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Abstract: In sub-Saharan Africa, temperatures are generally conducive to malaria transmission, and
rainfall provides mosquitoes with optimal breeding conditions. The objective of this study is to assess
the impact of future climate change on malaria transmission in West Africa using community-based
vector-borne disease models, TRIeste (VECTRI). This VECTRI model, based on bias-corrected data
from the Phase 6 Coupled Model Intercomparison Project (CMIP6), was used to simulate malaria
parameters, such as the entomological inoculation rate (EIR). Due to the lack of data on confirmed
malaria cases throughout West Africa, we first validated the forced VECTRI model with CMIP6
data in Senegal. This comparative study between observed malaria data from the National Malaria
Control Program in Senegal (Programme National de Lutte contre le Paludisme, PNLP, PNLP) and
malaria simulation data with the VECTRI (EIR) model has shown the ability of the biological model
to simulate malaria transmission in Senegal. We then used the VECTRI model to reproduce the
historical characteristics of malaria in West Africa and quantify the projected changes with two
Shared Socio-economic Pathways (SSPs). The method adopted consists of first studying the climate
in West Africa for a historical period (1950–2014), then evaluating the performance of VECTRI to
simulate malaria over the same period (1950–2014), and finally studying the impact of projected
climate change on malaria in a future period (2015–2100) according to the ssp245 ssp585 scenario. The
results showed that low-latitude (southern) regions with abundant rainfall are the areas most affected
by malaria transmission. Two transmission peaks are observed in June and October, with a period of
high transmission extending from May to November. In contrast to regions with high latitudes in the
north, semi-arid zones experience a relatively brief transmission period that occurs between August,
September, and October, with the peak observed in September. Regarding projections based on the
ssp585 scenario, the results indicate that, in general, malaria prevalence will gradually decrease in
West Africa in the distant future. But the period of high transmission will tend to expand in the future.
In addition, the shift of malaria prevalence from already affected areas to more suitable areas due to
climate change is observed. Similar results were also observed with the ssp245 scenario regarding
the projection of malaria prevalence. In contrast, the ssp245 scenario predicts an increase in malaria
prevalence in the distant future, while the ssp585 scenario predicts a decrease. These findings are
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valuable for decision makers in developing public health initiatives in West Africa to mitigate the
impact of this disease in the region in the context of climate change.

Keywords: climate change; malaria; VECTRI; West Africa; bias-corrected CMIP6

1. Introduction

Climate change and malaria exhibit intricate connections in West Africa. Malaria, a
disease transmitted by mosquitoes primarily of the Anopheles genus, is caused by pro-
tozoan parasites belonging to the Plasmodium genus [1,2]. The transmission of malaria is
influenced by environmental factors that render it highly responsive to shifts in climate
patterns. Research focusing on the ramifications of climate change on malaria transmission
underscores that even minor fluctuations in temperature or rainfall can trigger a rapid
upsurge in disease propagation [3]. Moreover, rainfall plays a pivotal role in the prolifer-
ation of malaria by fostering suitable breeding sites for mosquito larvae and facilitating
the expansion of mosquito populations [4]. As such, climatic variables stand as pivotal
determinants in the transmission dynamics of malaria [5].

Malaria stands as one of the most pervasive and lethal diseases globally, with Africa,
in particular, shouldering a substantial burden [6]. The 2022 report by the World Health
Organization [7] reveals a continued increase in malaria cases from 2020 to 2021, albeit at a
more moderate pace compared to the period spanning from 2019 to 2020. The global tally of
malaria cases reached 247 million in 2021, in contrast to 245 million in 2020 and 232 million
in 2019. The estimated count of malaria-related fatalities worldwide in 2021 was 619,000, a
figure slightly lower than the 625,000 reported during the inaugural year of the COVID-19
pandemic. Preceding the pandemic, in 2019, malaria claimed 568,000 lives. Notably, the
burden of malaria on Africa is disproportionately heavy, accounting for 95% of all cases and
96% of deaths within sub-Saharan Africa. Alarmingly, 80% of all malaria-related deaths
across the continent occur in children under the age of five [7].

In West Africa, numerous studies have been conducted to understand the dynamics
of mosquito populations and their connection to malaria using various dynamic mod-
els, such as LMM [8], MARA [9], and MIASMA [10]. These models have significantly
enhanced our knowledge of the spread and evolution of malaria by considering the influ-
ence of average rainfall and temperature on malaria transmission. However, the VECTRI
model distinguishes itself from others by not only incorporating the variability of climatic
parameters but also considering surface hydrology and population densities in malaria
transmission [11]. This integration makes the VECTRI model potentially more accurate in
predicting malaria incidence compared to models that do not encompass these elements.
Surface hydrology inputs are crucial in a malaria transmission model, as they provide
essential information about potential breeding sites for vectors and capture the impact of
rainfall on disease dynamics [12]. Despite the VECTRI model’s high potential for predicting
malaria transmission dynamics, comprehensive studies utilizing this model in West Africa
to forecast malaria transmission and distribution in the region are unfortunately lacking.

In our previous research, we have explored the relationship between climate and
malaria [13] and examined the predictability of high malaria occurrences in Senegal [14].
Through these studies, we have already demonstrated the efficacy of the VECTRI model
in simulating malaria transmission in this region. This has enabled us to employ the
VECTRI model to investigate the impact of climate change on malaria in Senegal. In this
study, we extend this earlier work to malaria scenarios in the context of climate change
in West Africa. The focus of our study, presented in this paper, is to evaluate the past
and current influence of seasonal and interannual climate variability on climate-sensitive
diseases, specifically malaria, in West Africa. A previous study [15] conducted a rigorous
validation of several malaria models, including the VECTRI model, in Africa. It showed
that, although the VECTRI model tends to overestimate prevalence, the spatial pattern
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of simulated malaria prevalence rates by the VECTRI model is directly comparable to
the gold standard datasets for spatial malaria risk estimation (MAP). Additionally, it is
worth mentioning that the VECTRI model has been successfully validated in various
African countries, including Uganda, Rwanda, Malawi, Kenya, Ghana, and Cameroon,
as demonstrated by previous studies [12,16–18]. These studies have shown satisfactory
results in terms of the model’s performance.

These findings enable us to use the VECTRI model for simulating climate change
in West Africa, since the performance and limitations of the model have been carefully
documented in [15]. To complement this study, we also perform a validation of the VECTRI
model in Senegal, where high-quality data on malaria cases were available.

To conduct this assessment, we will utilize the VECTRI model, which is driven by bias-
corrected CMIP6 data using the cumulative distribution function transformation (CDF-t)
method. To achieve our objective, we will first evaluate the bias-corrected data derived from
the global climate model (GCM). This allows to quantify the sensitivity of the bias-corrected
data, thereby enhancing our understanding of the impact of climate change on malaria.

2. Materials and Methods
2.1. Study Area

This study focuses on the West African region, located between latitudes 4◦ N to 18◦ N
and longitudes 20◦ W to 5◦ W. This area encompasses 16 member countries: Benin, Burkina
Faso, Côte d’Ivoire, Cape Verde, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali,
Mauritania, Niger, Nigeria, Senegal, Sierra Leone, and Togo, with an estimated population
exceeding 412 million (Figure 1). Malaria is endemic in this region, characterized by
significant consequences for the entire population.
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In 2021, West Africa documented around 63.2 million cases of malaria, accounting
for 92.5% of the total cases within the region, with reported deaths of 26,500 [7]. The
region undergoes two distinct seasons, the rainy season and the dry season, resulting from
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the interaction between two migrating air masses—the warm, dry continental tropical air
mass and the moisture-laden maritime or equatorial tropical air mass [19,20]. The climatic
conditions, particularly high temperatures and year-round rainfall, establish a conducive
environment, including vegetation, that supports the reproduction and survival of malaria
vectors [1]. The countries have been represented on Figure 1 using the coordinates shown
in Table 1.

Table 1. Name and coordinates of West African countries.

Country Latitudes Longitude

Benin 9.30◦ N 2.31◦ E

Burkina Faso 12.23◦ N 1.56◦ W

Ivory Coast 7.54◦ N 5.54◦ W

Cape Verde 15.12◦ N 23.60◦ W

Gambia 13.44◦ N 15.31◦ W

Ghana 7.94◦ N 1.02◦ W

Guinea 9.94◦ N 13.67◦ W

Guinea-Bissau 11.80◦ N 15.18◦ W

Liberia 6.42◦ N 9.42◦ W

Mali 17.57◦ N 3.99◦ W

Mauritania 20.93◦ N 17.06◦ W

Niger 17.60◦ N 8.08◦ E

Nigeria 9.08◦ N 8.67◦ E

Senegal 14.49◦ N 14.45◦ W

Sierra Leon 8.46◦ N 11.77◦ W

Togo 8.61◦ N 0.82◦ E

2.2. Malaria Surveillance Data

This study utilizes clinical data on the number of confirmed malaria cases, which
were obtained from the National Malaria Control Program (Programme National de Lutte
contre le Paludisme, PNLP) in Senegal. The data, collected annually and categorized by
region, cover the period from 2009 to 2014 and encompass all age groups. The confirmed
malaria cases included in this study originate from various health districts across Senegal’s
14 administrative regions: Dakar, Diourbel, Fatick, Kaffrine, Kaolack, Kédougou, Kolda,
Louga, Matam, Saint-Louis, Sédhiou, Tambacounda, Thiès, and Ziguinchor. The PNLP
conducts surveys in these health districts and hospitals to gather and record this informa-
tion. The National Malaria Control Program (NMCP) envisions working collaboratively
with all sectors to alleviate malaria as a burden that impedes the country’s socio-economic
development. The regions were located from the coordinates presented in Table 2.

2.3. Bias-Corrected CMIP6 GCM Models Used in This Study

In recent years, the issue of bias correction in global climate models (GCMs) has gained
significant attention in dynamic downscaling studies [21–23]. The ability to project the
Earth’s future climate on a finer scale is crucial for climate-related research, particularly in
understanding the impacts of extreme weather events on health, water resources, agricul-
ture, air quality, and wind energy [24]. The traditional approach to dynamic downscaling in-
volves integrating a regional climate model (RCM) with the initial and boundary conditions
from a general circulation model (GCM) [25–27]. In this study, the CDF-t method developed
by [28] was employed to correct the dynamic distribution of key climate parameters for
impact simulations using CMIP6 data. The Cumulative Distribution Function-transform
(CDF-t) approach was then applied to temperature and precipitation [29–32]. This method
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was recently used for the bias correction of the CMIP5 data by [33], which served as a model
for the bias correction of the CMIP6 data for West Africa. This downscaling technique
has significantly improved the accuracy of dynamic simulations, enabling more reliable
projections of the Earth’s future climate, as demonstrated in the work of [34,35].

Table 2. Name and coordinates of Senegal’s 14 regions.

Region Latitude Longitude

Dakar 14.73◦ N 17.50◦ W

Diourbel 14.65◦ N 16.23◦ W

Fatick 14.21◦ N 16.35◦ W

Kaffrine 14.10◦ N 15.55◦ W

Kaolack 14.13◦ N 16.07◦ W

Kedougou 12.57◦ N 12.22◦ W

Kolda 12.88◦ N 14.97◦ W

Louga 15.62◦ N 16.22◦ W

Matam 15.63◦ N 13.25◦ W

Sedhiou 12.70◦ N 15.55◦ W

Saint-Louis 16.05◦ N 16.45◦ W

Tambacounda 13.77◦ N 13.68◦ W

Thies 14.80◦ N 16.95◦ W

Ziguinchor 12.55◦ N 16.27◦ W

The CMIP6 data simulations cover the period from 1850 to 2014 (historical) and from
2015 to 2100 (projections) on a daily time scale. In its sixth report [36], the Intergovernmental
Panel on Climate Change (IPCC) refers to five scenarios known as “Shared Socio-economic
Pathways” (SSPs) to examine potential future impacts. Unlike Representative Concen-
tration Pathways (RCPs), SSPs are scenarios of projected global socio-economic change
up to 2100, representing five different future societies with very different challenges in
terms of climate change mitigation and adaptation. These trends are then used to design
greenhouse gas (GHG) emission trajectories using integrated assessment models (IAM).
These SSP scenario experiments fall into two main categories: SSPs and RCPs. Indeed, the
three numbers in the name of each experiment indicate the two paths. The first number
reflects the SSP scenario, representing the socio-economic challenges of mitigation and
adaptation. The five scenario categories are: SSP1 “Green and sustainable pathway”, SSP2
“Middle of the road”, SSP3 “regional rivalry”, SSP4 “inequality”, and SSP5 “Fossil-fuel-
fueled development”. The second and third digits of each experiment denote the associated
Radiative Climate Forcing (RCP) (for example, SSP1-2.6, SSP2-4.5, and SSP5-8.5) [37,38].
The numbering indicates the amount of radiative forcing measured in watts per square
meter that would be achieved by 2100 (i.e., 2.6, 4.5, 6.0, and 8.5 W/m2 change compared
with the pre-industrial period) [39].

The models used in this study are listed in Table 3. They are available at various spatial
resolutions, as shown in Table 3. The reference period chosen for this study extends from
1950 to 2014.
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Table 3. List of the 7 global circulation models (GCMs) used in the study.

Seven CMIP6 Global Climate Models

Model Name Modeling Center Approximate Grid Spacing Key Reference

BCC-CSM2-MR Beijing Climate Center (China) 1.125◦ × 1.125◦ [40]

CanESM5 Canadian Centre for Climate Modelling and
Analysis (Canada) 2.81◦ × 2.81◦ [41]

CNRM-CM6-1

Centre National de Recherches
Météorologiques-Centre Européen de

Recherches et de Formation Avancée en Calcul
Scientifique (France)

0.5◦ × 0.5◦ [42]

CNRM-ESM2-1 Centre National de Recherches
Météorologiques Earth system model (France) 1◦ × 1◦ [43]

INM-CM4-8 Institute of Numerical Mathematics, Russian
Academy of Science, Moscow 119991 (Russia) 2◦ × 1.5◦ [44]

MIROC-ES2L Japan Agency for Marine-Earth Science and
Technology, Kanagawa 236-0001 (Japan) 2.8◦ × 2.8◦ [45]

MRI-ESM2 Meteorological Research Institute, Japan
Meteorological Agency (Japan) 1.125◦ × 1.125◦ [46]

2.4. VECTRI Malaria Model

For this study, the vector-borne disease community model of ICTP, Trieste (VECTRI),
was utilized. The VECTRI model is a newly developed community dynamic model of
malaria by the Abdus Salam International Center for Theoretical Physics (ICTP). It incor-
porates the influence of two crucial meteorological parameters, temperature and rainfall,
along with population density, on malaria transmission. The model is based on a set of
equations that capture the life cycles of malaria vectors and parasites, specifically focusing
on Anopheles gambiae mosquitoes and the Plasmodium falciparum parasite responsible for
malaria. The VECTRI model explicitly resolves the growth of immature stages (egg, larva,
and pupa), as well as the gonotrophic and sporogonic cycles, using compartments for each
process. The larvae are divided into different compartments, representing various stages of
development and reflecting the density of larvae at each growth stage. The vector’s life
cycle is divided into the development of the egg into the female and the infective state. The
vectors progress through their developmental stages until they reach the final compartment,
becoming infective to humans [11]. This study utilizes the VECTRI_v1.6 version.

The larval growth rate is determined according to the degree-day concept [47]. It is
related to water temperature (Twat) by the following function:

RL =
Twat − TL,min

KL

Larval development is influenced by larval overpopulation, which results from com-
petition for resources [48]. This variable is taken into account in the VECTRI model by
reducing the survival rate proportionally as a function of a factor associated with resource
constraints and is given by:

PL, surv =

(
1− ML

wML,max

)
Kflush PL, surv 0

Egg development follows a rhythm determined by the local air temperature at 2 m
(T2m), again using the degree-day concept [49]. Gonotrophic and sprogonic development
rhythms are therefore defined, respectively, as follows:
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Rgono =
T2m − Tgono min

Kgono

Rsporo =
T2m − Tsporo,min

Ksporo

High air temperatures tend to increase vector mortality. According to the
studies [50,51], the survival rate is given as a quadratic function of temperature:

PV, surv 1 = Kmar 1,0 + Kmar 1,1T2m + Kmar 1,2T2
2m

The VECTRI model has the unique feature of integrating interactions between the
human host (H) and vectors using the human bite rate (hbr), which can be expressed
as follows:

hbr =
(

1− e
−H
τzoo

)∑
Nsparo
j=1 V(1, j)

H
Factor 1—eτ

zoo—represents the vector’s level of preference for different members of
the species. The exponential factor reflects this, the population density of the e-fold for the
effect, and it is set at τzoo = 50 km−2. This allows the model to avoid producing high bite
rates and EIRs for sparsely populated areas.

The probability of transmission from an infectious vector to a host after a single bite
is denoted Pv→h. If its value is assumed to be constant, the transmission probability for
an individual receiving n infectious bites is given by

(
1− (1− Pvh)

n). The overall daily
transmission probability per person is then expressed as follows [11]:

Pv→h = ∑∞
n=1 GEIR

(
1− (1− Pvh)

n)
The VECTRI model has a simple surface hydrology scheme that gives, at each time

step, a calculation of the fractional coverage of each model mesh by potential breeding sites
for the malaria vector obtained by:

w = wperm + wpond

Determining the fractional aggregated net cover with permanent pools, wperm, is a
major challenge. The VECTRI model sets wperm to zero by default in every grid cell, as it
is a significant challenge. However, by knowing the permanent water bodies for an area
wperm can be set appropriately in the model. As a result, the availability of breeding sites
is dominated by ephemeral seasonal ponds. In the current version of the model used, the
fractional coverage of temporary ponds, wpond, derived from a simple water balance model
is expressed as follows [11].

dwpond

dt
= Kw

(
P
(

wmax − wpond

)
− wpond (E + I)

)
The default values of these parameters used by the VECTRI model are shown in

Table 4 below.
Following the simulation, the output data provide various variables, as listed in Table 5.
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Table 4. VECTRI default constants.

Symbol Value Units Description Reference

E + I 250 mm day −1 Total evaporation and infiltration losses based on [52]
KL, Jepson 90.9 K day Larvae growth in degree days [53]

Kgono 37.1 K day Gonotrophic cycle in degree days [47]
Ksporo 111 K day Sporogonic cycle in degree days [47]

Kw 1 m−1 Pond growth rate factor set by tuning or local
knowledge of basin

Kmar 1,0 0.45 Constant of Martens I vector survival
scheme

[51]

Kmar 1,1 0.054 K−1 Constant of Martens I vector survival
scheme

[51]

ML,max 300 mgm−2 Carrying capacity of water bodies [54]
PL, surv 0 0.825 Larvae base daily survival rate [55]

Pvh 0.3 Probability of transmission from
infective vector to host during sin gle
bloodmeal

[55]

Twat 2 K Pond water offset from air temperature [56]
TL,min 16 K Minimum Twas for larvae development based on [3]
TL,max 38 K Maximum Twat for larvae development based on [3]

Tgono,min 7.7 K Minimum T2m for egg development [47]
Tsporo, min 16 K Minimum T2m for sporogonic cycle [55]

τz◦o 50 km−2 Population density zoophilic factor set by tuning

wmax 0.04 Maximum temporary pond fraction in
cell

set by tuning or local
knowledge of basin

Table 5. VECTRI output parameters.

Parameters Definition Unity

population population density N.m−2

rain rainfall mm day−1

temp temperature ◦C

water frac fraction of grid box covered by pond
breeding sites %

vector mosquito density N.m−2

larvae larvae density N.m−2

larvae biomass larvae biomass Mg.m−2

PRd % of population with detectable malaria
(day 10+)

hbr human biting rate number of bites person−1 day−1

cspr Circum sporozoite protein ratio
(eir/hbr) fraction fraction

Eir entomological inoculation rate (number of
infectious bites) number person−1 day−1

cases number of new cases fraction

immunity proportion of immune population fraction

2.5. Method

Firstly, we validated the VECTRI model using bias-corrected CMIP6 data, specifically
in Senegal, covering the period from 2009 to 2014. This validation aims to compare the
EIR variable with the number of confirmed malaria cases to assess the ability of global
climate models, implemented through the VECTRI model, to simulate this disease. It
is important to acknowledge the challenge of limited observational data in West Africa,
which restricts the possibility of conducting a comprehensive validation in this region.
Hence, this initial step will be focused on Senegal, where reliable data on confirmed malaria
cases are available for a span of six years. Our study serves as a starting point, and as
more comprehensive data on malaria cases covering the entire West African region become
available, further refinements and validations can be made to improve the accuracy and
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generalizability of our findings. This study best allows us to see the link between climate
and the transmission of malaria in West Africa.

Subsequently, we proceed with an impact study that involves replicating the histori-
cal trends of malaria in West Africa. We will then quantify the projected changes under
two socio-economic scenarios: ssp245 and ssp585. The SSP2-4.5 scenario of the “medium”
socio-economic family SSP2 with a nominal radiative forcing level of 4.5 W m−2 by 2100 cor-
responds approximately to the RCP-4.5 scenario, and the “higher” scenario SSP5-8.5 marks
the upper limit of the SSP scenario spectrum with a high reference scenario in a world
with high fossil fuel development throughout the 21st century, corresponding to scenario
RCP-8.5 [57]. To do so, we use climate data from global climate models, which have been
corrected to develop malaria indices for different climatological periods. These periods
include the historical timeframe from 1950 to 2014, as well as the future period spanning
from 2015 to 2100.

Climate data from the CMIP6 project, which have been corrected to eliminate any
bias, were obtained with daily temporal resolution for two variables, precipitation (in
mm/day) and temperature (in ◦C), covering both historical (1950–2014) and future periods
(2014–2100). These data were then used as inputs to run the VECTRI model. Specific
geographical areas, in this case Senegal and West Africa, were extracted using the CDO
(Climate Data Operators) tool based on the following coordinates: 12◦ to 17◦ latitude and
−18◦ to −11◦ longitude for Senegal and 4◦ to 18◦ latitude and −20◦ to −5◦ longitude for
West Africa.

After the simulations, various variables were generated as outputs, the details of
which are listed in Table 5. One of these variables, the EIR (entomological inoculation rate),
which is one of the malaria parameters linking this disease to climatic conditions through
precipitation and temperature, was extracted from these outputs and analyzed in depth
throughout the study to assess climate-influenced malaria transmission. The determinant
of the EIR depends on climatic and environmental conditions. The EIR directly quantifies
parasitized mosquitoes and their propensity to transmit parasites to humans. Estimates of
the EIR therefore make it possible to link the biting activity of Anopheles vectors to humans
directly to climate [58–60].

Subsequently, all variables (rainfall, temperature, the EIR, and confirmed cases) were
converted to monthly data in order to conduct a spatio-temporal study. This study included
an analysis of annual and interannual cycles, spatial distributions, annual and interannual
Hovmöller diagrams, and intra- and interannual Hovmöller diagrams. Matlab software
(version: R2022b) was used for these analyses.

With regard to data collection, the specific geographical coordinates of each West
African country are provided in Table 1, while those of Senegal’s regions are listed in Table 2.

3. Results and Discussion
3.1. Models’ Evaluation
3.1.1. VECTRI Model’s Performance with Observed Malaria Cases in Senegal

Figure 2 provides a comprehensive overview of the temporal variability, interannual
variability, and long-term trends in malaria cases and the EIR in Senegal from 2009 to
2014. Figure 2a shows the annual cycle of temporal variability in the number of confirmed
malaria cases and the EIR in Senegal from 2009 to 2014. It illustrates the fluctuation in
both variables over a year, with peaks and troughs indicating periods of higher and lower
numbers of malaria cases and EIRs. The highest number of malaria cases occurs in October.
Regarding the simulated EIR variable using the VECTRI model, certain models (BCC-
CSM2-MR, CanESM5, and INM-CM4-8) exhibit the peak in August, coinciding with the
peak rainfall in Senegal. In contrast, other models (CNRM-CM6-1, CNRM-ESM2-1, MIROC-
ES2L, MRI-ESM2-0, and the overall average) show their maximum peak in September, one
month after the peak rainfall. The models that exhibit an August peak poorly simulate
malaria transmission, as there is a mismatch between the rainfall that creates breeding
sites for Anopheles mosquitoes, such as puddles, marshes, and temporary rivers [13,14].
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Figure 2b demonstrates the interannual variability in malaria cases and the EIR. It highlights
the variation in these variables from year to year, showcasing the differences in malaria
transmission and the EIR over the study period. It is observed that the overall average is
similar in trend to the observations throughout the entire study period.
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Figure 2. Temporal variability of confirmed malaria cases and the EIR (entomological inoculation rate)
in Senegal during the period of 2009–2014: (a) for the annual cycle and (b) for interannual variability.

Figure 3 presents the intra-annual/interannual variations in the number of confirmed
malaria cases and the EIR (in ib/p/m, i.e., infectious bites per person per month) in Senegal
from 2009 to 2014. The simulations are based on the VECTRI model, which is forced by
rainfall and temperature data. The diagram consists of nine panels, labeled from (a) to
(i), each representing a different simulation. Panel (a), labeled “Malaria-Obs”, represents
the observed data on malaria cases and the EIR. Panels (b) to (i) represent the simulations
based on different climate models, including BCC-CSM2-MR, CanESM5, CNRM-CM6-1,
CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD. Figure 3
presents the temporal variations along the x-axis and monthly variations along the y-axis.
Each cell in the diagram represents the number of malaria cases and the EIR at a specific
time and location.
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Figure 3. Intra-annual/interannual variations in the number of confirmed malaria cases and the EIR
(in ib/p/m, i.e., infectious bites per person per month) in Senegal from 2009 to 2014. The simulations
are based on the VECTRI model, driven by rainfall and temperature data. (a) Malaria-Obs, (b) BCC-
CSM2-MR, (c) CanESM5, (d) CNRM-CM6-1, (e) CNRM-ESM2-1, (f) INM-CM4-8, (g) MIROC-ES2L,
(h) MRI-ESM2-0, and (i) ENSMEAN-MOD.

This figure provides valuable insights into how the different climate models simulate
the variations in malaria cases and the EIR in Senegal over the study period. It allows
for a comparison between the observed data and the simulations, helping to assess the
performance of the VECTRI model and the climate models in capturing the temporal and
spatial patterns of malaria transmission in Senegal. Figure 3 illustrates that the period of
high transmission, as observed, occurs between September, October, and November for
confirmed malaria cases. In contrast, for the EIR variable, this period is observed between
August, September, and October. The one-month lag between the two variables can be
attributed to the fact that the EIR represents the number of mosquito bites leading to the
disease, while the number of confirmed cases represents individuals who have tested
positive for malaria after the parasite has developed in their bodies and can be detected
through diagnostics [61].

Figure 4 presents the spatial distribution of the EIR (ib/p/m, i.e., infectious bites
per person per month) in Senegal from 2009 to 2014. The simulations were conducted
using the VECTRI model, which was driven by rainfall and temperature data from the
assessment period. Figure 4 includes nine panels, labeled from (a) to (i), each representing
a different simulation. Figure 4a, labeled “Malaria-Obs”, represents the observed malaria
data. Figure 4b–i represent the simulations based on different climate models, including
BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L,
MRI-ESM2-0, and ENSMEAN-MOD.
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Figure 4. Spatial distribution of the EIR (ib/p/m, i.e., infectious bites per person per month) in
Senegal from 2009 to 2014. The simulations were conducted using the VECTRI model, which was
driven by rainfall and temperature data from the assessment period. The simulations include the
following models: (a) Malaria-Obs, (b) BCC-CSM2-MR, (c) CanESM5, (d) CNRM-CM6-1, (e) CNRM-
ESM2-1, (f) INM-CM4-8, (g) MIROC-ES2L, (h) MRI-ESM2-0, and (i) ENSMEAN-MOD.

The figure provides a visual representation of the spatial distribution of the malaria
cases and the EIR across Senegal during the study period. Each panel shows the EIR
values in different regions or locations of Senegal, allowing for a comparison between the
observed data and the simulated EIRs from different climate models. This figure is useful
for understanding the spatial patterns of malaria transmission intensity in Senegal and how
well the VECTRI model, driven by different climate models, captures these patterns in terms
of the EIR. Figure 4 clearly illustrates that the southern part of the country, which receives
the highest rainfall amount, experiences the highest number of malaria cases. In contrast,
the northern areas, which have lower amounts of rainfall, have a lower transmission rate of
malaria. The observations indicate that the southwestern part of the country, specifically the
Sédhiou, Kédougou, and Tambacounda regions, have the highest number of malaria cases.
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This is followed by the central regions, including Diourbel and Dakar. The models were
able to replicate this trend, although there were some discrepancies in the central regions.
The models underestimated the number of cases compared to the actual observations

3.1.2. Spatio-Temporal Variability of Rainfall and Temperature over West Africa Using
CMIP6 Data

Figure 5 presents the annual cycle of rainfall for the period 1950–2014 using bias-
corrected GCM data. The figure includes data from various climate models, namely
BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L,
MRI-ESM2-0, and ENSMEAN-MOD. It illustrates the variation in rainfall throughout the
year, showing the monthly rainfall values for each climate model. It allows for a comparison
of the annual cycles of rainfall between the different models.
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Figure 5. Annual cycle of rainfall from 1950 to 2014, using bias-corrected general circulation model
(GCM) data: BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L,
MRI-ESM2-0, and ENSMEAN-MOD.

This Figure 5 is valuable for understanding the seasonal patterns of rainfall in the
study area over a long-term period. It provides insights into the differences and similarities
in the timing and intensity of rainfall among the climate models. Figure 5 shows that the
rainy season typically occurs from May to October. The peak rainfall is observed in August,
which is consistent with previous studies [62]. During this period, the rainfall amounts
exceed 200 mm. All the models analyzed in this study accurately capture this rainy season
and its peak, indicating that they successfully replicate the spatio-temporal variability of
rainfall in West Africa.

Figure 6 presents a Hovmöller diagram that illustrates the intra-annual variation in
rainfall for the period 1950–2014 using bias-corrected CMIP6 data. The diagram includes
panels (a) to (h), each representing a different climate model, namely BCC-CSM2-MR,
CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and
ENSMEAN-MOD. The Hovmöller diagram allows for the visualization of temporal vari-
ations along the x-axis and spatial variations along the y-axis. Each cell in the diagram
represents the value of rainfall at a specific time and location. This figure provides insights
into the intra-annual patterns of rainfall for each climate model over the study period. It
allows for a comparison between the models, showcasing any similarities or differences
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in the timing, duration, and intensity of rainfall events. Figure 6 illustrates the significant
latitudinal variation in rainfall in West Africa, with a gradient from north to south. This
variation is primarily influenced by climate systems, monsoons, and prevailing air masses
at different latitudes. The southern coastal and equatorial regions generally receive higher
amounts of rainfall, characterized by a prolonged and intense rainy season from May to
October (approximately 4–8◦ N). The central regions experience intermediate rainfall with
a shorter rainy season from June to September (around 10–12◦ N). In contrast, the northern
regions, including the Sahara and Sahel, have very low amounts of rainfall, with a short
and unpredictable rainy season (approximately 14–16◦ N) [63]. While there may be some
differences in the intensity and extent of the rainfall signal, the models generally agree in
simulating the latitudinal variation.
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data: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, (d) CNRM-ESM2-1, (e) INM-CM4-8,
(f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD.

Figure 7 depicts the intra-annual and interannual variability in rainfall for the pe-
riod 1950–2014 utilizing bias-corrected CMIP6 data. The figure includes eight different
climate models: BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8,
MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD. This figure provides a comprehensive
representation of both the short-term and long-term variations in rainfall. It allows for the
examination of the annual cycles of rainfall across different months and years, as well as the
year-to-year variability in rainfall patterns. By comparing the different panels in the figure,
one can assess the similarities and differences in rainfall variability among the climate
models. This information is essential for understanding the reliability and consistency of
the models in capturing the observed rainfall patterns. Overall, Figure 7 offers valuable
insights into the intra-annual and interannual characteristics of rainfall variability, provid-
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ing a basis for climate analyses. Figure 7 shows that the maximum rainfall (y-axis) occurs
during the JAS season (July to September). In terms of interannual variability (x-axis),
we observe an irregular rainfall pattern during the study period. From 1950 to 1980, the
rainfall can be described as average, while the period from 1990 to 2014 is characterized
by alternating wet and dry years [64,65]. Notably, the research in [62,66] indicates that the
entire Sahelian region, including West Africa, experienced a severe drought during the
1970–1980 period. This was followed by alternating years of drought and wet conditions
between 1980 and 1990. However, beyond this period, a trend towards wetter years began
to emerge.
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Figure 7. Intra-annual/interannual variability of rainfall for the period 1950–2014 utilizing bias-
corrected CMIP6 data. The figure includes the following models: (a) BCC-CSM2-MR, (b) CanESM5,
(c) CNRM-CM6-1, (d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and
(h) ENSMEAN-MOD.

Figure 8 presents the spatial distribution of rainfall for the period 1950–2014 using
bias-corrected CMIP6 data. The figure includes eight panels, labeled from (a) to (h),
each representing a different climate model: BCC-CSM2-MR, CanESM5, CNRM-CM6-
1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD. The
figure provides a visual representation of the spatial patterns of rainfall across the study area.
Each panel showcases the distribution of rainfall values in different regions or locations,
allowing for a comparison between the climate models. By examining the different panels
in the figure, one can assess the similarities and differences in the spatial distribution of
rainfall among the climate models. Figure 8 clearly depicts the substantial variation in
rainfall between southern and northern West Africa. The southern regions, located along
the coasts and near the equator, generally experience higher levels of rainfall due to the
influence of the summer monsoon and other weather systems. In contrast, the northern
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regions of West Africa have an arid or semi-arid climate with significantly lower levels
of rainfall. The central regions lie between these two extremes and receive intermediate
amounts of rain. This pattern is consistent with previous research [67].
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(a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, (d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-
ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD.

Figure 9 presents the annual cycle of temperature for the period 1950–2014 using
bias-Corrected GCM data. The figure includes data from eight different climate models:
BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L,
MRI-ESM2-0, and ENSMEAN-MOD. The graph illustrates the variation in temperature
throughout the year, showcasing the monthly temperature values for each climate model.
By examining the figure, one can compare the annual cycles of temperature among the
different models. This figure provides valuable insights into the seasonal patterns of tem-
perature over the study period. It allows for the identification of similarities and differences
in the timing, magnitude, and duration of temperature highs and lows among the climate
models. Understanding the annual cycle of temperature is crucial for various fields, includ-
ing malaria outbreaks. Figure 9 contributes to this understanding by presenting the annual
variability in temperature from multiple climate models, enhancing our knowledge of the
temporal patterns of temperature. In West Africa, average temperatures generally exhibit
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a bimodal trend, characterized by two distinct peaks: the first reaching its maximum in
April–May with an average of 30.5 ◦C, and the second reaching its minimum in October
at approximately 28 ◦C. The first peak aligns with the onset of the rainy season, while the
second peak aligns with its conclusion [68]. The different CMIP6 simulation data clearly
depict this bimodal temperature distribution in the region.
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Figure 9. Annual cycle of temperature for the period 1950–2014 using bias-Corrected GCM data: BCC-
CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0,
and ENSMEAN-MOD.

Figure 10 presents a Hovmöller diagram depicting the temperature variations for the
period 1950–2014 using bias-corrected CMIP6 data. The figure consists of eight panels,
labeled from (a) to (h), representing different climate models: BCC-CSM2-MR, CanESM5,
CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-
MOD. The Hovmöller diagram allows for the visualization of temporal variations along
the x-axis and spatial variations along the y-axis. Each cell in the diagram represents the
temperature value at a specific time and location. This figure provides a comprehensive
view of the temperature patterns over time and space, allowing for a comparison between
the different climate models. By examining the panels, one can assess the similarities
and differences in temperature variations among the models. Figure 10 contributes to
this understanding by presenting the temperature variations across different months and
years, offering insights into the performance of the climate models in capturing the ob-
served temperature patterns. Figure 10 illustrates the latitudinal temperature variation in
West Africa, which represents the changes in temperature along the region’s north–south
gradient. It is observed that temperatures tend to increase as one moves towards higher
latitudes. Higher latitudes (above 10◦ N) exhibit higher temperatures, with two distinct
peaks: one in May, characterized by a very strong signal, and the other in October, with
a slightly less intense signal. On the other hand, lower latitudes (below 8◦ N) experience
lower temperatures. This temperature disparity between high and low latitudes is partly
explained by the diversity of climates found in the region, ranging from humid equatorial
zones to the semi-arid zones of the Sahel [69–71].
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Figure 10. Hovmöller diagram of the temperature for the period 1950–2014 using bias-corrected
CMIP6 data: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, (d) CNRM-ESM2-1, (e) INM-CM4-
8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD.

Figure 11 illustrates the intra-annual and interannual variability of temperature for the
period 1950–2014 using bias-corrected CMIP6 data. The figure includes eight panels labeled
from (a) to (h), representing different climate models: BCC-CSM2-MR, CanESM5, CNRM-
CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD.
This figure provides insights into the temporal variations in temperature, both within each
year and from year to year. It allows for the examination of the annual cycles of temperature
across different months and the year-to-year variability in temperature patterns. By com-
paring the different panels, one can assess the similarities and differences in temperature
variability among the climate models. This information is valuable for understanding the
reliability and consistency of the models in capturing the observed temperature patterns.
Figure 11 offers important insights into the intra-annual and interannual characteristics of
temperature variability, providing a basis for climate analyses and impact assessments, and
illustrates the year-on-year variability, highlighting significant temperature fluctuations.
High temperatures were recorded over the 1970s and 1980s. In contrast to the period of
the 1950s, the situation is markedly different. The period from 1990 to 2014 exhibits a
noticeable temperature rise compared to the other two periods, especially during the spring
season (March–April–May), which is the hottest season in West Africa. During this period,
temperatures can reach exceptionally high levels [66].
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corresponding to the Sahel, temperatures are notably higher due to the influx of hot and 
dry air from the Sahara Desert, known as the harmattan [73]. 

Figure 11. Intra-annual/interannual variability of temperature for the period 1950–2014 using bias-
corrected CMIP6 data: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, (d) CNRM-ESM2-1,
(e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD.

Figure 12 presents the spatial distribution of temperature for the period 1950–2014
using bias-corrected CMIP6 data. The figure consists of eight panels, labeled from (a) to (h),
representing different climate models: BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-
ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD. This figure
provides a visual representation of the spatial patterns of temperature across the study
area. Each panel showcases the distribution of temperature values in different regions
or locations, allowing for a comparison between the climate models. By examining the
different panels in the figure, one can assess the similarities and differences in the spatial
distribution of temperature among the climate models. This information is valuable for
understanding the model’s ability to capture the observed temperature patterns and for
identifying areas with varying temperature levels. The temperature gradient in West Africa
exhibits a gradual increase from south to north. This phenomenon can be attributed to the
north–south movement of the intertropical convergence zone (ITCZ) in conjunction with
the progression of the West African monsoon, which brings in fresh and humid air to the
region. The maritime air, carried by the trade winds, acts as a thermal regulator, resulting
in relatively moderate temperatures during summer and winter in coastal areas and the
Guinean zone to the south [72]. Conversely, in the northern regions, corresponding to the
Sahel, temperatures are notably higher due to the influx of hot and dry air from the Sahara
Desert, known as the harmattan [73].
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Figure 12. Spatial distribution of temperature for the period 1950–2014 using bias-corrected CMIP6
data: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, (d) CNRM-ESM2-1, (e) INM-CM4-8,
(f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD.

3.1.3. Evaluation of the VECTRI Model in West Africa

Figure 13 illustrates the annual cycle of the EIR (in ib/p/m, i.e., infectious bites per
person per month) in Senegal from 1950 to 2014, representing the historical period. The data
for this figure were generated through simulations conducted using the VECTRI model.
The model incorporated daily rainfall and daily temperature as inputs, derived from
the bias-corrected CMIP6 data of several models, including BCC-CSM2-MR, CanESM5,
CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-
MOD. This figure provides valuable insights into the seasonal variations and trends of
the EIR in Senegal over the specified time period, contributing to a better understanding
of disease dynamics and potential impacts on public health. Figure 13 reveals that the
peak of the EIR is observed in September, with a time lag of approximately one month
in relation to the characteristic rainfall peak in West Africa. All the CMIP6 models used
in this study, except for the BCC-CSM2-MR model, demonstrate a consistent peak in
September. Generally, the occurrence of malaria cases aligns with a combination of high
temperatures and rainfall [18,74–76]. The development of the Plasmodium sporogonic stage
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varies depending on climatic conditions, lasting between 9 and 20 days (at temperatures
ranging from 30 ◦C to 20 ◦C) [77].
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transmission with an extended period of transmission that exhibits two distinct peaks in 
June and November. This region corresponds to the area where rainfall in West Africa 
reaches its highest levels. As latitudes increase beyond 10° N, malaria transmission grad-
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Figure 13. Annual cycle of the EIR (in ib/p/m, i.e., infectious bites per person per month) in Senegal
from 1950 to 2014 (historical period). Simulations were conducted using the VECTRI model, with
daily rainfall and daily temperature as inputs, from the bias-corrected CMIP6 data of the following
models: BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L,
MRI-ESM2-0, and ENSMEAN-MOD.

Figure 14 presents a Hovmöller diagram depicting the EIR (in ib/p/m, i.e., infectious
bites per person per month) in West Africa from 1950 to 2014, representing the historical
period. The data for this figure were generated through simulations conducted using the
VECTRI model, which was driven by rainfall and temperature data from the bias-corrected
CMIP6 dataset. The models used in the simulations include BCC-CSM2-MR, CanESM5,
CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-
MOD. This figure provides a visual representation of the spatio-temporal patterns and
variations of the EIR in West Africa, offering valuable insights into the distribution and dy-
namics of infectious bites in the region over the specified time period. Figure 14 highlights a
notable occurrence of the disease in the West African region. In the Golf of Guinean region
(between 4◦ N and 8◦ N) at lower latitudes, there is significant malaria transmission with
an extended period of transmission that exhibits two distinct peaks in June and November.
This region corresponds to the area where rainfall in West Africa reaches its highest levels.
As latitudes increase beyond 10◦ N, malaria transmission gradually decreases, reaching its
peak in September, with a shorter transmission period between August and October [78].
This pattern is observed in all the models used this study, although the CNRM-ESM2-1
model demonstrates a higher intensity.
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ENSMEAN-MOD. 
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variations and patterns of malaria transmission in West Africa, highlighting both short-
term fluctuations and long-term trends. The intra-annual/interannual variability of the 
EIR, as presented in Figure 15, depicts the changes in malaria occurrence throughout the 
years across different months. In West Africa, the transmission period generally spans 
from April to November, with a peak observed between August and September. Over the 
studied period from 1950 to 2014, there was an overall increasing trend in transmission. 
From 1950 to 1980, a moderate variation can be observed, while a more pronounced vari-
ation is evident between 1980 and 2014. This fluctuation in transmission is influenced by 
both precipitation and temperature. Our previous results showed that over the period 
1990–2014, the values of these two variables were important, with heavy rainfall and tem-
peratures favorable to malaria transmission. Strong rainfall combined with high temper-
atures create favorable conditions for malaria transmission [5,75] 

Figure 14. Hovmöller diagram of the EIR (in ib/p/m, i.e., infectious bites per person per month)
in West Africa from 1950 to 2014 (historical period): Simulations of the VECTRI model driven by
rainfall and temperature from the bias-corrected CMIP6 data: (a) BCC-CSM2-MR, (b) CanESM5,
(c) CNRM-CM6-1, (d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and
(h) ENSMEAN-MOD.

Figure 15 provides a comprehensive analysis of the intra-annual and interannual
variability of the EIR (in ib/p/m, i.e., infectious bites per person per month) of malaria
in West Africa from 1950 to 2014, representing the historical period. The simulations
conducted using the VECTRI model incorporated daily rainfall and daily temperature data
from the bias-corrected CMIP6 dataset. The models utilized in the simulations include
BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L,
MRI-ESM2-0, and ENSMEAN-MOD. This figure provides a comprehensive overview of the
temporal variations and patterns of malaria transmission in West Africa, highlighting both
short-term fluctuations and long-term trends. The intra-annual/interannual variability of
the EIR, as presented in Figure 15, depicts the changes in malaria occurrence throughout the
years across different months. In West Africa, the transmission period generally spans from
April to November, with a peak observed between August and September. Over the studied
period from 1950 to 2014, there was an overall increasing trend in transmission. From
1950 to 1980, a moderate variation can be observed, while a more pronounced variation
is evident between 1980 and 2014. This fluctuation in transmission is influenced by both
precipitation and temperature. Our previous results showed that over the period 1990–2014,
the values of these two variables were important, with heavy rainfall and temperatures
favorable to malaria transmission. Strong rainfall combined with high temperatures create
favorable conditions for malaria transmission [5,75]
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corrected CMIP6 data of the following models: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-
1, (d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-
MOD. 
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per person per month) of malaria in West Africa from 1950 to 2014, representing the his-
torical period. The simulations conducted using the VECTRI model utilized inputs of rain-
fall and temperature from the bias-corrected CMIP6 dataset. The models employed in the 
simulations include BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, INM-
CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD. This figure provides a visual 
representation of the spatial patterns and distribution of malaria transmission intensity 
across West Africa over the specified time period. The map allows for a better understand-
ing of the geographical variations in malaria risk and can aid in targeted interventions and 
resource allocation for malaria control efforts in the region. Figure 16 shows that the 
coastal regions located in the southern area are the most affected by malaria. These regions 
experience a higher amount of rainfall [9]. Additionally, the southern part benefits from 
high temperatures and favorable vegetation cover, which promote the proliferation of 
mosquitoes and the spread of malaria-causing parasites [79]. In contrast, the northern 
zone has climatic conditions and aridity that limit the survival and ability of adult Anoph-
eles mosquitoes to contribute to parasite transmission. 

Figure 15. Intra-annual/interannual variability of the EIR (in ib/p/m, i.e., infectious bites per
person per month) of malaria in West Africa from 1950 to 2014 (historical period). Simulations were
conducted using the VECTRI model, with daily rainfall and daily temperature as inputs from the bias-
corrected CMIP6 data of the following models: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1,
(d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD.

Figure 16 presents a spatial distribution map of the EIR (in ib/p/m, i.e., infectious
bites per person per month) of malaria in West Africa from 1950 to 2014, representing the
historical period. The simulations conducted using the VECTRI model utilized inputs of
rainfall and temperature from the bias-corrected CMIP6 dataset. The models employed
in the simulations include BCC-CSM2-MR, CanESM5, CNRM-CM6-1, CNRM-ESM2-1,
INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD. This figure provides
a visual representation of the spatial patterns and distribution of malaria transmission
intensity across West Africa over the specified time period. The map allows for a better
understanding of the geographical variations in malaria risk and can aid in targeted
interventions and resource allocation for malaria control efforts in the region. Figure 16
shows that the coastal regions located in the southern area are the most affected by malaria.
These regions experience a higher amount of rainfall [9]. Additionally, the southern
part benefits from high temperatures and favorable vegetation cover, which promote the
proliferation of mosquitoes and the spread of malaria-causing parasites [79]. In contrast,
the northern zone has climatic conditions and aridity that limit the survival and ability of
adult Anopheles mosquitoes to contribute to parasite transmission.
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INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD. 
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Figure 16. Spatial distribution of the EIR (in ib/p/m, i.e., infectious bites per person per month)
of malaria in West Africa from 1950 to 2014 (historical period). Simulations were conducted using
the VECTRI model, with inputs of rainfall and temperature from the bias-corrected CMIP6 data
of the following models: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, (d) CNRM-ESM2-1,
(e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD.

3.2. Future Climate Impacts on Malaria

Figure 17 represents a Hovmöller diagram depicting the EIR (in ib/p/m, i.e., infectious
bites per person per month) in West Africa during the projected period. The simulations
were conducted using the VECTRI model, which utilized rainfall and temperature data
from the bias-corrected CMIP6 dataset. The figure consists of panels (a) to (h), representing
the results obtained from different climate models, BCC-CSM2-MR, CanESM5, CNRM-
CM6-1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD,
specifically for the ssp585 scenario. This figure provides valuable insights into the potential
future changes in the EIR in West Africa under different climate model projections. Figure 17
illustrates that the EIR is higher in the ssp585 scenario compared to the ssp245 scenario.
Projections suggest an expansion of the transmission period, particularly in the southern
part of West Africa (between 4◦ N and 8◦ N). Despite this, there is a decrease in signal
intensity, indicating a reduction in malaria cases in the future, especially in higher latitudes
(above 10◦ N) to the north. This reduction can be attributed, in part, to the effects of climate
change, such as decreased rainfall and very hot temperatures. It appears that the survival
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patterns of adult mosquitoes and parasites are influenced by warm temperatures [80].
However, even with this decline in malaria, the two maximum peaks observed in the
Guinean zone to the south and the single peak observed in the Sahelian zone to the north,
as observed in the historical period, remain consistent regardless of the scenario. Additional
figures for the ssp245 scenario can be found in Supplementary Materials (see Figure S1).
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Figure 17. Hovmöller diagram of the EIR (in ib/p/m, i.e., infectious bites per person per month) in
West Africa from 2015 to 2100. The simulations were conducted using the VECTRI model, which was
driven by rainfall and temperature data from the bias-corrected CMIP6 dataset. The panels (a) to (h)
represent the results for different climate models: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-
1, (d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD
for the ssp585 scenario.

Figure 18 shows that the period of high EIRs is generally between May and November,
with a peak in September for the ssp585 scenario. Moreover, the results indicate that the EIR
will gradually decline in West Africa in future periods, both in the short term (2015–2045)
and in the long term (2075–2100). However, this reduction is more pronounced in the far
future. In contrast, the transmission has a stronger signal in the medium future (2045–2075)
compared to the other two periods. In other words, malaria will be more prevalent in the
mean future period compared to periods in the near future and the distant future, where
the signal is less pronounced. The models predict very high future temperatures [73] that
will adversely affect the life cycle of mosquitoes and parasites [81]. Although the risk of
malaria transmission in Africa follows both a peak at 25 ◦C and a decline above 28 ◦C [82],
the effects of climate change will result in temperatures higher than those of the decline. In
addition, the expected decrease in rainfall in the future will reduce mosquito breeding sites,
which will slow their multiplication [83]. The INM-CM4-8 model projects an increase in
malaria prevalence into the distant future. This trend of increasing malaria in the far future
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has also been observed with the INM-CM4-8, CanESM5, CNRM-ESM2-1, and MIROC-ES2L
models for the ssp245 scenario (see Figure S2 in Supplementary Materials).
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Figure 18. Hovmöller diagram displaying the intra- and inter-annual variations in the EIR (in
ib/p/m, i.e., infectious bites per person per month) of malaria in West Africa from 2015 to 2100. The
simulations were conducted using the VECTRI model, which was driven by rainfall and temperature
data from the bias-corrected CMIP6 dataset. Panels (a–h) represent the results for different climate
models: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, (d) CNRM-ESM2-1, (e) INM-CM4-8,
(f) MIROC-ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD for the ssp585 scenario.

Figure 19 presents the spatial distribution of the EIR of malaria in West Africa from
2014 to 2100. The data are generated through simulations using the VECTRI model, which
is driven by rainfall and temperature data from the bias-corrected CMIP6 dataset. The
EIR values are expressed in infectious bites per person per month (ib/p/m). The figure is
divided into eight panels, labeled (a) to (h), each representing a different climate model.
The climate models used in the simulations are BCC-CSM2-MR, CanESM5, CNRM-CM6-
1, CNRM-ESM2-1, INM-CM4-8, MIROC-ES2L, MRI-ESM2-0, and ENSMEAN-MOD for
ssp585. Figure 19 provides a visual representation of how the EIR of malaria is distributed
across West Africa during the specified time period under different climate scenarios. By
comparing the panels, one can observe the variations in malaria transmission intensity
across the region as influenced by different climate models and their associated rainfall
and temperature patterns. This figure provides a comprehensive depiction of the temporal
variations and patterns of malaria transmission intensity in West Africa over the specified
time period, considering both short-term fluctuations (2015–2045) and long-term trends
(2075–2100). Figure 19 shows that for the ssp585 scenario, the EIR is shifting southward.
This is because the northern part of West Africa, which is a semi-arid region close to the
Sahel [2], will become less suitable for malaria transmission in the future. This will result
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in a decrease in the prevalence of the disease [84]. However, it is important to note that
even in the southern regions where transmission will predominate, the distribution of
malaria will be reduced, especially in warm climate areas where transmission currently
occurs due to favorable temperatures [85]. Despite these trends, the southern coastal areas
will continue to be the most affected by malaria [86]. The ssp245 scenario shows similar
findings to the ssp585 scenario, but with a much stronger signal intensity. You can refer to
Figure S3 in Supplementary Materials for more details.
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Figure 19. Spatial distribution of the EIR (in ib/p/m, i.e., infectious bites per person per month) of
malaria in West Africa from 2015 to 2100. Simulations were conducted using the VECTRI model,
with inputs of rainfall and temperature from the bias-corrected CMIP6 data of the following models:
(a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, (d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-
ES2L, (g) MRI-ESM2-0, and (h) ENSMEAN-MOD for the ssp585 scenario.

Climate change, encompassing global warming and changes in rainfall patterns, has
significant implications for malaria transmission [87,88]. This study examines the rela-
tionship between the impact of climate change on the spread of malaria using the EIR
variable. in West Africa using the dynamic VECTRI model driven by CMIP6 bias-corrected
data. The findings indicate that low-latitude regions in West Africa experience abundant
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rainfall, leading to the creation of stagnant water that is favorable for the proliferation of
malaria-vector mosquitoes. These areas have a longer transmission period (May to Novem-
ber) compared to high latitudes, where the period is shorter (August–September–October)
(refer to Figures 14 and 17). The optimal temperatures accompanying this rainfall support
the reproduction and survival of malaria-carrying mosquitoes [89]. In warmer conditions,
these mosquitoes multiply more rapidly, with an estimated duration of 9 to 20 days (be-
tween 30 ◦C and 20 ◦C) for P. falciparum and a slightly faster rate for P. vivax at similar
temperatures, but more prolonged for P. malariae [90]. This situation increases the risk
of malaria transmission, which explains the high prevalence observed between 1990 and
2010, a period characterized by intense malaria transmission. Abundant vegetation cover
in low-latitude areas further contributes to the presence of mosquito breeding sites. Con-
versely, regions in northern West Africa are less affected by malaria due to the type of
soil in these semi-arid areas, which reduces the lifespan of mosquito breeding sites [91].
Additionally, the climatic conditions near the Sahel limit the survival and development of
mosquitoes (spatial map). Some studies suggest that climate change may decrease malaria
transmission in the future [85,92]. Our own results, based on the ssp585 scenario (the
most pessimistic), support this hypothesis. Climate projections indicate an increase in
extreme events like flooding, drought, and heatwaves [93], which will negatively impact
malaria prevalence. While rainfall partially favors mosquitoes by providing breeding sites,
excessive rainfall can wash away larvae, reducing the transmission risk. Prolonged drought
can also decrease water resources. Conversely, higher rainfall and temperatures can expand
mosquito habitats to new areas. Locations previously unsuitable for mosquitoes due to cold
temperatures could become more conducive to their survival and reproduction, facilitating
the spread of malaria to new regions, as indicated by our results [94]. However, the ssp245
scenario (the medium) shows similar projections with a more pronounced signal intensity.
The only difference lies in the prediction of a future increase in malaria according to the
ssp245 scenario, as found in [95].

4. Conclusions

In this study, we assessed the VECTRI model for reproducing malaria transmission
using CMIP6 bias-corrected data. Our analysis focused on the entomological inoculation
rate (EIR) and the number of malaria cases in Senegal to validate the CMIP6 global cli-
mate models used in the VECTRI model. This allowed us to identify the spatio-temporal
variations in malaria transmission in Senegal using these data. Most of the models suc-
cessfully replicated the annual cycle and transmission period of malaria in Senegal, which
occurs between August, September, and October, with a peak in September. This peak was
observed to be one month after the peak rainfall. While the models did not fully capture
the inter-annual variations throughout the study period in Senegal, the ensemble mean
of the models provided a reasonable representation and trend of confirmed malaria cases.
Regarding spatial variation in Senegal, all the models reproduced the decline in malaria
transmission from south to north. Our previous work allowed us to utilize the VECTRI
model to replicate the historical characteristics of malaria in West Africa and quantify
projected changes using two scenarios: ssp245 and ssp585. The results revealed that, during
the historical period from 1950 to 2014, regions with low latitudes (southern West Africa),
characterized by heavy rainfall, were the most affected by malaria transmission. Two
transmission peaks were observed in June and October, with a high transmission period
extending from May to November. In contrast, high-latitude regions (northern West Africa)
experienced a transmission period between August, September, and October, with a peak
in September. The variability over the years during the historical period demonstrated
that periods of high rainfall combined with moderate temperatures corresponded to high
transmission periods. Regarding the projections based on the ssp585 scenario, the results
indicated that the malaria prevalence in West Africa would gradually decrease in the far fu-
ture. However, the period of high transmission is expected to expand. Additionally, malaria
prevalence has shifted from endemic areas to regions that have become more suitable for
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transmission due to climate change. Similar results were observed with the ssp245 scenario,
but it predicted an increase in malaria prevalence in the far future. Given the discrepancies
among the different models, it is recommended to not rely solely on the results of a single
model when assessing future climate change. Instead, it is better to work with an average
of the results from multiple climate models, known as a multi-model ensemble. However,
it is important to approach these results with caution due to uncertainties associated with
both the disease model and the GCM projections for the coming years. In addition, other
vectors, such as An. funestus and An. arabiensis, which are present in West Africa, were not
taken into account in the simulation. This fact may underestimate malaria transmission
in areas where these vectors are dominant. It is worth noting that climate is not the sole
determinant of malaria transmission, as other factors such as immunity, socio-economic
development, population growth, and the effectiveness of control measures also influence
the risk of malaria. Taking these factors into account could change malaria forecasts in the
area. The impact of global warming and rainfall variations may exacerbate the spread of
this deadly disease. Therefore, an integrated approach to managing malaria and adapting
to climate change is essential to mitigating its impact in the region. These findings hold
great importance for decision makers involved in developing public health initiatives in
West Africa and beyond. They provide valuable insights for the development of vector
control and mitigation strategies. Moving forward, we plan to expand our research by
incorporating factors such as population mobility and interventions to further examine the
projected prevalence of malaria in West Africa and across the continent.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microbiolres14040145/s1, Figure S1: Hovmöller diagram intra-
annual of the EIR (in ib/p/m i.e., infectious bites per person per month) of malaria in West Africa for
the period 1950–2014: Simulations of the VECTRI model forced by rainfall and temperature of the Bias-
corrected CMIP6 data: (a) BCC-CSM2-MR, (b) CanESM5, (c) CNRM-CM6-1, and (d) CNRM-ESM2-1,
(e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0, (h) ENSMEAN-MOD for ssp245, Figure S2:
Hovmöller diagram intra and inter-annual of the EIR (in ib/p/m i.e., infectious bites per person per
month) of malaria in West Africa for the period 1950–2014: Simulations of the VECTRI model forced
by rainfall and temperature of the Bias-corrected CMIP6 data: (a) BCC-CSM2-MR, (b) CanESM5,
(c) CNRM-CM6-1, and (d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-ES2L, (g) MRI-ESM2-0,
(h) ENSMEAN-MOD for ssp245, Figure S3: Spatial distribution of the EIR (in ib/p/m i.e., infectious
bites per person per month) of malaria in West Africa for the period 1950–2014: Simulations of the
VECTRI model forced by rainfall and temperature of the Bias-corrected CMIP6 data: (a) BCC-CSM2-
MR, (b) CanESM5, (c) CNRM-CM6-1, and (d) CNRM-ESM2-1, (e) INM-CM4-8, (f) MIROC-ES2L,
(g) MRI-ESM2-0, (h) ENSMEAN-MOD for ssp245.
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