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A B S T R A C T

Coral reefs are vital for biodiversity, coastal protection, food security, and tourism, yet they face severe threats 
from anthropogenic activities and climate change, which are leading to their decline. Effective coral reef 
monitoring is essential for ecological understanding and conservation, but traditional methods are resource- 
intensive and rely on experts. To address these challenges, we present an automated, deep learning-based 
monitoring system that integrates YOLOv8, a state-of-the-art object detection algorithm, with DeepSORT, a 
robust multi-object tracking method, to identify and track coral formations in underwater video footage. Our 
system was fine-tuned using two curated and annotated datasets: AIMECORAL1 (580 images from the Southwest 
Indian Ocean) and AIMECORAL2 (282 images from New Caledonia, Pacific Ocean), encompassing diverse coral 
species and environmental conditions. The system’s performance was evaluated using established metrics: object 
detection precision, Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), 
and Identity F1 Score (IDF1). Precision improved from 59.9 % (after fine-tuning on AIMECORAL1) to 84.7 % on 
the combined datasets. The tracking system achieved a MOTA of 82.63 %, MOTP of 83.28 %, and IDF1 of 70.76 
%, demonstrating reliable multi-object tracking in complex underwater environments. We applied our frame-
work to a case study involving video transects from an outer reef site in New Caledonia, comparing data from 
2021 and 2022. This automated solution offers a scalable, cost-effective alternative to traditional monitoring 
methods, supporting seamless, large-scale reef assessment. By leveraging deep learning, our approach enables 
more efficient data collection, contributing to the protection of these vulnerable ecosystems in the face of 
increasing environmental pressures.

1. Introduction

Coral reefs are among the most diverse and productive ecosystems on 
Earth, often referred to as the “rainforests of the sea” due to their 
exceptional biodiversity (Apprill et al., 2023). These vibrant ecosystems 
serve as crucial habitats for numerous fish species and invertebrates, 
many of which are economically valuable to both local and global 
fisheries. Beyond their ecological significance, coral reefs provide 
essential services to coastal communities by acting as natural barriers 
that protect shorelines from storm surges and erosion, mitigating the 
impact of natural disasters (Carlot et al., 2023). Additionally, they 

contribute substantially to local economies through tourism and recre-
ation, attracting millions of visitors each year (Eddy et al., 2021; Obura 
et al., 2019).

Despite their immense social and ecological importance, coral reefs 
face severe threats from human activities and environmental changes. 
Climate change, marked by rising sea temperatures and ocean acidifi-
cation (Baag and Mandal, 2022), is driving widespread coral bleaching 
and weakening coral skeletons, leading to increased mortality rates (Sill 
and Dawson, 2021; Staley et al., 2017; Walker et al., 2023). Pollution 
from agricultural runoff, sewage discharge, and marine debris further 
degrades reef ecosystems by introducing harmful nutrients and 
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chemicals that promote the overgrowth of fleshy algae, turf algae, and 
pathogens (Nalley et al., 2023). Overfishing disrupts the trophic balance 
of reef ecosystems, making them even more vulnerable to these 
stressors. Additionally, coastal development and other destructive 
practices have accelerated the rapid decline of coral reefs (Good and 
Bahr, 2021). Given these escalating threats, effective and expanded 
coral reef monitoring initiatives are essential for assessing reef health 
and guiding conservation strategies. Timely and data-driven in-
terventions are crucial to preserving these vital ecosystems and miti-
gating further degradation.

Traditional coral reef monitoring methods, such as diver surveys and 
the manual analysis of still photographs or video footage, are labor- 
intensive and time-consuming for experts, limiting their large-scale 
applications and the number of sampling stations. Diver surveys 
require trained personnel to physically assess reef sites within restricted 
immersion times, which constrains spatial coverage and is further 
limited by safety considerations. While photographs and videos can help 
expand monitoring coverage (Kayal et al., 2023), their manual analysis 
demands significant observer effort and is prone to inconsistencies and 
subjectivity. Additionally, these methods cannot process continuous, 
real-time data, making frequent or large-scale monitoring challenging 
and costly, particularly in remote locations.

To address these challenges, this research introduces a novel deep 
learning-based system for the first global approach to coral reef assess-
ment. Our system leverages advanced object detection and tracking 
algorithms—YOLOv8 (Redmon et al., 2016) and DeepSORT (Bewley 
et al., 2016) —to automatically detect and track hard corals in under-
water video footage. YOLOv8 (You Only Look Once, version 8) is a state- 
of-the-art object detection model known for its high speed and accuracy, 
making it well-suited for complex underwater environments. Compared 
to Faster R-CNN, YOLOv8 is significantly more efficient, featuring a 
smaller model size (e.g., YOLOv5: 14.9 MiB vs. Faster R-CNN: 166 MiB) 
and a faster inference time (9 ms vs. 42 ms per frame) (El Ghmary et al., 
2023). Importantly, we chose YOLOv8 over YOLOv5 because YOLOv8 is 
more powerful: it introduces a more advanced backbone and head ar-
chitecture, improved feature extraction, better handling of small and 
overlapping objects, and enhanced training strategies, all these com-
ponents improve the accuracy of detection and robustness in challenging 
scenarios such as underwater coral detection. This efficiency is critical 
for real-time processing and deployment in resource-constrained marine 
monitoring applications. DeepSORT (Simple Online and Realtime 
Tracking with a Deep Association Metric) enhances YOLOv8 by 
providing robust object tracking across video frames, enabling contin-
uous and reliable monitoring of coral reef colonies over time.

DeepSORT offers several advantages that make it particularly suited 
for underwater tracking. It effectively handles occlusions, maintaining 
object tracking even when corals are temporarily obscured or out of 
view. The algorithm accurately distinguishes between multiple corals in 
complex underwater scenes, ensuring reliable identification. Addition-
ally, DeepSORT enables real-time performance, which is essential for 
continuous video analysis. Its modular architecture further enhances its 
adaptability, allowing seamless integration with various object detec-
tion models and providing flexibility for different applications.

We have enhanced our coral reef monitoring system by leveraging a 
meticulously curated dataset of underwater videos, manually annotated 
to encompass the diverse coral reef environments of the Southwest In-
dian Ocean (Eparses Islands) and the Pacific (New Caledonia). This high- 
quality dataset enables the training of our deep learning model to 
accurately classify a wide range of coral species and capture the intricate 
structures of reef ecosystems. By ensuring precise species identification 
and morphological analysis, our approach strengthens ecological as-
sessments with unprecedented accuracy. We integrated state-of-the-art 
deep learning and computer vision techniques to build a robust, auto-
mated monitoring system. We fine-tuned the YOLOv8 object detection 
model to achieve high-precision coral identification and incorporated 
DeepSORT, an advanced tracking algorithm, to enable continuous 

tracking of individual coral colonies across video sequences. This fusion 
of deep learning and multi-object tracking facilitates the detection of 
spatial and temporal changes in coral populations, supporting long-term 
reef health assessments. Our system is designed to be scalable, efficient, 
and adaptable, offering ecologists a powerful tool for monitoring coral 
dynamics while minimizing manual effort. By analyzing multiple videos 
transects recorded at different time points, our framework quantifies 
coral abundance and size variations over time, providing actionable 
insights for conservation efforts. The synergy between ecological 
expertise and cutting-edge AI solutions empowers researchers to make 
data-driven decisions, optimize marine conservation strategies, and 
enhance the resilience of vulnerable reef ecosystems.

The key contributions of this paper are as follows: 

• High-Precision Coral Detection: We optimized YOLOv8 using a richly 
annotated dataset to improve the accuracy of coral species 
identification.

• Advanced Tracking Mechanism: By integrating YOLOv8 for detec-
tion and DeepSORT for real-time tracking, we developed a reliable 
system for monitoring coral colonies over time.

• Automated Monitoring Framework: Our system processes sequential 
video transects of the same reef, recorded in different years, to assess 
temporal changes in coral population structure, growth, and 
degradation.

By combining ecological domain knowledge with AI-driven auto-
mation, our approach enhances the efficiency, consistency, and scal-
ability of coral reef assessments, contributing to global marine 
conservation efforts.

2. Literature review

2.1. Coral reef monitoring

Recent advancements in coral reef monitoring have introduced 
innovative methods and technologies to address the various challenges 
in enhancing our understanding of these vulnerable ecosystems and 
their conservation. Non-invasive monitoring techniques, complement-
ing satellite, aerial, and underwater cameras, such as photogrammetry 
and low-cost hyperspectral imagery, have been explored to enable 
detailed mapping of coral health, composition, and structural 
complexity without causing harm to the reefs (Ceccarelli et al., 2020). 
These methods provide valuable tools for conducting comprehensive 
surveys. Comparative studies have highlighted the importance of un-
derstanding the comparability and complementarity of different moni-
toring approaches. For instance, underwater visual censuses and baited 
remote underwater video stations have been compared to offer a more 
comprehensive view of reef health and biodiversity (Cheal et al., 2021).

Further innovations have focused on integrating ecosystem moni-
toring with the enhancement of habitats conducive to coral growth and 
biodiversity. The concept of artificial coral reefs—structures designed to 
provide optimal conditions for coral growth and serve as in situ meso-
cosms for assembling healthy reef communities—has been introduced 
(Baer et al., 2023). These artificial coral reef structures function as long- 
term research platforms for studying coral reef ecosystems under 
controlled conditions. In addition, various survey methods, such as 
environmental DNA (eDNA), have been highlighted for assessing fish 
and invertebrate taxonomic and functional diversity along mangrove- 
seagrass-coral reef continua (Qiu et al., 2023). Technological advance-
ments, including Google Earth Engine-based applications for managing 
shallow coral reefs using drone imagery (Zapata-Ramírez et al., 2023) 
and scalable semantic 3D mapping of coral reefs using deep learning 
(Sauder et al., 2023), have further enhanced monitoring capabilities. 
These tools enable efficient and accurate large-scale data collection and 
analysis, supporting ongoing conservation and management efforts by 
providing high-resolution, actionable data.
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2.2. YOLO and deep learning in marine biology

Recent advancements in deep learning techniques, particularly the 
integration of You Only Look Once (YOLO) models, have shown prom-
ising results in various marine biology applications. For example, a 
hybrid solution combining optical flow and Gaussian mixture models 
with YOLO deep neural networks has been introduced for fish detection 
and species classification in underwater environments (Jalal et al., 
2020). This approach has proven effective in detecting and classifying 
fish in unconstrained underwater videos. In a related development, 
YOLO Nano Underwater has been proposed as a fast and compact object 
detector tailored for marine species such as scallops, starfish, echinus, 
and holothurians. This model aimed to reduce inference time while 
maintaining accuracy (Wang et al., 2020).

Real-time recognition and tracking methods for deep-sea organisms 
have been developed using YOLO, emphasizing its speed and accuracy in 
multi-object tracking underwater (Lu et al., 2020). Building on this 
foundation, real-time marine animal detection in coral reef ecosystems 
has also been demonstrated using YOLO-based deep learning networks, 
showcasing its versatility in marine biology research (Zhong et al., 
2022). Further advancements include a lightweight underwater object 
detection method based on YOLOv4 and MobileNet v2, which strikes a 
balance between accuracy and speed for target detection in marine en-
vironments (Zhang et al., 2021). Similarly, SCoralDet, a YOLO-based 
framework, introduces innovations such as the Multi-Path Fusion 
Block and adaptive label assignment to enhance real-time soft coral 
detection in underwater environments, achieving superior accuracy and 
computational efficiency (Lu et al., 2025).

In other domains, a YOLOv3-based deep learning algorithm has been 
proposed for ship recognition under complex weather conditions, 
incorporating an improved dark channel defogging algorithm to 
enhance recognition accuracy (Chen et al., 2020). Similarly, the YOLO- 
CASS framework, integrated with a Coordinate Attention (CA) mecha-
nism, has been introduced for SAR ship detection tasks, highlighting the 
use of lightweight models for improved performance (Xie et al., 2022). 
Additionally, a few-shot multi-class ship detection algorithm, utilizing 
attention feature maps and a multi-relation detector based on the YOLO 
framework, has been developed to enhance target features in remote 
sensing images (Zhang et al., 2021).

However, evaluations of deep learning architectures for autonomous 
inspection systems in marine vessels have highlighted the limitations of 
regular object localization architectures like YOLO, particularly in 
accurately detecting corroded areas in ballast tanks (Andersen et al., 
2020).

2.3. Tracking algorithms

The application of deep learning technology in object-tracking al-
gorithms has gained significant attention in recent years. A tracking 
system developed using YOLOv4 and DeepSORT has effectively tracked 
athletes in NBA and World Cup scenes, showcasing advanced technology 
in sports tracking(Zhang et al., 2020). Additionally, a comparative study 
of various object detection and tracking algorithms for vehicle counting 
has highlighted the effectiveness of combinations such as CenterNet and 
DeepSORT, Detectron2 and DeepSORT, and YOLOv4 and DeepSORT 
(Mandal and Adu-Gyamfi, 2020).

Improvements in ship detection and tracking have been achieved 
through enhanced YOLOv3 and DeepSORT algorithms, demonstrating 
advancements in target detection capabilities (Jie et al., 2021). Evalu-
ations of SORT and DeepSORT algorithms for multi-object tracking in 
mobile robotics have highlighted the importance of data association 
metrics in navigation tasks (Pereira et al., 2022).

Further developments include a deep learning-based method for 
citrus fruit detection and tracking, which outperforms existing standard 
SORT and DeepSORT algorithms in terms of accuracy (Zhang et al., 
2022). A comparison of DeepSORT, Strong-SORT, and customized 

tracking algorithms for the automated detection and tracking of black 
cattle introduced an enhanced re-identification approach for improved 
accuracy (Myat Noe et al., 2023). Additionally, the exploration of 
computer vision solutions for handball player action recognition, uti-
lizing custom datasets and deep neural networks, demonstrated accurate 
tracking and localization (Host et al., 2023).

Additionally, the tracking of parking time violations in Thailand 
using YOLOv8 and tracking algorithms has demonstrated the applica-
tion of state-of-the-art detection techniques in real-world scenarios 
(Sharma et al., 2023). An innovative Ego-motion Aware Target Predic-
tion (EMAP) module has been introduced for robust multi-object 
tracking, integrating camera motion and depth information with ob-
ject motion models, alongside various base multi-object tracking (MOT) 
algorithms (Mahdian et al., 2024).

Moreover, recent advancements in marine monitoring have 
employed CNN-based tracking methods to enhance fish detection and 
classification by leveraging both image and temporal video data (Zouin 
et al., 2024). This approach, combining a fine-tuned Faster R-CNN 
model with a tracking module, improved detection accuracy by 12 % 
and significantly benefited rare species detection through a bidirectional 
tracking strategy. The method is cost-effective, adaptable for real-time 
use, and holds promise for large-scale marine ecosystem monitoring 
and biodiversity assessments.

3. Methodology

3.1. System overview

Our work is divided into three main parts: the first focuses on the 
fine-tuning process for coral detection, the second details the coral 
tracking process, and the third addresses the monitoring process:

3.1.1. Coral reef fine-tuning process
As shown in Fig. 1, the process begins with a YOLOv8 model pre- 

trained on ImageNet (Singh et al., 2023), which serves as the founda-
tional backbone. Leveraging transfer learning, the model undergoes a 
two-stage fine-tuning process. Initially, it is fine-tuned on the AIME-
CORAL1 dataset collected from the SWIO-Eparses Islands region. This 
stage enables the model to learn regional-specific features such as spe-
cies morphology and local environmental characteristics. Subsequently, 
the model—now specialized in AIMECORAL1 data—is further fine- 
tuned using the AIMECORAL2 dataset, sourced from the Pacific-New 
Caledonia region. This sequential transfer learning approach facilitates 
knowledge accumulation across geographies, enabling the model to 
generalize across diverse coral reef environments. The final model 
benefits from this cumulative adaptation, enhancing its ability to detect 
and differentiate between hard (reef-building) and soft (non-calcifying) 
corals. This methodology complements recent coral detection models, 
including those proposed by (Ouassine et al., 2024) and SCoralDet (Lu 
et al., 2025). by emphasizing cross-regional robustness and domain- 
specific fine-tuning.

3.1.2. Coral reef tracking process
As illustrated in Fig. 2, the process involves analyzing sequential 

underwater video frames (F1, F2, F3, etc.) captured at site x in year y. 
Initially, the video is divided into individual frames, which are simul-
taneously processed using the YOLOv8 model, fine-tuned specifically for 
the two coral datasets (AIMECORAL1 + AIMECORAL2). The detected 
coral objects are then passed to the DeepSORT tracking algorithm, 
which assigns unique identifiers to each detection and ensures consis-
tent tracking across consecutive frames. This integrated pipeline com-
bines object detection and tracking technologies, generating 
comprehensive tracking outputs for station x in year y and facilitating 
the production of comparable ecological metrics of coral reef dynamics 
(e.g., coral abundance and size) over time.
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3.1.3. Coral reef monitoring system
Our coral reef monitoring system is designed to assess reef conditions 

in terms of coral abundance and size using automated video-based 
analysis, enabling the characterization of changes in reef health over 
time and space. As shown in Fig. 3, the system can process underwater 
videos from a given site x at distinct time periods, year y and year y + i, 
to estimate changes in coral colony abundance and size over time. The 
video inputs are divided into sequential frames (Frame 1 through Frame 
z), which are processed through the tracking system (Fig. 2). The outputs 
from this system feed into a centralized metadata component, recording 
ecological metrics of coral abundance and size for each site and year.

We applied this methodology to a case study involving video tran-
sects recorded one year apart (2021 and 2022) at the same reef location 
(i.e., permanent transect) at an outer-reef site in New Caledonia. A 3-m- 
long portion of the transect was used for this demonstration. The met-
adata functions included a function to record the number of distinct 
corals identified in each video transect, and an additional function to 
compute the mean diameter of each coral as: meanDiameter = (Length 
+ Width) / 2. The mean diameter was chosen because corals are rarely 
rectangular, and the area of the bounding box drawn around the length 
and width of the coral would otherwise overestimate coral size.

3.2. Data sources

The data used in this study was obtained by extracting frames from 
recorded video transects of coral reef surveys. The Artificial Intelligence 
for Marine Ecosystems (AIME)1 project, which focuses on leveraging AI 
to monitor and protect marine ecosystems, and Track Changes, which 
develops tools and analyses to support ecosystem management, pro-
vided the datasets. Two datasets were compiled to train and evaluate the 
tracking system:

AIMECORAL12: The first dataset (Fig. 4), derived from previous 
research on coral detection using YOLOv5 (Ouassine et al., 2024), 
consists of 580 underwater images. Of these, 400 images were originally 
captured during research expeditions to various coral reef locations 
around La Reunion and other scattered islands in the Indian Ocean. 
These images represent a wide range of coral reef conditions, including 
variations in coral health, reef habitats, depths, and lighting. To enrich 
the dataset, the 400 original images were enhanced through resizing, 
rotation, and blurring, resulting in an augmented dataset of 580 images. 
This expanded version includes diverse coral species, colony sizes, and 
orientations, providing a comprehensive representation of the under-
water environment.

AIMECORAL23: The second dataset (Fig. 5), consists of 282 images, 

Fig. 1. Coral reef Fine-Tuning process.

Fig. 2. Coral reef Tracking process.

1 AIME: https://umr-entropie.ird.nc/index.php/portfolio/projets-en-cours/aime
2 AIMECORAL1: https://github.com/Youassin/AIMECORAL.git
3 AIMECORAL2: https://github.com/Youassin/AIMECORAL.git
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including 200 newly captured images from video transects recorded at 
another coral reef monitoring site in New Caledonia, Pacific Ocean 
(Kayal et al., 2023), annotated using Label Studio framework.4 Of these, 
222 are original image frames, while the remaining images are 
augmented through data augmentation techniques (resizing, rotation, 
blurring), enhancing the dataset’s ability to address the challenges of 
underwater image analysis. This dataset complements AIMECORAL1 by 
contributing recent observations and expanding the diversity of the 
training data, together providing a robust foundation for evaluating the 
tracking system under diverse conditions. (See Figs. 6 and 7)

As part of our data preprocessing, all images from both datasets were 
resized to 640 × 640 pixels using bilinear interpolation to ensure 
compatibility with the input requirements of YOLOv8. Bilinear inter-
polation was chosen because it provides a good balance between 
computational efficiency and image quality, preserving important fea-
tures and minimizing distortion or artifacts that could negatively impact 
the performance of the detection model.

3.3. YOLOv8 for object detection

YOLOv8 (You Only Look Once version 8) represents a significant 
advancement in real-time object detection, building on the strengths of 
its predecessors. It features an enhanced backbone network for 
improved feature extraction, where convolutional operations refine the 
model’s ability to detect fine-grained details and small objects, which is 
crucial for identifying different coral species and colony sizes. Mathe-
matically, feature extraction can be thought of as a series of convolu-
tional operations: 

Fl = σ(K*Fl− 1 + b) (1) 

- Fl is the feature map at layer l,
- K is the convolutional kernel,
- Fl− 1 is the feature map from the previous layer,
- b is the bias term,
- σ is the activation function (e.g., ReLU or Sigmoid).

The updated neck and head architecture refines the feature maps, 

Fig. 3. Monitoring process.

Fig. 4. Example of an image frame from the original dataset used in previous research (Ouassine et al., 2024).

4 LABELSTUDIO: https://labelstud.io
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with the head responsible for object classification and bounding box 
prediction, helping to distinguish various coral types and subtle varia-
tions in the reef environment. The head of the network can be described 
by the following: 

p = σ
(
WTFfinal + b

)
(2) 

- p represents the class probability output,
- W is the weight matrix for classification,
- Ffinal is the final extracted feature map,
- b is the bias term,
- σ is the activation function (e.g., SoftMax or Sigmoid).

B = Wʹ
boxFfinal +bʹ

box (3) 

- B represents the predicted bounding box parameters,
- Wʹ

box is the weight matrix for bounding box regression,
- Ffinal is the final feature map,
- bʹ

box is the bias term for bounding box prediction.

YOLOv8 also incorporates techniques to reduce computational 
complexity and increase processing speed, such as depth wise separable 
convolutions, which decrease the number of floating-point operations 

Fig. 5. Sample images from the newly captured dataset, highlighting their diversity and quality, including examples of soft (#1, #3, and #4) and hard corals.

Fig. 6. YOLOv8 architecture, showcasing the key components.

Fig. 7. DeepSORT architecture for object tracking and illustrating the system’s components.
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(FLOPs), enabling real-time detection with high accuracy. These tech-
niques are represented by the following equation: 

FLOPs = D2
K⋅M⋅N⋅D2

F (4) 

- D is the depth multiplier,
- K is the kernel size,
- M and N are the input and output channels,
- DF is the spatial dimension of the feature map.

3.4. DeepSORT for object tracking

DeepSORT is an extension of a simpler tracker called SORT (Simple 
Online and Realtime Tracking), which incorporates more advanced 
features like deep learning for improved object re-identification. The 
tracking process can be broken down into several mathematical 
components: 

➔ Kalman Filtering: This is a recursive state estimation process that 
involves two main steps—predict and update. The Kalman filter as-
sumes the object state is represented by a Gaussian distribution in 
terms of its position and velocity.

➔ Predict: The state of the object (e.g., position, velocity) at time t + 1 
is predicted based on the state at time t. The prediction is obtained 
using the following equations:

x̂(t+1|t) = Ft*x̂(t|t) +Bt*ut +wt (5) 

- x̂(t+1|t): The predicted state at time t + 1 given information up to time 
t.

- Ft: State transition matrix that models how the state evolves over 
time.

- Bt: Control matrix that relates control input to the state.
- ut: Control input vector (optional, if external control inputs exist).
- wt: Process noise, assumed to be Gaussian.

P(t+1|t) = Ft*P(t|t)*FT
t +Qt (6) 

- P(t+1|t): The predicted error covariance at time t + 1 given informa-
tion up to time t.

- Qt: Process noise covariance matrix that accounts for uncertainties in 
the model.

➔ Update: When a new measurement (detection) zt+1 is available, the 
prediction is updated using the following equations:

Kt+1 = P(t+1|t)*HT
t+1*

(
Ht+1*P(t+1|t)*HT

t+1 + Rt+1
)− 1 (7) 

- Kt+1: Kalman gain, which determines the weight given to the new 
measurement.

- Ht+1: Measurement matrix that maps the state space to the mea-
surement space.

- Rt+1 :Measurement noise covariance matrix.

x̂(t+1|t+1) = x̂(t+1|t) +Kt+1*
(
zt+1 − Ht+1*x̂(t+1|t)

)
(8) 

- zt+1 New measurement vector (e.g., detected object location).

P(t+1|t+1) = (I − Kt+1*Ht+1)*P(t+1|t) (9) 

- I: Identity matrix.
➔ Object Re-Identification: The appearance features of detected objects 

are extracted through a deep convolutional neural network. These 
features form a high-dimensional vector space where the Euclidean 
distance can be calculated between feature vectors. The closer the 

feature vectors are in this space, the more likely they are to belong to 
the same object.

➔ Data Association: The Hungarian algorithm is employed to solve the 
assignment problem, which optimally matches detections to existing 
tracks. The problem is formulated as a cost matrix, C, where Cji 
represents the cost of assigning detection i to track j. The cost is a 
weighted sum of the Mahalanobis distance (for motion compati-
bility) and the cosine distance (for appearance similarity). The 
Hungarian algorithm finds the assignment with the lowest overall 
cost.

3.5. Evaluation metrics

The evaluation of our tracking system is based on several established 
metrics that assess both object detection and object tracking 
performance. 

➔ Precision: The precision is used to evaluate the accuracy of the 
YOLOv8 object detection model in identifying coral structures within 
video frames. It is defined as the ratio of true positive detections to 
the total number of detections, indicating the proportion of correctly 
identified objects among all predictions and reflecting the model’s 
reliability in avoiding false positives.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(10) 

➔ Multiple Object Tracking Accuracy (MOTA): MOTA evaluates the 
overall accuracy of the tracking process, incorporating the effects of 
false positives (FP), false negatives (FN), and identity switches 
(IDSW). It is defined as:

MOTA = 1 −

(
Σt (FNt + FPt + IDSWt)

Σt GTt

)

(11) 

where FNt is the number of false negatives (missed detections) at time t, 
FPt is the number of false positives (incorrect detections) at time t, IDSWt 
is the number of identity switches at time t, and GTt is the number of 
ground truth objects at time t. MOTA provides a single score that sum-
marizes how well the system tracks objects without errors. 

➔ Multiple Object Tracking Precision (MOTP): MOTP measures the 
precision of the tracker in estimating the positions of objects. It 
calculates the average distance between the predicted positions of 
tracked objects and the actual positions. This metric focuses on the 
spatial accuracy of the tracking:

MOTP =
Σt,idt,i

Σt ct
(12) 

where dt,i is the Euclidean distance between the ground truth position 
and the predicted position for object i at time t, and ct is the number of 
correctly matched object detections at time t. 

➔ Identity F1 Score (IDF1): The IDF1 score measures the balance be-
tween the precision and recall of correctly identified objects over all 
frames. It is particularly useful in assessing how consistently the 
tracking system maintains the correct identity of objects across 
consecutive frames. It is defined as:

IDF1 =
2*IDTP

(2*IDTP + IDFP + IDFN)
(13) 

where IDTP is the number of true positive identities, IDFP is the number 
of false positive identities, and IDFN is the number of false negative 
identities. 
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➔ Track Continuity (TC): Track continuity measures the duration for 
which an object is consistently tracked without interruptions or 
identity switches. This metric is essential for evaluating the system’s 
ability to maintain continuous observations of coral structures in 
consecutive image frames, which is crucial to avoid the resampling of 
individual corals in the video-transects used for ecological studies 
and monitoring.

4. Results

4.1. Object detection performance

As shown in Fig. 8, YOLOv8l pre-trained on ImageNet, achieved a 
precision of 5.2 % on the AIMECORAL1 image dataset from the Indian 
Ocean before fine-tuning. After fine-tuning, it achieved a precision of 
59.9 % on the AIMECORAL1 dataset and 84.7 % on the combined 
AIMECORAL1 and AIMECORAL2 datasets from the Indian and Pacific 
Oceans.

4.2. Tracking performance

The performance of the tracking system, which integrates YOLOv8 
and DeepSORT, was evaluated using four metrics: Multiple Object 
Tracking Accuracy, Multiple Object Tracking Precision, Identity F1 
Score, and Track Continuity. Fig. 9 summarizes these results.

4.3. Application to coral reef monitoring

Applied to coral reef video-transects recorded at the same moni-
toring site in consecutive years, the model outputs effectively charac-
terize year-to-year changes in coral populations. While the system does 
not track individual coral colonies across different years (e.g., between 
2021 and 2022), it enables robust population-level comparisons by 
analyzing consistent spatial areas across time. The outputs show that 
overall coral abundance increased from 114 colonies in 2021 to 117 in 
2022. Additionally, the average coral mean-diameter rose from 99.22 
pixels in 2021 to 108.11 pixels in 2022, with the median mean-diameter 
increasing from 98.04 pixels to 110.14 pixels, as illustrated in Fig. 10. 
These changes suggest a general trend of coral growth and recovery at 
the site over the one-year interval.

4.4. Visual analysis

In this section, we present the visual results of our system, which is 
divided into two key parts: detection results and tracking results.

4.4.1. Detection results
The detection results demonstrate the performance of YOLOv8, with 

bounding boxes superimposed on the images to visualize the outcomes, 
as shown in Fig. 11.

4.4.2. Tracking results
The tracking results showcase the performance of the DeepSORT 

algorithm in re-identifying the same individual corals over consecutive 
frames. The visualizations feature trajectories overlaid on the sequences, 
illustrating the algorithm’s effectiveness in reliably tracking coral en-
tities, as demonstrated in Fig. 12.

5. Discussion

The integration of YOLOv8 for object detection and DeepSORT for 
object tracking allows effective monitoring of coral size and abundance, 
key indicators of reef ecosystem health. Changes in these factors such as 
increases in coral abundance or size may reflect positive ecological 
trends like recovery or reduced stress. However, it’s crucial to assess if 
these changes are statistically significant and ecologically meaningful, 
as small increases might indicate early recovery, while larger shifts 
could signal long-term improvements or stability in reef health.

5.1. Object detection analysis

The performance of the YOLOv8 model in detecting coral structures 
across different datasets reveals a high level of precision, particularly 
with the AIMECORAL2 dataset. The model achieved a precision of 59.9 
% when applied to the AIMECORAL1 dataset from the Indian Ocean, 
which is a promising result considering the complex underwater envi-
ronment and the challenge of detecting small, occluded, or damaged 
coral colonies. However, the model showed a marked improvement 
when tested on the combined AIMECORAL1 and AIMECORAL2 datasets, 
achieving a precision of 84.7 %. This increase can be attributed to 
several factors: 

● Image Quality and Consistency: The higher quality and more 
consistent images in the AIMECORAL2 dataset played a significant 
role. The use of a camera stands during data collection (Kayal et al., 
2023, p. 202) (Fig. 11). helped maintain a steady camera distance 

Fig. 8. Object detection performance of YOLOv8 on the two coral 
image datasets.

Fig. 9. Tracking performance metrics using YOLOv8 fine-tuned on AIME-
CORALL1 + AIMECORAL2 and DeepSORT.

Y. Ouassine et al.                                                                                                                                                                                                                               Ecological Informatics 89 (2025) 103170 

8 



Fig. 10. Ecological monitoring results for outer-reef site in New Caledonia in 2021 and 2022.

Fig. 11. Detection examples with bounding boxes from images set from the Indian Ocean (left) and Pacific Ocean (right). In the video-transects from New Caledonia, 
the stand attached to the camera, ensuring a fixed distance of 50 cm from the substrate.

Y. Ouassine et al.                                                                                                                                                                                                                               Ecological Informatics 89 (2025) 103170 

9 



from the transect tape, leading to clearer, more usable images for 
detection. This improved camera positioning likely reduced the 
impact of factors such as image blur, distortion, or changes in light 
conditions.

● Richer Training Data: The AIMECORAL2 dataset also featured more 
comprehensive annotations per site and a greater variety of coral 
species and environmental conditions. This added diversity in the 
dataset allowed YOLOv8 to learn from a wider range of coral mor-
phologies and environmental variables, enhancing the model’s 
ability to generalize and detect coral across different reef habitats. 
This reflects the robustness of YOLOv8’s advanced feature extraction 
capabilities, such as its enhanced backbone and neck architectures, 
which are specifically designed to handle complex and varied visual 
inputs.

The ability of YOLOv8 to detect various coral types, from branching 
corals to encrusting species, across both Indian and Pacific Ocean 
datasets demonstrates its adaptability and efficiency in a challenging 
underwater context. These results underscore YOLOv8’s potential as a 
reliable tool for continuous reef monitoring, offering a scalable 
approach for large-scale coral ecosystem assessments.

The Table 1 summarizes the performance of various coral detection 
models, including YOLOv8’s results, along with the results of other 
prominent models:

5.2. Tracking performance analysis

The integration of DeepSORT for object tracking further enhances 
the monitoring system’s capabilities. The system achieved an impressive 
Multiple Object Tracking Accuracy (MOTA) of 82.63 %, indicating its 
effectiveness in tracking multiple coral colonies simultaneously with 
minimal errors. This is particularly important for ecological studies, 
where accurately tracking individual coral colonies over time can pro-
vide crucial insights into growth patterns, mortality, and environmental 
stressors. The high Multiple Object Tracking Precision (MOTP) of 83.28 
% also highlights the model’s strong ability to consistently assign de-
tections to the correct objects in each frame.

The Identity F1 Score of 70.76 % indicates that while the system 
effectively minimizes identity switches, there is still room for improve-
ment in terms of maintaining stable identity over long sequences. In 
underwater video, issues such as occlusion, movement blur, and changes 
in coral appearance due to environmental factors (e.g., water move-
ment, lighting) can contribute to occasional tracking errors or identity 
misassignments. Despite these challenges, the results show that the 
system can reliably track corals over extended periods, providing a 
powerful tool for temporal monitoring.

Our system’s ability to accurately track coral colonies and their 
movements represents a significant step forward in the field of reef 
monitoring. This is the first known coral tracking system to employ AI- 
driven methods for such analysis, and the results suggest that AI-based 
tracking can be used effectively to monitor long-term trends in coral 
populations and health.

The Table 2 summarizes the performance of various underwater 
object tracking systems, including UMOTMA and FSTA, along with the 

Fig. 12. Tracking result with trajectory overlays illustrated as yellow trajectory lines tracing the positions of the corals through consecutive image frames in the 
video-transects. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Comparison of coral detection models’ accuracy across different datasets, 
highlighting the performance of our model on the combined AIMECORAL1 and 
AIMECORAL2 datasets.

Model Name Dataset Used Accuracy 
(%)

YOLOv5-based Coral Detection System (
Ouassine et al., 2024)

AIMECORAL1 59.9

UTD-Yolov5 (Wang and Yu, 2022) CSIRO Dataset 78.54

Our Model AIMECORAL1 & 
AIMECORAL2

84.7

Table 2 
Comparison of coral detection models’ accuracy across different datasets.

System Application Context MOTA 
(%)

UMOTMA (Underwater Multiple Object 
Tracking with Memory Aggregation)(Hao 
et al., 2022)

Underwater multiple 
object tracking

81.1

FSTA (Fish-School Tracking Algorithm) (Liu 
et al., 2022)

Underwater multiclass 
fish-school tracking

79.1

Our system (Coral Reefs Tracking) coral reefs tracking 82.63
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results of our proposed coral reefs tracking system:

5.3. Implications for temporal coral reef monitoring

The application of our system to video transects recorded in 2021 
and 2022 at the same reef site revealed interesting insights into temporal 
changes in coral abundance and size distribution. The detection of a 
slight increase in coral abundance, from 114 colonies in 2021 to 117 
colonies in 2022, indicates a modest but positive trend in coral popu-
lation dynamics at this site. This result is consistent with the broader 
ecological expectation that coral populations can show signs of replen-
ishment through recruitment and growth under favorable environ-
mental conditions (Kayal et al., 2015; Kayal et al., 2018).

Furthermore, the model’s assessment of coral size distribution 
demonstrated an increase in both the mean and median colony size. 
Specifically, the mean coral size (diameter) increased from 99.22 pixels 
in 2021 to 108.11 pixels in 2022, while the median coral size shifted 
from 98.04 pixels to 110.14 pixels over the same period. These changes 
in size metrics suggest that corals at this site are experiencing healthy 
growth, which is an encouraging indicator of ecosystem vitality. Larger 
colony sizes may also be associated with higher reproductive potential, 
suggesting that the reef could be on a positive trajectory in terms of 
ecosystem regeneration.

While these findings are based on a limited set of transects for 
demonstration purposes, they highlight the utility of our system in 
detecting and quantifying ecological changes over time. By automating 
the detection and tracking of corals in video transects, our system opens 
up new possibilities for continuous, high-frequency monitoring of reef 
health. This approach is particularly valuable for assessing long-term 
trends and the impacts of environmental stressors, such as ocean 
warming, bleaching events, or changes in local water quality.

Moreover, the use of computer vision techniques for coral moni-
toring holds significant promise for large-scale reef assessments, espe-
cially in remote or difficult-to-reach areas. As the system becomes more 
refined and applied to broader reef areas, it could provide critical in-
sights into coral mortality processes, the effects of conservation in-
terventions, and the overall resilience of coral reef ecosystems in the face 
of climate change and other threats.

5.4. Limitations and future work

While our automated system performs effectively, several limitations 
can be addressed in future work to further enhance its contribution to 
ecological monitoring of coral reefs. First, the coral detection system 
currently identifies coral structures broadly without distinguishing be-
tween specific coral genera or ecological functions (e.g., hard versus soft 
corals, different morphotypes), which remains a key area of research. 
Second, while the tracking capacity of the model was demonstrated on 
individual corals in consecutive frames from the same video survey, 
preventing the recounting of the same corals across different frames in 
population abundance assessments, the model was not tested for 
tracking individual corals across separate videos taken at the same site 
in different years. Such an application would provide valuable insights 
into annual coral dynamics (e.g., survival, growth, recruitment) (Kayal 
et al., 2023). Currently, the system focuses on characterizing changes in 
coral abundance and size at the population level, and further develop-
ment is required to enable tracking of individual corals over time. 
Addressing these limitations will enhance the system’s accuracy and 
provide deeper insights into coral reef dynamics.

Future work will focus on several key areas to enhance coral reef 
analysis. First, data augmentation and expansion will involve incorpo-
rating more diverse datasets, including various types of coral reef hab-
itats such as reef flats, reef slopes, and patch reefs, as well as additional 
environmental variables, to improve the model’s generalizability. Ef-
forts will also be directed toward enhanced coral classification, aiming 
to discriminate between hard and soft corals, identify different coral 

morphologies (such as branching, massive, and tabular forms), and 
enable taxonomic classification at the genus level. Model optimization 
will be pursued by investigating advanced deep learning architectures 
and incorporating attention mechanisms to better distinguish visually 
similar coral genera through the detection of subtle differences in cor-
allite structures. Additionally, integration with other sensors such as x- 
ray, sonar, or environmental sensors will be explored to gain a more 
comprehensive understanding of coral reef functioning. Finally, opti-
mizing the system for real-time video analysis will be prioritized, as this 
capability could be crucial for rapidly assessing coral health following 
disturbances like bleaching, hurricane effects, or anthropogenic 
destruction, thereby supporting conservation and adaptive management 
efforts.

6. Conclusion

This study presents a novel deep learning-based system that in-
tegrates YOLOv8 for object detection and DeepSORT for multi-object 
tracking to automate coral reef monitoring. The proposed approach 
achieves significant advancements over traditional methods, demon-
strating high accuracy in coral detection (84.7 %) and robust tracking 
performance (Multiple Object Tracking Accuracy: 82.63 %) across 
diverse datasets. By leveraging deep learning, the system effectively 
addresses critical challenges encountered in manual monitoring, such as 
the labor-intensive nature of coral observations, which often result in 
limited spatial coverage in traditional surveys.

The ability to automatically analyze a large number of underwater 
videos for coral identification and tracking between consecutive frames 
enables the assessment of coral population abundance and sizes, 
providing valuable insights into reef ecological health, structure, and 
resilience. As demonstrated with our video transects recorded in 2021 
and 2022 at the same reef location, our automated system offers data- 
driven insights into coral population dynamics.

This innovation represents a scalable, cost-effective solution for 
large-scale coral reef monitoring, aiding researchers and marine pro-
tected area managers in protecting these vital ecosystems. Future efforts 
will focus on enhancing the system’s generalizability by incorporating 
more diverse datasets, enabling real-time processing on larger datasets, 
and expanding its functionality through the integration of additional 
sensors and advanced deep-learning architectures aimed at coral genus- 
level identification. These enhancements are designed to advance the 
field of marine ecosystem monitoring, ensuring timely and informed 
decision-making for effective coral reef conservation.
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