMM, the box edges indicate the lower and
upper quartiles, and whiskers are the 10th and 90th percentiles. ZGRAD is calculated as SST changes averaged over the eastern TIO (85°–105°E; 13°S–3°N) minus
those over the western TIO (40°–65°E, 10°S–15°N), displayed as blue boxes on panel (a). MGRAD is calculated as SST anomalies averaged over the northern TIO
(30°− 120°E; 0°–25°N) minus those averaged over the southern IO (30°− 120°E; 20°–10°S), displayed as red boxes on panel (a).
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exclusion of some coastal data points. The “present‐day” period is defined as the 1958–1977 average, while the
“future” period is defined as the 2068–2087 average. Future changes are denoted as Δ, representing the future
minus present‐day averages. These periods were chosen to align with a related study using an Ocean General
Circulation Model (Lengaigne et al., 2025), though our results remain consistent when considering more
commonly used periods (e.g., 1900–1920 and 2080–2099). The MMM is the average across the 46 available
CMIP5 and CMIP6 simulations.

Surface fluxes are considered positive when downward (i.e., when they contribute to ocean warming). Quantities
averaged over the TIO (30°E− 120°E, 20°S–30°N) are denoted with an overbar, while deviations from these
average TIO quantities are noted with a prime and referred to as “relative.” RSST is used as a proxy for atmo-
spheric vertical stability and to highlight changes in the SST spatial pattern (e.g., Xie et al., 2010). While RSST is
conventionally defined as the local SSTminus the tropical mean (20°N–20°S), subtracting the TIO (30°E− 120°E,
20°S–30°N) mean yields nearly identical results.

Table 1
CMIP5 and 6 Models Used in This Study

CMIP5 models CMIP6 models

CSIRO–BOM.ACCESS1‐0 CSIRO‐ARCCSS.ACCESS‐CM2

CSIRO–BOM.ACCESS1‐3 CSIRO. ACCESS‐ESM1‐5

BCC.bcc‐csm1‐1 CCCma.CanESM5

BCC.bcc‐csm1‐1‐m CAS.CAS‐ESM2‐0

CCCma.CanESM2 NCAR.CESM2‐WACCM

CNRM–CERFACS.CNRM‐CM5 NCAR.CESM2

CSIRO–QCCCE.CSIRO‐Mk3‐6‐0 CMCC.CMCC‐CM2‐SR5

NOAA‐GFDL.GFDL‐CM3 CMCC.CMCC‐ESM2

NOAA‐GFDL.GFDL‐ESM2G CNRM‐CERFAcS.CNRM‐CM6‐1

NOAA‐GFDL.GFDL‐ESM2M CNRM‐CERFAcS.CNRM‐ESM2‐1

INM.inm‐cm4 EC‐Earth‐Consortium.E3SM.E3SM1‐1

IPSL.IPSL‐CM5A‐LR EC‐Earth‐Consortium.EC‐Earth3

IPSL.IPSL‐CM5A‐MR EC‐Earth‐Consortium.EC‐Earth3‐CC

IPSL.IPSL‐CM5B‐LR EC‐Earth‐Consortium.EC‐Earth3‐Veg

MIROC.MIROC‐ESM EC‐Earth‐Consortium.EC‐Earth3‐Veg‐LR

MIROC.MIROC‐ESM‐CHEM CAS.FGOALS‐g3

MIROC.MIROC5 NOAA‐GFDL.GFDL‐CM4

MRI.MRI‐CGCM3 NOAA‐GFDL.GFDL‐ESM4

IPSL.IPSL‐CM6A‐LR

MIROC.MIROC‐ES2L

MIROC.MIROC6

MPI‐M.MPI‐ESM1‐2‐HR

MPI‐M.MPI‐ESM1‐2‐LR

MRI.MRI‐ESM2‐0

NCC.NorESM2‐LM

NCC.NorESM2‐MM

AS‐RCEC.TaiESM1

MOHC.UKESM1‐0‐LL

Note. List of the 46 models (18 CMIP5 and 28 CMIP6) used in this study, with the institution name indicated first, followed
by a dot and the model name.
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3. Simple Equation for the SST Change
This section presents the simple heat budget framework for diagnosing the mechanisms driving future SST and
RSST changes. Section 3.1 reviews the original formulation by ZL14, while Section 3.2 details our refinements,
primarily incorporating a downward longwave flux feedback. Section 3.3 derives equations for basin‐averaged
SST (ΔT) and RSST (ΔTʹ) changes and explains the decomposition of the inter‐model variances in these two
quantities.

3.1. ZL14 Original Equation

ZL14 employed a surface budget approach based on Xie et al. (2010) to derive their diagnostic equation for
projected SST changes ΔT, allowing the identification of key processes controlling SST change. This approach
assumes a balance between changes in net surface flux (ΔQ) and oceanic fluxes into the mixed layer (hereafter
referred to as ocean processes, ΔO), which includes lateral and vertical advection, lateral and vertical mixing, and
entrainment. ΔO is expressed as equivalent heat fluxes (in W·m− 2) and diagnosed as ΔO = − ΔQ. ΔQ is further
decomposed into two components: ΔQFor − αΔT, where αΔT represents the feedback component, which
explicitly depends on local SST changes, and ΔQFor the forced component, which is not explicitly dependent on
local SST changes (e.g., wind‐driven latent heat flux change). ΔQ is then broken into its net shortwave (ΔSW),
upward and downward longwave (ΔLWU and ΔLWD), latent (ΔLH), and sensible (ΔSH) heat fluxes. ZL14
expressed the SST change equation as:

ΔT =
ΔSW + ΔLWD + ΔLHFor + ΔSHFor + ΔO

4σ[T]3 + γ1[LH] + γ2[V]
(1)

In this formulation, ZL14 treated the ΔSW and ΔLWD entirely as forcing components, with no feedback term.
The ΔLWU was treated entirely as a feedback, with feedback coefficient αLWU = 4σ[T]3, where σ is the Stefan–
Boltzmann constant, and brackets [ ] indicate present‐day values. The ΔLH feedback coefficient is
αLH = γ1[LH], where γ1 = 0.06 K

− 1 is obtained from the Clausius Clapeyron relation and the ΔSH feedback
coefficient is αSH = γ2[V], where V is surface wind speed (see ZL14 for details). The total feedback coefficient
used in ZL14 is therefore:

αZL14 = 4σ[T]3 + γ1[LH] + γ2[V] (2)

This framework allowed ZL14 to diagnose SST changes based on a balance between surface heat flux forcing,
feedback processes, and oceanic heat adjustments.

Our sign convention is that a negative feedback (i.e., when warming induces heat fluxes out of the ocean) cor-
responds to a positive α value. The TIO average value of the total feedback is 15.1 W·m− 2·°C− 1. αSH is negligible
(not shown, ZL14). αLH is the largest contributor, with a TIO‐averaged value of 8.9 W·m− 2·°C− 1 (Figure 2c).
αLWU (Figure 2b) has a TIO‐averaged value of 6.2 W·m− 2·°C− 1 and is relatively spatially uniform across the
region (Figure 2b). The spatial structure of αZL14 is primarily shaped by the distribution of αLH (Figures 2a and
2c). αLH reflects the effects of the Clausius‐Clapeyron relation, which drives evaporative cooling in response to
warming. Its spatial distribution is influenced by present‐day SST and wind patterns, with strongest feedback
values occurring in regions of high SST and/or strong winds (not shown).

3.2. Our Refinement to ZL14

In this subsection, we present our refinements to the ZL14 framework. First, we excluded the SH feedback term
for two reasons: (a) its contribution is negligible and has minimal impact on the results (not shown) and (b) the
linearization of the LH flux assumes that the air‐sea temperature difference remains unchanged in a future climate,
implying no SST‐driven change in SH fluxes. The main refinement we introduce is the inclusion of the downward
longwave radiation feedback, following the analytical approach of Shakespeare and Roderick (2022, hereafter
SR22). The analytical expression of its coefficient αLWD is derived using equation 16 in SR22 (see SR22 for
details). This approach assumes that the atmosphere adjusts to the warming of the high heat capacity ocean,
resulting in a warmer, moister atmosphere with a modified vertical structure that emits more downward infrared
radiation. Since changes in atmospheric temperature, humidity and vertical structure are strongly related to ΔT
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(see Figure 3 in SR22), αLWD is expressed as the sum of these three components. We do not include feedback
effects related to changes in cloud cover, as these changes are weakly correlated to SST changes across CMIP
models (see Figure 3 in SR22). The revised version of the ZL14 equation for ΔT, incorporating LWD feedback,
becomes:

ΔT =
ΔFor + ΔO

α
=
ΔSW + ΔLWFor + ΔLHFor + ΔSH + ΔO

α
(3)

Figure 2. Air‐sea heat flux feedback coefficients in CMIP5/6 models. Multi‐model mean (MMM) feedback coefficients (W·m− 2·°C− 1): (a) Total coefficient (αZL14)
from Zhang and Li (2014) (ZL14), which includes contribution from (b) latent heat flux (αLH) and (c) upward longwave radiations (αLWU). (d) Total coefficient (α) used
in the present paper, incorporating αLH, αLWU and (e) downward longwave (αLWD) coefficients. (f) Inter‐model standard deviation of α expressed as a percentage of the
MMM. Due to sign convention, feedback coefficients have opposite signs to the corresponding feedback (e.g., negative αLH and αLWU indicate positive feedbacks, while
positive αLH, αLWD indicate negative feedbacks, see Equation 1 or ZL14).
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where α = 4σ[T]3 + γ1[LH] + αLWD.

Figure 2 illustrates the impact of incorporating αLWD on the total feedback coefficient α. As previously noted, αSH
is negligible (not shown), so that α ≈ αZL14 + αLWD. The feedbacks we have discussed so far (LH, LWU) are
negative feedbacks, but the LWD feedback is positive (expressed as negative αLWD under our sign convention,
Figure 2e) with a basin‐averaged value of − 7.5 W·m− 2·°C− 1. This negative αLWD largely offsets the positive
αLWU, reducing the basin‐averaged total coefficient from 15.1 W·m− 2·°C− 1 in ZL14 to 7.6 W·m− 2·°C− 1 in our
study (Figures 2c and 2f). Similar to its upward counterpart, the LWD feedback coefficient has little spatial
variation. As a result, the spatial pattern of α is primarily determined by αLH, with a clear equatorial minimum
(Figures 2c and 2d). Overall, incorporating the downward longwave feedback reduces the total feedback coef-
ficient by half relative to ZL14 and increases the relative importance of spatial variations. Figure 2f finally
displays the inter‐model standard deviation of α, expressed as a percentage of the MMM value. α exhibits
relatively small inter‐model variability, with deviations of less than 10% of the MMM value in the equatorial
region and up to 15% near the western Arabian Sea coast and in the southeastern Indian Ocean near 15°S.

3.3. Equations for Changes in Basin‐Averaged SST and RSST

From Equation 3, we derive expressions for the basin‐averaged ΔT (ΔT) and for deviations from the basin‐mean
change (ΔTʹ). The detailed derivations are provided in Appendix A. To simplify the formulation, we approximate
the feedback coefficient α by its MMM value, <α>, justified by the relatively small inter‐model coefficient
diversity αʹ . We verified that this approximation yields comparable results to exact computations. The equation
for ΔT is:

ΔT =
ΔFor + ΔO

〈α〉
(4)

where the overbar (ˉ) designates averaging over the TIO region and angle brackets (<>) indicate the MMMvalue.
The contribution of individual flux components to ΔQfor term can be further broken down as shown in Equation 3.
The equation for ΔTʹ follows:

ΔTʹ = ΔForʹ + ΔOʹ − αʹΔT
〈α〉

(5)

In this equation, αʹΔT represents the contribution of the spatial inhomogeneity of the total feedback coefficient to
ΔTʹ (e.g., the fact that reduced negative feedback from evaporative cooling in climatologically colder regions
results in less warming, as discussed in e.g. Xie et al., 2010).

To quantify the contribution of each process to the inter‐model diversity of ΔT or ΔTʹ , we express the variance of
these quantities as the sum of the covariances between each term on the right‐hand side of Equations 4 and 5 with
ΔT and ΔTʹ , respectively. The detailed derivation of this variance decomposition is provided in Appendix B.
As with the original ZL14 equation (not shown), Equation 4 accurately reproduces the ΔT in CMIP5/6 models,
with the reconstructed MMM differing by less than 1% from the actual CMIP5/6 value and an inter‐model
correlation of 0.92 (Figure 3a). Similarly, the <ΔTʹ> pattern reconstructed from Equation 5 matches the
CMIP5/6 MMM, with a pattern correlation of 0.99 (Figure 3b; comparing contours and shading). Figures 3c and
3d further indicates that Equation 5 accurately captures the inter‐model diversity in ΔTʹ , with correlations of 0.97
and 0.95 for the zonal (ZGRAD) and meridional (MGRAD) SST gradients, respectively.

4. Basin‐Average Warming

In this section, we will use Equation 4 to explore the drivers of the CMIP5/6 TIO‐average warming (ΔT). We first
discuss the MMM (Section 4.1) and then investigate the inter‐model spread (Section 4.2).
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4.1. Drivers of MMM Basin‐Average Warming

The MMM TIO‐average warming, <ΔT>, is slightly below 3°C and primarily driven by the SST‐independent
part of the surface net heat flux change, <ΔFor>. The ocean dynamics contribution <ΔO> is negligible
(Figure 4a). The net surface flux forcing is further decomposed into its four components. ZL14 identified
downwelling longwave radiation forcing, <ΔLWDFor>, as the dominant contributor to the TIO‐averaged
warming. In ZL14, the entire TIO‐average MMM LWD change (28.5 Wm− 2) was treated as a forcing term. In
our study, however, a large fraction of this change (21.7 Wm− 2) is accounted for by the downwelling longwave
radiative feedback term, − αLWD <ΔT>, reducing the downwelling longwave radiation forcing by 76% compared
to ZL14. As a result, the contribution of downward longwave forcing to the MMM TIO‐averaged SST change is
much smaller in our study than in ZL14 (Figure 4a). The dominant contributor is the basin‐averaged latent heat
flux forcing, <ΔLHFor>, accounting for ∼78% of the total warming. <ΔLWFor> contribute to 30%, <ΔSH> 9%
and <ΔSW> − 9% of ΔT. The TIO average warming and its contributors do not vary across seasons (not shown).

Figure 3. Comparison between reconstructed versus CMIP5/6 projected basin‐averaged warming (ΔT) and Relative SST (RSST, ΔTʹ) patterns. (a) Scatterplot of ΔT
reconstructed using Equation 4 versus Coupled Model Intercomparison Project (CMIP) projected values. (b) <ΔTʹ> from CMIP data set (shading) and reconstructed
values using Equation 5 (contours). Scatterplots of the reconstructed versus CMIP ΔTʹ for the (c) zonal SST gradient (ZGRAD) and (d) meridional SST gradient
(MGRAD). Blue boxes on panel (b) indicate the West Indian Ocean and East Indian Ocean regions used to compute ZGRAD, while red boxes on panel (b) indicate the
North and South regions used to compute MGRAD. Each gray dot on panels (a), (c), and (d) represents an individual model, with the black star indicating the multi‐model
mean. The gray line represents the least‐square regression slope, with the 95% confidence interval shown as a light gray shading. Correlation values are displayed in red.
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Linearizing the bulk formula indicates that latent heat flux forcing depends on wind speed and near‐surface
relative humidity changes (e.g., ZL14). Figures 5a and 5b displays changes in surface wind speed and rela-
tive humidity, respectively, with <ΔLHFor> overlaid as contours. The pattern correlation between <ΔLHFor>
and wind changes is − 0.69, while its correlation with the relative humidity change is 0.70, suggesting that
both factors contribute comparably to <ΔLHFor> MMM changes. The increase in relative humidity
(Figure 5b) leads to more saturated near‐surface air, which suppresses surface contributing positively to
<ΔLHFor>. The basin‐wide windspeed reduction leads to reduced evaporative cooling, with the largest
decrease occurring over the Arabian Sea, the southern Bay of Bengal and the southeastern TIO. As illustrated
in Figure 6, the MMM wind reduction reflects a weakening of both the summer and winter monsoonal cir-
culations, with wind changes (Figures 6b and 6e) generally opposing their present‐day climatology (Figures 6a
and 6d). Inter‐model regressions to the basin‐average latent heat forcing <ΔLHFor> (Figures 6c and 6f)
indicate that the southern hemisphere wind reduction dominates in summer, while the northern hemisphere
contributes most in winter.

Figure 4. Drivers of the basin‐averaged warming multi‐model mean (MMM) (<ΔT>) and of its inter‐model diversity (ΔT). (a) MMM basin‐averaged warming <ΔT>
from Equation 4, and contributions from changes in ocean dynamics (<ΔO>) and changes atmospheric forcing (<ΔFor>). <ΔFor> is further decomposed in forcing
contributions from longwave radiation (<ΔLWFor>), latent heat flux (<ΔLHFor>), shortwave radiation (<ΔSW>) and sensible heat flux (<ΔSH>). (b) Decomposition of
the inter‐model variance in ΔT from Equation 4 into the contributions from ΔO, ΔFor and its four components. The percentage indicated shown below each bar represent
the relative contribution of each term to ΔT.
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4.2. Drivers of Basin‐Average Warming Diversity

Figure 4b shows the decomposition of inter‐model variance in ΔT into contributions from the terms in Equation 4.
Consistent with the MMM results, the inter‐model diversity in ΔT is primarily driven by ΔFor, with a minor
opposing contribution from oceanic processes. Breaking down the atmospheric forcing further reveals that the
largest contributor is ΔLHFor (51%), followed by ΔSW (41%), with smaller contributions from ΔLWFor (17%)
and ΔSH (7%). As for the MMM, the level of warming induced by <ΔLHFor> is predominantly controlled by the
magnitude of the wind speed reductions across models (correlation of − 0.63, Figure 5c). The amplitude of this
wind reduction reflects the impact of the summer monsoon winds on evaporation in the southern hemisphere, and
that of the winter monsoon in the northern hemisphere (Figures 6e and 6f). In other words, the summer and winter
monsoon weakening intensities both contribute to the inter‐model diversity in TIO‐average warming. Relative
humidity also contributes to <ΔLHFor> but to a lesser extent (correlation of 0.49, Figure 5d). These two factors,
windspeed reduction and relative humidity increase, are largely independent (correlation of − 0.11), and their
combined effect in a bi‐linear regression model raises the correlation to 0.76. In addition, shortwave radiation
changes are related to cloud cover changes, with a correlation of − 0.64 (Figure S2 in Supporting Information S1).
Enhanced warming over the western IO leads to increased cloud fraction and decreased shortwave radiation,
whereas the eastern and southern IO experience a decrease in cloud fraction and a comparatively weaker increase
in shortwave radiation. As for the MMM, diversity in the warming magnitude and their related drivers remain
consistent across seasons (not shown).

Figure 5. Factors controlling TIO latent heat flux forcing. (a) Multi‐Model Mean (MMM) wind speed (ΔW) and (b) relative humidity (ΔRh) changes (shading), with
latent heat flux forcing changes overlaid as contours. (c) Relationship between basin‐averaged latent heat flux forcing and wind speed changes (ΔW) (m·s− 1) across
Coupled Model Intercomparison Project models. (d) Relationship between basin‐averaged latent heat flux forcing and relative humidity (ΔRh) (%). Each dot represents an
individual model, and stars indicate the MMM. The gray line represents the least‐square regression slope, with the 95% confidence interval shown as a light gray shading.
Correlation values are displayed in red.
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In summary, there are three key drivers of the inter‐model diversity in the basin‐averaged TIO warming. The
slowdown of the summer and winter monsoonal circulations and increase in near‐surface relative humidity
operate through their influence on evaporative cooling, and cloud cover changes through their impact on
shortwave heat fluxes. In contrast, the direct effect of the greenhouse gases on the net surface longwave flux
changes plays a much smaller role, underlining the importance of latent heat forcing in determining the basin‐
averaged warming amplitude.

Figure 6. Annual circulation slowdown related to seasonal monsoonal circulation reduction. Multi‐model mean latent heat forcing (shading), windspeed (contours) and
windstress (arrows). (a and b) Climatology and (c and d) changes in summer (JJAS) and winter (DJFM), respectively. (e and f) Linear regression of latent heat flux
forcing (shading), windspeed (contours) and wind stress (arrows) changes onto basin‐averaged latent heat flux forcing across Coupled Model Intercomparison Project
models for summer and winter, respectively.
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5. Warming Patterns
This section examines the mechanisms driving the TIO warming pattern in CMIP models. Section 5.1 identifies
two key features of the projected ΔTʹ pattern: changes in the zonal equatorial SST gradient (IOD‐like warming)
and the interhemispheric gradient, both of which contribute to inter‐model diversity. Section 5.2 analyses the
drivers of these patterns using Equation 5, considering both the MMM response and inter‐model diversity.

5.1. Main Features of Inter‐Model Diversity

The largest ΔTʹ inter‐model variations occur in the western TIO, particularly off the coasts of Somalia and Oman,
and in the equatorial eastern Indian Ocean and southern Indian Ocean, near Java and Sumatra (Figure 7a). In these
regions, the standard deviation represents a substantial fraction of the MMM change. To identify dominant modes
of inter‐model diversity in ΔTʹ patterns, we perform an Empirical Orthogonal Function (EOF) analysis across
CMIP models. The first EOF, accounting for 29% of the total variance, reveals a distinct zonal contrast between
the western and eastern TIO (Figure 7b). The associated inter‐model diversity in wind stress changes, obtained by
regressing wind stress anomalies on the normalized principal component, shows equatorial easterly wind
anomalies, flowing from negative to positive ΔTʹ regions (Figure 7b). This pattern closely resembles the MMM
wind changes and IOD‐like warming pattern (Figure 1a). The − 0.74 correlation with the first principal
component indicates a robust link between the IOD‐like warming amplitude and equatorial easterly wind stress
changes (Figure 7c). The second EOF mode explains 22% of the variance and displays a north‐south ΔTʹ dipole
(Figure 7d). The associated inter‐model diversity in wind stress changes features southerly wind anomalies,
flowing from negative to positive ΔTʹ regions (Figure 7d). The 0.75 correlation with the second principal
component indicates a close relationship between the interhemispheric ΔTʹ gradient strengthening and the cross‐
equatorial change (Figure 7e). Both winter and summer monsoon meridional wind stress changes contribute
equally to this relationship (Figure S3 in Supporting Information S1). The two leading modes (51% of variance) of
inter‐model diversity can be described as amplitude modulations of the (a) MMM IOD‐like warming and
associated zonal circulation slowdown and (b) interhemispheric temperature gradient and associated cross‐
equatorial circulation changes.

5.2. Drivers of the TIO Warming Pattern

Figure 8 displays the contributions of individual processes to the MMM ΔTʹ change, <ΔTʹ>, as derived from
Equation 5. <∆Oʹ> exhibits an east‐west equatorial ΔTʹ dipole that matches the projected <ΔTʹ> pattern
(Figure 8b). In contrast,<ΔForʹ> (Figure 8a), primarily driven by<ΔLH′For> and<ΔSWʹ> (Figures 8e and 8f),
largely mirrors<Oʹ> but with the opposite sign. The inhomogeneity of the feedback coefficient, αʹΔT, warm the
northern hemisphere and cool the southern hemisphere (Figure 8c). This hemispheric asymmetry is linked to a
stronger latent feedback coefficient leading to less warming in the southern hemisphere (Figures 2c and 2d).
Overall, this analysis indicates that oceanic processes drive the MMM IOD‐like warming pattern, while atmo-
spheric forcing opposes this change. Meanwhile, interhemispheric asymmetries in the feedback coefficient drive
the MMM interhemispheric SST gradient strengthening.

5.3. Drivers of the Zonal Equatorial SST Gradient Change (IOD‐Like Warming)

Given the equatorial zonal SST gradient (ZGRAD) influence on the Walker Cell, we first focus on processes
governing its change (blue frames on Figure 7b). We do not detail changes in the eastern and western TIO boxes,
as they largely mirror each other (not shown). Consistent with Figure 8, the ZGRAD reduction is predominantly
attributable to <∆Oʹ>, while <ΔForʹ> opposes this change (Figure 9a). This opposing contribution is mainly
driven by <ΔSWʹ> and to a lesser extent <ΔLH′For>. The heterogeneity of the feedback coefficient, specifically
the weaker negative evaporative feedback in the climatologically colder western Indian Ocean, also modestly
contributes to <ΔTʹ>.

Figure 9b shows the decomposition of the ZGRAD inter‐model variance into contributions from the different
terms in Equation 5. Similar to the MMM results, ZGRAD inter‐model diversity is driven by differences in ∆Oʹ ,
with the spatial heterogeneity of the feedback coefficient playing a secondary role. ΔForʹ generally opposes the
gradient change.
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Figures 10a and 10b highlights the mechanisms determining the amplitude of the IOD‐like warming across CMIP
models. Following the “warmer‐get‐wetter” paradigm, a negative ZGRAD (ΔTʹ warming in the west and cooling
in the east) intensifies convection in the west and suppresses it in the east (Figure 10a), with an inter‐model
correlation of 0.86 (Figure 10b). The Gill response to this east‐west convective dipole consists of equatorial
easterly changes (0.86 correlation). The equatorial Sverdrup balance implies a thermocline deepening in the

Figure 7. Warming pattern inter‐model diversity and its drivers. (a) ΔTʹ standard deviation (shading) across Coupled Model Intercomparison Project models and multi‐
model mean ΔTʹ (contour). (b) First and (d) second EOFmode of ΔTʹ (computed across the model space, shading) and associated wind stress signals (vectors) obtained
through linear regression to the associated normalized principal component PC1 and PC2, respectively. (c) Scatterplot of the normalized PC1 versus the average zonal wind
stress change in the Equatorial box (45°− 100°E; 5°S–5°N) displayed as a yellow frame on panel (b). (e) Scatterplot of the normalized PC2 versus the average meridional
wind stress change 40°− 105°E; 15°S–15°N domain displayed as a yellow frame on panel (d). The gray line represents the least‐square regression slope, with the 95%
confidence interval shown as a light gray shading. Correlation values are displayed in red.
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western TIO and shoaling in the east, in response to these equatorial easterly changes (correlation of 0.92). The
thermocline feedback implies enhanced cooling through oceanic processes in the east and reduced cooling in the
west (inter‐model correlation of 0.83). The 0.71 correlation between changes in the ∆Oʹ zonal gradient and ΔTʹ
closes the feedback loop. This positive feedback loop on the zonal SST gradient is characteristic of the Bjerknes
feedback.

There is also a stabilizing negative feedback from shortwave fluxes. A stronger IOD‐like pattern yields an
increased rainfall and cloudiness dipole, strengthening the shortwave flux dipole (− 0.86 correlation) and ZGRAD
damping (− 0.60 correlation). The strong correlations at each step of these feedback loops illustrate the Bjerknes
feedback pivotal role in setting the IOD‐like warming amplitude, with shortwave fluxes acting as a damping
process. While these feedback mechanisms can adjust the level of ZGRAD changes, they do not explain the initial
trigger which starts weakening ZGRAD. We will discuss potential trigger mechanisms in Section 6.

Unlike the basin‐wide warming, ZGRAD changes display a seasonal modulation (Figure S1 in Supporting In-
formation S1), with the strongest MMM IOD‐like warming and inter‐model diversity in summer and fall. During
these seasons, the thermocline is climatologically shallower in the eastern TIO, amplifying the efficiency of the
Bjerknes feedback loop (not shown).

5.4. Drivers of the Inter‐Hemispheric SST Gradient Change

We then turn our focus on the meridional SST gradient (MGRAD; red frames on Figure 7d) changes, given its
importance in shaping the Hadley Cell, Intertropical Convergence Zone, monsoonal circulation and rainfall.
Consistent with Figure 8, the MMMMGRAD strengthening is predominantly driven by the inhomogeneity of the
feedback coefficient (Figure 11a), <αʹΔT>, due to a stronger negative evaporative feedback in the southern
Indian Ocean, where winds are climatologically stronger (Figure 2). <∆Forʹ> generally opposes this change
(Figure 11a), mainly through shortwave radiation changes, because cloudiness increases in the northwestern
Indian Ocean due to the warmer get wetter mechanism.

Figure 11b shows the decomposition of the MGRAD inter‐model variance into contributions from the different
terms in Equation 5. In contrast to the MMM results, MGRAD inter‐model diversity is mainly attributable to the

Figure 8. Drivers of multi‐model mean (MMM) warming pattern. Contributions to <ΔTʹ> from (a) surface heat flux forcing (<ΔForʹ>), (b) oceanic processes
(<∆Oʹ>) and (c) heat flux feedback coefficient (αʹΔT). Contours represent <ΔTʹ> (°C) in panels (a) and (b) and αʹ (W·m− 2·K− 1) in panel (c). The surface heat flux
forcing in panel (a) is further decomposed into contributions from (d) net longwave radiation (<ΔLWʹ>), (e) latent heat flux (<ΔLHF́or>, shading), withMMMwindspeed
change (m·s− 1) overlaid as contours, and (f) shortwave radiation (<ΔSWʹ>, shading), with MMM cloud cover (%) overlaid as contours.

Earth's Future 10.1029/2025EF006112

GOPIKA ET AL. 14 of 22



differences in ∆Forʹ , with the diversity in αʹΔT playing a much weaker role, and ∆Oʹ resisting the change.
ΔLH′For is the largest contributor to the diversity in ∆Forʹ . MGRAD has a weaker seasonal modulation than
ZGRAD (not shown).

Figures 10c and 10d illustrates the mechanisms driving the strengthening of MGRAD in CMIP models. On
average, this gradient is setup by a differential interhemispheric evaporative feedback, linked to stronger
climatological winds in the southern compared to the northern TIO. This feedback results in ΔTʹ cooling in the
south and warming in the north, which induces southerly cross‐equatorial wind anomalies of varying magnitude
across CMIP models (0.73 correlation). Stronger cross‐equatorial wind anomalies amplify windspeeds in the
southern TIO (0.54 correlation), increasing latent heat cooling (− 0.74), which cools the southern hemisphere
(0.47) and strengthens the MGRAD (− 0.96). Simultaneously, stronger southerly winds decrease the southward
transport of dry continental air by the winter monsoon, increasing northern Indian Ocean relative humidity (0.50).

Figure 9. Drivers of the projected zonal equatorial ΔTʹ gradient change (ZGRAD) multi‐model mean (MMM) and of its inter‐model diversity. (a) MMM ZGRAD,
defined as the difference between ΔTʹ changes in the WIO and EIO (see regions in Figure 6a), and contributions from changes in ocean dynamics (<∆Oʹ>), feedback
coefficient inhomogeneity (<Tαʹ>) and atmospheric forcing (<ΔForʹ>). <ΔForʹ> is further decomposed into forcing contributions from longwave radiation
(<ΔLW′For>), latent heat flux (<ΔLH′For>), shortwave radiation (<ΔSWʹ >) and sensible heat flux (<ΔSH>), shown in a separate box. (b) Decomposition of the inter‐
model variance in ZGRAD into contributions from ∆Oʹ , Tαʹ , ΔForʹ , along with its four components. The percentages shown below each bar represent the relative
contribution of each term to ZGRAD.
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This higher relative humidity reduces latent heat cooling (0.64), enhancing the northern hemisphere warming
(0.60), and strengthening MGRAD (0.90). The lowest correlation above (0.47) is significant at the 99.9% level,
indicating a robust feedback loop, although less robust than that for ZGRAD.

These results indicate that the trigger of the MMM interhemispheric temperature gradient strengthening is the
stronger southern hemisphere evaporative cooling, in relation to stronger winds. A feedback loop between the
interhemispheric gradient change, winds and evaporation further controls the MGRAD inter‐model diversity.
This feedback loop involves wind changes in both hemispheres, a modulation of latent heat flux forced by
windspeed in the south and relative humidity variations in the north.

6. Summary and Discussion
The magnitude and spatial pattern of the TIO warming play a crucial role in shaping regional climate and at-
mospheric circulation changes. This study investigates the mechanisms driving TIO warming using projections
from 46 CMIP5/6 models under unmitigated emissions, applying an upper ocean heat budget framework adapted
from Zhang and Li (2014). By assessing contributions from oceanic processes, SST‐independent heat flux
forcing, and SST‐dependent heat flux feedback, we refine the understanding of TIO warming drivers. Beyond the
basin‐wide warming, our analysis highlights two distinct warming patterns that together explain half of the total
inter‐model RSST variance: the zonal equatorial “IOD‐like” warming pattern (Cai et al., 2014) and a less‐
documented modulation of the interhemispheric SST gradient.

Figure 10. Mechanisms driving the two dominant warming patterns in the TIO. (a) Schematics representation of the processes driving the IOD‐like warming pattern and
(b) the associated feedback loop. Correlations along the feedback loop indicate inter‐model relationships between variables. The sign of the feedback is indicated in the
center of the loop. (c and d) Similar schematic and feedback loop for the strengthening of the interhemispheric SST gradient.
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Zhang and Li (2014) primarily attributed warming to downward longwave, treating it entirely as a forcing. In
contrast, we apply recent analytical advances, which attribute most of the downward longwave change to a
positive feedback linked to SST‐driven atmospheric warming and moistening (Shakespeare & Roderick, 2022).
Consequently, we find a smaller role for downward longwave radiation than ZL14. Instead, our results rather
indicate that latent heat flux forcing dominates the MMM basin‐averaged warming and its inter‐model diversity,
aligning with previous studies (Dong & Zhou, 2014; Du & Xie, 2008). This reduced evaporative cooling results
from a combination of weaker surface winds and higher near‐surface relative humidity (Laîné et al., 2014). The
wind reduction is tied to weakened monsoonal circulation during both summer and winter (Parvathi et al., 2017;
Sooraj et al., 2015), while the mechanisms driving the relative humidity increase remain poorly understood
(Shakespeare & Roderick, 2024). We also find that cloud cover variations also contribute to inter‐model diversity
through their effect on shortwave radiation, consistent with studies linking global warming uncertainty to cloud
feedbacks (e.g., Zelinka et al., 2020). However, our analysis treats shortwave radiation purely as a forcing due to
the difficulty of establishing an explicit relationship between cloud cover and SST changes, underscoring the need
to better account for cloud feedback effects. These findings highlight that reducing uncertainties in monsoonal
wind changes and cloud feedback processes is critical for improving TIO warming projections in CMIP models.

Figure 11. Drivers of the projected meridional interhemispheric ΔTʹ gradient change (MGRAD) multi‐model mean and of its inter‐model diversity. Same as Figure 9
but for MGRAD instead of ZGRAD.
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One of the two major TIO warming patterns highlighted in this study is the well‐documented IOD‐like warming
(e.g., Zheng et al., 2013). We find that the Bjerknes feedback loop largely determines both its MMM amplitude
and inter‐model variability, as indicated by the dominant contribution of oceanic processes. While this positive
feedback amplifies zonal SST gradient changes, it does not fully explain the initial trigger of its weakening. A
stronger negative evaporative feedback over the warmer eastern TIO compared to the cooler western TIO con-
tributes to both the MMM zonal gradient weakening and its inter‐model diversity (Figure 9), suggesting it may
help to initiate this pattern, consistent with previous studies (e.g., Liu et al., 2015; Zhang & Li, 2014). Addi-
tionally, some studies reveal a weakening of the Walker circulation in response to spatially homogeneous
warming (Ma et al., 2012; Sharma et al., 2023; Zhang & Li, 2017), which could initiate the zonal SST gradient
weakening by altering the equatorial thermocline slope. Others point to the ocean thermostat mechanism (Liu
et al., 2015), where seasonal upwelling in the eastern equatorial Indian Ocean during boreal summer and fall
moderates warming by bringing up deeper cooler water, consistent with our analyses indicating a reduced
warming through oceanic processes in the eastern equatorial Indian Ocean (Figure 8b).

We explore another potential trigger for the weakening of the TIO zonal equatorial SST gradient: interactions
with other tropical basins (Cai et al., 2019). Figure 12a highlights that models projecting the strongest IOD‐like
warming pattern also display an enhanced warming in the western and central Pacific. This Pacific warming may
initiate the IOD‐like warming pattern by inducing easterly anomalies over the equatorial Indian Ocean, similar to
how El Niño events promote positive IOD events at interannual timescales (Cai et al., 2013).

However, this Indo‐Pacific connection may be exaggerated in models due to a cold and dry western Pacific bias
(Li, Xie, Du, & Luo, 2016), which shifts the atmospheric response westward and may artificially amplify the
IOD‐like pattern. Additionally, biases specific to the TIO, such as overestimated IOD amplitude (Li, Xie, &
Du, 2016) and an unrealistically shallow thermocline in the eastern TIO (G. Wang et al., 2021), further challenge
the robustness of this projected pattern. These biases have opposing effects: an overestimated IOD amplitude
enhances future IOD‐like warming (Li, Xie, & Du, 2016), while an underestimated thermocline slope weakens it
(G. Wang et al., 2021). These findings underscore the urgent need to reduce the impact of present‐day model
biases on TIO warming projections (Lengaigne et al., 2025).

Our results reveal another prominent but less studied warming pattern: the strengthening of the interhemispheric
SST gradient. This MMM gradient increase is primarily driven by differential evaporative feedback, where

Figure 12. Teleconnections of the two TIO warming patterns with other tropical basins. Map of inter‐model regressions of
ΔTʹ over the entire tropical band to the normalized (a) PC1 and (b) PC2. Stippled regions indicate area where regression
values are significantly different from zero at over the 95% confidence level.
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stronger climatological winds in the southern TIO reduce negative latent feedback in that region. Inter‐model
variability in this pattern is largely linked to differences in cross‐equatorial winds changes, which modulate
the interhemispheric contrasts in latent heat flux forcing. Specifically, stronger southern TIOwinds increase latent
heat cooling in the southern hemisphere during boreal summer, while weakened winter monsoon northerlies
enhance near‐surface humidity in the northern IO, reducing evaporative cooling.

To date, Sharma et al. (2023) is the only study to specifically investigate the mechanisms behind the inter-
hemispheric SST gradient strengthening, focusing on a single CMIP model (Large ensemble simulations of
CESM2) projects a reduced interhemispheric SST gradient—an outlier among CMIP models. Our heat budget
analysis for this model (single member of CESM2; not shown) confirms Sharma et al.’s (2023) interpretation that
southern TIO low‐cloud cover and shortwave radiation changes drive this weakening. However, it also un-
derscores the model's outlier status, not only due to its atypical interhemispheric SST gradient reduction but also
because cloud changes rarely play a dominant role in the 44 other CMIP5/6 models examined. These findings
emphasize the importance of broad multi‐model analyses to establish robust mechanisms for regional climate
change signals.

Figure 12b reveals that the TIO interhemispheric SST gradient change is part of a broader pan‐tropical pattern,
with similar features in the Pacific and Atlantic Oceans. Our results emphasize the role of enhanced evaporative
cooling in driving the MMM cooling in the southern TIO, whereas reduced warming in the southeastern Pacific
has been attributed to future increases in wind speed (Xie et al., 2010). Beyond the interhemispheric asymmetry in
land distribution (Stouffer et al., 1989), recent studies suggest that enhanced North Atlantic and Pacific warming
is linked to the North Atlantic warming hole, which strengthens non‐radiative fluxes in the Northern Hemisphere
(Park et al., 2024). Given the climatic implications of this asymmetrical oceanic warming pattern, particularly its
impact on atmospheric circulation and rainfall (Byrne et al., 2018; Kang et al., 2008; B.Wang et al., 2020), further
research is needed to better understand the mechanisms driving interhemispheric SST changes in the tropics and
beyond.

While our statistical approach provides valuable insights, it lacks the depth of modeling studies that allows for a
more detailed investigation of underlying mechanisms. Future work will use oceanic simulations forced with
projected changes in forcing patterns to assess the impact of present‐day model biases on TIO SST projections and
to better quantify the respective contributions of heat fluxes and wind stress changes.

Appendix A: Indian Ocean Mean and Perturbation Decomposition
The SST change reconstruction equation (Equation 3 in the main text), in its simplified form in terms of forcing
(for) and ocean dynamics (O):

ΔT =
ΔQfor + ΔO

α
(A1)

To understand basin‐average warming and pattern changes, we further decomposed Equation A1 into mean and
perturbation using the Reynolds decomposition formula:

ΔT = ΔT + ΔTʹ

In which, ΔT represents the total temperature change, an overbar and prime denotes the basin average warming
and perturbations from the mean respectively.

Likewise, the above Equation A1 can be written as:

ΔT + ΔTʹ = ΔQfor + ΔQforʹ + ΔO + ΔOʹ
α + αʹ (A1a)

rearranged to:

ΔTα + ΔTʹα + ΔTαʹ + ΔTʹαʹ = ΔQfor + ΔQforʹ + ΔO + ΔOʹ (A1b)
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For the basin average warming, we averaged Equation A1b, considering the mean of the mean is mean, and the
mean of perturbations is zero. Upon calculation, we find the term ΔTʹαʹ is negligible, and the final equation for
basin average warming is:

ΔT =
ΔQfor + ΔO

α
(A2)

By subtracting Equation 4 from Equation A1b, we get the equation for the perturbations:

ΔTʹ = ΔQforʹ + ΔOʹ − αʹ∆T
α

(A3)

Where, αʹΔT represents the ocean's flux feedback.
For the final equations, we changed the denominator of Equations A2 and A3 with spatial points average (denoted
by overbar) andMMM (denoted by< >) of “α”, to ensure uniformity in assessing component contributions across
models and regions, given the deviation in “α” among models and regions is less than 15% (Figure 2f; and refer
methodology). After replacing denominator in Equations A2 and A3 with 〈α〉, the final Equations 4 and 5 are
given in the methodology section of the paper.

Appendix B: Model Diversity
To understand the inter‐model diversity, we calculated the variance and covariance for total temperature change,
mean and perturbation equations. For example, the variance of total temperature change Δ T, is the sum of the
covariance of each term's contribution with ΔT in Equation 3:

Δ T =
ΔQfor
α

+
ΔO
α

Variance (∆T) = covariance (
ΔQfor
α

,T) + covariance(
ΔO
α
,T) (B1)

Similar calculations are performed for mean and perturbation equations.

Data Availability Statement
The CMIP simulations used in this study is publicly available and can be downloaded from CMIP5 search
interface: https://data.ceda.ac.uk/badc/cmip5/ or https://esgf‐node.llnl.gov/search/cmip5/ and CMIP6 search
interface: https://data.ceda.ac.uk/badc/cmip6/ or https://esgf‐node.llnl.gov/projects/cmip6/. All codes developed
for conducting analyses, generating results, and creating plots are published in Zenodo (Gopika, 2025).
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