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Abstract

The SurfaceWater and Ocean Topography (SWOT) mission aims to provide essential data
on river width, height and slope in order to estimate worldwide river discharge accurately.
This mission offers a powerful tool for monitoring river discharge in dynamic coastal areas,
like the Saigon-Dongnai estuary in Southern Vietnam. However, estimating discharge of tid-
ally-influenced rivers using SWOT measurements can be challenging when hydraulic vari-
ables have the same order of magnitude as SWOT measurement errors. In this paper we
present a methodology to enhance discharge estimation accuracy from SWOT measure-
ments based on simulated SWOT products at the 200 meter node resolution and varying
river reach size. We assess measurement error variability and its impact on discharge esti-
mation by employing a Monte Carlo analysis. Our approach significantly improved discharge
estimation in the Saigon tidal river, reducing RMSE from 1400m3/s to 180 m3/s and increas-
ing R2 from 0.31 to 0.95. Notably, the percentage of Monte Carlo particles meeting the 30%
rRMSE threshold rose from 0% to 79%. This study underscores the feasibility of obtaining
reliable discharge estimates from SWOT data in complex coastal areas where hydraulic var-
iables are of the same order of magnitude as SWOT errors. Additionally, the proposedmeth-
odology to improve discharge estimation from SWOTmeasurements is widely adaptable as
it can be applied to similar regions and can be combined with any discharge estimation
method.

1. Introduction
Geophysical processes occurring at the surface of the Earth in low elevation coastal zones
(LECZs) are primarily regulated by the interplay of river discharge and the intricate dynamics
imposed by the coastal ocean. Within this transitional zone, there exists a region often referred
to as “the tidal river”. This area is profoundly influenced by tidal movements, surges, and the
variations in mean sea level but remains devoid of significant salinity. It is a stretch of the river
that is impacted by these marine forcing processes, yet it has historically received relatively
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little attention from the geophysical research community [1]. Notably, these tidal river reaches
can extend inland for hundreds of kilometers, and in the case of larger rivers, they often rival
or surpass the estuary in terms of both length and sometimes even area. Predicting water levels
in tidal rivers or estuaries is a challenge due to the highly variable flow conditions that charac-
terize these environments. The hydrological dynamics within a tidal river are inherently dis-
tinct, marked by a constant flux in water levels driven by the interplay of hydro-meteo-marine
phenomena. Consequently, the hydrodynamic processes governing tidal rivers defy simplifica-
tion, showcasing traits such as complexity, non-stationarity, and nonlinear behavior [2].

Remote sensing observations play a pivotal role in providing information on the spatial var-
iations of water surface elevations across diverse hydrodynamic scenarios. In the last two
decades, satellite radar altimeters, which excel at gauging sea level fluctuations, have intro-
duced significant advancements in our understanding of ocean dynamics [3, 4]. However,
their utility has been notably impeded when applied to coastal environments, where data accu-
racy decreases as these instruments approach coastal regions. This limitation is further exacer-
bated by the inherent constraints of nadir altimetry missions, exemplified by missions like
Topography Experiment/POSEIDON (TOPEX/POSEIDON) and the Jason series [5]. These
missions grapple with challenges posed by inter-track spacing and temporal resolution, which
curtail their ability to effectively observe smaller-scale coastal phenomena, including shelf
tides, coastal tides, wind-induced effects, and storm surges [6]. A transformative shift in the
landscape of coastal remote sensing is to be expected with the National Aeronautics and Space
Administration/Centre National d’Études Spatiales (NASA/CNES) Surface Water and Ocean
Topography (SWOT) satellite mission, launched on December 15th, 2022.

The SWOT satellite signifies a leap forward in our capacity to estimate global river dis-
charge, substantially enriching our observational foundation for understanding worldwide
hydrological phenomena [7]. River discharge measurements offer a comprehensive synthesis
of upstream water cycle processes, rendering them indispensable data resources for gaining
insights into hydrology across scales, from watershed dynamics to continental-scale patterns.
Nonetheless, a substantial portion of the world’s rivers remains unmonitored, owing to vari-
ous constraints encompassing resource limitations and data sharing challenges [8, 9] espe-
cially in the inter-tropical zone [10]. Remote sensing techniques aimed at gauging river
discharge hold the potential to extend global observation capabilities, even in regions lacking
conventional gauging infrastructure. However, this expanded reach comes with trade-offs.
Remote sensing methods generally entail compromises, encompassing reduced measure-
ment precision, accuracy, and temporal sampling frequency when compared to in-situ dis-
charge monitoring practices [11]. SWOT’s capability of capturing parameters such as river
water surface elevation (WSE) (also referred to simply as river water level), top width, and
longitudinal water surface slope (also referred simply as slope) [12] enables estimations of
river discharge.

The SWOT satellite, equipped with advanced radar altimetry technology and unprece-
dented spatial resolution, offers an innovative opportunity to quantify river discharge across
the globe with unparalleled accuracy. However, harnessing SWOT data for discharge estima-
tion requires comprehensive evaluation and optimization, particularly in complex hydrologi-
cal settings such as tidal rivers. The SWOT team’s objective for the coastal ocean is to
“quantify the water exchanges between coastal regions, estuaries, deltas, and wetlands” [13]. It
is in accordance with this objective that we propose an evaluation of the capability of future
SWOT satellite measurements in estimating water discharge in the Saigon river situated in
Southern Vietnam. The Saigon river is a tidal river located in a densely populated, highly com-
plex LECZ. The study of the hydrodynamics and hydrology of the Saigon River is important in
water resource management, flood control, and navigation in the Ho Chi Minh City (HCMC)
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megalopolis. Nonetheless, this case study has the potential to be applied to other megalopolis
sharing comparable human and geophysical environments.

Another reason for the interest in how SWOT satellite measurements can be used to esti-
mate tidal river discharge is the alarming flood vulnerability in coastal and other low-lying cit-
ies [14]. In particular, HCMC is one of the most vulnerable cities in the world with respect to
climate change [15]. Some of these vulnerabilities are water-related issues such as lack of
urban services like drinking-water management, sanitation, rainwater drainage and com-
pound flooding. Specifically, flooding vulnerability is linked to sea level rise, rainfall intensifi-
cation, storm surges and ground subsidence while 65% of the city is located at less than 1.5 m
above sea level. In addition, HCMC is home to almost 10 million inhabitants and its popula-
tion grows at about 3% per year with these risks posing a threat to many livelihoods [15]. Sev-
eral studies consider HCMC as a hotspot of vulnerability to climate change [16–21]. However,
there has been little comprehensive studies regarding the potential of SWOT in an estuary set-
ting such as the one in this study area. Furthermore, we suggest an innovative approach to sim-
ulate SWOT data and enhance its quality. This method is adaptable and can be applied to
other intricate tidal river systems within dynamic coastal areas.

Given the accessibility of hydrological variables derived from SWOT, characterized by spe-
cific resolutions and accuracy thresholds, the scientific community has put forward multiple
methodologies for estimating river discharge. These methodologies are constructed upon dis-
tinct assumptions and simplifications. For instance, Durand et al. 2016 [22] conducted a com-
parative analysis, evaluating the efficacy of five different algorithms that leverage SWOT-like
observations in assessing flow rates across 19 major rivers. While this examination revealed
that, in nearly every case (specifically, 14 out of 19 instances) at least one approach yielded sat-
isfactory performance as indicated by a root mean square error below the 35% threshold, it
underscores that achieving precise and dependable discharge estimation remains a topic of
concern. However, SWOT capabilities for estuaries and tidal rivers have received compara-
tively little attention [5, 23, 24]. This calls for continued research efforts in the field to enhance
the accuracy and reliability of these estimations, particularly in LECZs, a focus that this paper
seeks to address.

In this paper we propose an original methodology to obtain high spatial resolution water
level time-series directly from in-situ measurements. Then, we re-create SWOT-like measure-
ments of water level and slope along the Saigon river, coupled with innovative reach size selec-
tion to estimate river discharge. Through an extensive analysis, we evaluate the performance of
this methodology under various conditions, including reach sizes, discharge values, and error
considerations. Our investigation explores the limitations of the expected SWOT-like dis-
charge estimation errors and proposes an enhanced approach that leverages SWOT data more
effectively. We assess the impact of reach size, a critical parameter in SWOT-based discharge
estimation, on accuracy and computational efficiency. By conducting a Monte Carlo analysis,
we scrutinize the sensitivity of discharge estimates to errors inherent in SWOT-like measure-
ments [25, 26]. Ultimately, this research advances the broader goal of harnessing the potential
of SWOTmeasurements to enhance our understanding of tidally forced riverine systems, con-
tributing to improved water resource management and environmental conservation efforts in
vulnerable LECZ.

2. Materials andmethods
2.1. Study area description
The Saigon-Dongnai River system is located in Southern Vietnam (Fig 1). The Saigon river
branch is a complex river system, subject to several human and environmental interactions
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before flowing into the Dongnai River and finally, into coastal waters. It flows from its source
in Cambodia to the Dau Tieng Reservoir (270 km2 and 1,580 � 106 m3) before passing through
the HCMC megalopolis. In total, it is 225 km long and its catchment area has a surface of
about 4,800 km2. The Dau Tieng Reservoir was designed for flood control, water supply, and
preventing saltwater intrusion [27, 28]. The hydrodynamics of the Saigon River are influenced

Fig 1. Map of the study area. The Saigon-Dongnai river system and the two SWOT satellite swaths (hatch pattern) and nadir lines (dotted line) that
cover the area. The river is covered by both swaths in areas where the red and blue hatch patterns intersect and form squares. The water level gauges
namely, Cu Chi (CC), Hobo 1 (H1), Hobo 2 (H2), Hobo 3 (H3), La Garden (LG) and Dongnai 2 (DN2) are shown as well as the ADCP campaign
locations (triangles). The spline spatial interpolation nodes at every kilometer is illustrated as white dots. The area shown in the larger map is
represented by the green box in the overview map. Basemap used in main map can be downloaded from www.igismap.com/vietnam-shapefile-
download-country-boundaryline-polygon (under CC BY 3.0 IGO licence. For terms of use please see: https://map.igismap.com/terms-of-services).
Basemap used in the overview map downloaded from www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries (public
domain data see www.naturalearthdata.com/about/terms-of-use/ for the terms of use).

https://doi.org/10.1371/journal.pwat.0000226.g001
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by various factors including tidal processes, freshwater inflows, and sediment transport. Tidal
dynamics play the most significant role in shaping the river’s behavior, with tidal amplitudes
ranging from 1 (neap tide) to 4 meters (spring tide) [29] and water discharge ranging between
-1500 m3s−1 and 2000 m3s−1[30]. Tidal fluctuations dominate the totality of the river Saigon
from the confluence with the Dongnai river to the outlet of the Dau Tieng reservoir. In fact, at
the seasonal scale the river water levels are controlled by the coastal water levels [20].

The HCMCmegalopolis, with a population of approximately 10 million inhabitants, is
located along the banks of the Saigon River and is the largest and most densely populated city
in Vietnam. The population is concentrated in the heart of the city, with the urban districts
housing about 6.7 million inhabitants [31]. The city’s rapid urbanization, economic develop-
ment, and population growth have posed challenges including river pollution, flood risk, and
wastewater management [32, 33].

2.2. Measurement campaign
A high-resolution dataset comprising water level measurements and Acoustic Doppler Cur-
rent Profiler (ADCP) campaigns was collected during a 2-month field campaign conducted in
the study region, as part of a collaborative effort between the Centre Asiatique de Recherche
sur L’Eau (CARE, Vietnam) and the Institut des Géosciences de l’Environnement (IGE,
France). The campaign was specifically designed to support the hydraulic study aimed at
assessing the applicability of the SWOT satellite to the Saigon-Dongnai estuary system. The
dataset includes water level measurements at six selected locations along the Saigon River,
namely Cu Chi (CC), Hobo 1 (H1), Hobo 2 (H2), Hobo 3 (H3), La Garden (LG) and Dongnai
2 (DN2) (triangles in Fig 1). The selection of these locations was bound by on-site constraints
(inaccessibility to the riverbank, challenges in sensor installation, among others) and aimed to
align with two primary criteria: i. comprehensively covering key sections of the Saigon River,
particularly within Ho Chi Minh City and immediately upstream, areas of significant societal
interest and impact; and ii. maintaining a distance of approximately 10 km between sensors to
emulate the spatial resolution of SWOT reach products.

These measurements were obtained by a submersed brick-and-pipe installation of Onset
HOBO U20L-01 water level loggers measuring absolute pressure at a time resolution of 15
minutes. To ensure accuracy, the water level measurements were barometrically compensated
using air pressure measurements. The vertical reference point of the pressure sensors is differ-
ent and unknown. In order to be able to compare the signals at different locations, all signals
are normalized [34]. Furthermore, we use a slope correction parameter in our discharge esti-
mation method that is used to compensate for the fact that the reference points of each loca-
tion are different and unknown (explained in Sect. 2.6). Additionally, discharge measurements
were obtained through three 24-hour ADCP campaigns during both symmetric and asymmet-
ric tidal regimes at two locations (yellow triangles in Fig 1). Despite its relatively short dura-
tion, the dataset provides unprecedented spatial and temporal resolution for water level and
discharge measurements. The synchronous recording of multiple water level sensors along the
river enables the study of water surface slope profiles. Furthermore, the concurrent discharge
measurements facilitate the calibration of the discharge estimation law proposed in this paper.
More detailed information on this dataset can be found in [34].

2.3. The SWOTmission
The SWOT mission, led by the National Aeronautics and Space Administration (NASA) and
the French space agency (Centre National d’Études Spatiales, CNES), in collaboration with the
Canadian and UK space agencies (CSA and UKSA, respectively), aims to contribute to the
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fundamental understanding of the Earth system by providing high spatial resolution and
global measurements for ocean and inland water. The launch of SWOT took place on Decem-
ber 16, 2022, and the mission is currently in the science phase. The first validated river prod-
ucts of water surface elevation (WSE), width, and slope are expected to be available in April
2024. The mission focuses on ocean and terrestrial water bodies including lakes, reservoirs,
wetlands, and rivers, with specific criteria such as surface area exceeding 62,500 m2 and rivers
wider than 100 m, with the goal of potentially reaching 50 m [12, 35, 36]. The SWOT satellite’s
core payload includes a Ka-band radar interferometer (KaRIn) operating at a frequency of
35.75 GHz (wavelength of 8.6 mm) and with a near-nadir incidence angle [37].

In terms of spatial coverage and revisit time, the SWOT satellite aims to achieve near-global
coverage between 78˚S and 78˚N with a revisit time of approximately 21 days. The satellite will
employ radar observations with pixels of about 6 m in the azimuth direction and varying from
10 to 60 m in the direction perpendicular to the azimuth. To meet mission requirements for
observation accuracy, averaging procedures will be applied to the radar data [7, 12, 38]. The
resulting SWOT products will be available within two swaths of 50 km width, separated by a
gap of 20 km known as the “nadir gap”.

The SWOTmission’s capabilities enable the measurement of water extent, water surface
elevation, and slope, facilitating the estimation of river and global storage variation at sub-
monthly, seasonal, and annual time scales [12]. The SWOT observations, with their finer spa-
tial resolution, provide a global inventory of terrestrial water bodies, offering insights into
lakes, reservoirs, wetlands, and rivers. The relative error for water-surface-area measurements
is targeted to be less than 15% [9]. Additionally, SWOT products combined with hydraulic
models or flow laws show potential to estimate instantaneous river discharge within 35% root-
mean-square error [22].

The Saigon-Dongnai river system is monitored by two SWOT orbits: 90 and 271 (Fig 1 red
and blue, respectively). This system will therefore receive two observations within the period
of 21 days (i.e., satellite revisit time) namely, on day 4 (orbit 90) and day 10 (orbit 271).
Together both orbits cover the entirety of the system at least once per 21 day period. The Sai-
gon portion of the system is observed in an heterogeneous way in both space and time due to
the nadir gaps on both orbits intercepting the river. Starting from the upstream Dau Tieng res-
ervoir, the first 56 kms are observed on day 10; the section from kilometers 56 to 94 is observed
on day 4 and the remaining section from kilometer 94 to the confluence with the Dongnai
river is monitored on day 4 and 10. On the other hand, the Dongnai river is observed in its
entirety by both orbits’ right swaths.

The section of the Saigon river under scope extends from the CC water level gauge to the
DN2 gauge downstream of the Saigon confluence with the Dongnai river (Fig 1, triangles).
This section of about 90 km in length will be monitored once per orbit from CC to a few kilo-
meters downstream of H1 and twice per orbit on the remaining river reaches up to DN2. The
main interest of this study is to understand the potential of SWOT observations to observe
instantaneous discharge in a low elevation tidal river given SWOT’s expected errors. Hence,
the temporal resolution of the SWOT observations is not taken into account.

2.4. Spatial interpolation of in-situ measurements of water level
In order to provide spatial continuity to the data, we chose to employ a quadratic spline inter-
polation technique. We explored alternative interpolation techniques, including higher-order
polynomials and Kriging, but these methods did not yield results as favorable as the second-
degree polynomial interpolation (results not presented). The alternative techniques frequently
introduced unrealistic characteristics into the water surface due to their increased degrees of
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freedom. To define the spatial framework for our interpolation, we used the SWOT River
Database (SWORD) [39]. The SWORD database contains the SWOT mission’s river vector
products for each SWOT overpass, as detailed in the Jet Propulsion Laboratory (JPL) internal
document [25]. These vector data products are the definition of SWOT river reaches and
nodes for all observable rivers (width> 100 m) in the world. The database provides high-reso-
lution river nodes (200 m) and reaches (� 10 km). The 200 meter nodes defined in SWORD
for the Saigon river serve as the basis for our spatial interpolation.

The quadratic spline interpolation technique was employed to estimate water levels at
unmeasured locations between the in-situ measurement points. This method utilizes a piece-
wise continuous quadratic polynomial to fit the available data points and provide a smooth
representation of the water level distribution along the river. The quadratic spline interpola-
tion relies on the assumption that the river water level between two measurement points can
be approximated by a quadratic function. Let’s consider a set of in-situ measurements at dis-
tinct locations along the river, denoted as (xi, yi), where xi represents the spatial coordinate
and yi represents the measured water level at that point. The quadratic spline interpolant, I(x),
between two consecutive data points (xi, yi) and (xi+1, yi+1), can be expressed as follows [40]:

IðxÞ ¼ aiðx � xiÞ
2
þ biðx � xiÞ þ ci; for xi � x � xiþ1

ð1Þ

where ai, bi, and ci are the coefficients of the quadratic polynomial determined by solving a sys-
tem of equations based on the boundary conditions and smoothness constraints. These con-
straints ensure that the interpolant is continuous and has continuous first derivatives at the
data points. Boundary conditions define the behavior of the interpolant at the endpoints of the
data points. In our case, we used the natural boundary condition, where the second derivative
at the boundary points is set to zero. This condition ensures a smooth and continuous curve
throughout the interpolation range. Smoothness constraints impose constraints on the first
derivatives of the interpolant at the internal points. These constraints guarantee a smooth tran-
sition between adjacent quadratic polynomials and prevent any sudden changes or discontinu-
ities. The quadratic spline interpolation method enforces these constraints, resulting in a
physically sound representation of the water level variation along the river’s surface. To com-
pute the quadratic spline interpolation, we utilized Python’s Scipy library [41]. The library pro-
vides a convenient function that automatically determines the parameters for smoothness
based on the data distribution. By using these parameters, the spline interpolation adapts to
the characteristics of the in-situ measurements, ensuring an optimal balance between smooth-
ness and fidelity to the observed data. The extensive amount of interpolant functions, I(x),
results in a considerable number of parameters (ai, bi, and ci) as interpolant functions are com-
puted piece-wise at each 15-minute timestep throughout the 1.5-month period of in-situ mea-
surements (not shown).

To assess the accuracy of the spline interpolation, we employ a framework encompassing
three steps: firstly, we evaluate the RMSE and R2 between the measured and spline time-series,
then we compute and compare different tidal metrics, also called datums, that are important
for understanding the tidal behavior at each gauge location and its evolution as the tidal wave
progresses upstream [42]. Finally, we use wave celerity as a reliable proxy for validation. In a
tidal river such as the Saigon River, the tidal wave propagates upstream and is captured by all
sensors along the river. The wave celerity is independent of a vertical reference for water level
measurements and can serve as a reliable validation parameter for the spline interpolation
results. The process of calculating wave celerity involves identifying points where the first
derivative of water level measurements is zero at each sensor location. These points, which cor-
respond to the maxima and minima of water levels, are tracked from the downstream to the
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upstream sensors to determine travel times. Subsequently, wave celerity in the Saigon river is
derived by computing the velocity of these maxima and minima, a procedure that can also be
applied to the spline interpolation using the corresponding water level data at sensor locations.
A close agreement between the measured and interpolated wave celerities provides confidence
in the accuracy of the spline interpolation method to capture the tidal propagation dynamics
that govern the water level surface. To contextualize the wave celerity results, we considered
several river geomorphological metrics for each river section. Along-river length (La), straight-
line length (Ls), and sinuosity were quantified to characterize the shape and meandering nature
of each river section. Sinuosity is calculated as the ratio of La to Ls:

Sinuosity ¼
La
Ls

ð2Þ

This ratio provides a measure of the river’s curvature and its deviation from a straight-line
course. Rivers can have sinuosity ranging from 1 to 3 (i.e., the river length is three times longer
than the valley).

For the period of water level measurements the following metrics were computed according
to the general tidal datum computation procedures as described by the US National Oceanic
and Atmospheric Administration [43]:

MHHW (Mean Higher-HighWater):MHHW is defined as the arithmetic mean of the
higher high water heights of the tide observed over a specific period of measurement. Solely,
the higher high water of each pair of high waters of a tidal day is included in the mean. It is a
reference point for the highest high tides, which occur during spring tides.

MHW (Mean HighWater): is defined as the arithmetic mean of all of the high water
heights observed over a specific period. It is a reference for the typical height of high tides and
is used for navigation, coastal construction, and environmental monitoring.

MRL (Mean River Level):MRL is the average water level over a time period.
MLW (Mean LowWater): is defined as the arithmetic mean of all of the low water heights

observed over a specified period and serves as a reference for the typical height of low tides. It
is used for navigation, especially in shallow waters.

MLLW (Mean Lower-LowWater):MLLW is defined as the arithmetic mean of the lower
low water heights of the tide observed over a specific period. Only the lower low water of each
pair of low waters of a tidal day is included in the mean. It serves as a reference point for
extremely low tides and is used for coastal planning and environmental monitoring.

Gt (Great Diurnal Range):Gt represents the difference between the mean higher high
water (MHHW) and the mean lower low water (MLLW). A larger GT implies a greater differ-
ence between high and low tides.

Mn (Mean Range of Tide):Mn is the difference between MHW and MLW. It provides a
general measure of the typical tidal variation in a given location.

DHQ (Mean Diurnal HighWater Inequality):DHQ is the difference in elevation between
MHHW and MHW. It helps assess variations in daily high tide levels.

DLQ (Mean Diurnal LowWater Inequality):DLQ is the difference in elevation between
MLLW and MLW. Similar to DHQ, it assesses variations in daily low tide levels.

2.5. Simulation of SWOT satellite products: Water level and slope
In order to conduct an extensive study of error analysis on water level and slope and their
impact on discharge estimation using SWOT satellite data we need to simulate these variables.
This section outlines the methodology we employed to simulate SWOT water level and slope
products.
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2.5.1. “True” water level and slope. From the previous section’s spline spatial interpola-
tion, we consider the water level obtained as the “true” water level of the river. For the purpose
of this study, we focus on the river section around our two sites where ADCP campaigns were
done, specifically location H1 and H3 (yellow triangles in Fig 1). However, we will only pro-
vide the results for section H1 due to its lower hydraulic complexity compared to location H3,
which is located downstream in the center of Ho Chi Minh City. At this location the Saigon
river is connected to a complex canal network making the estimation of discharge more chal-
lenging. A recent 1D numerical modelling effort has showed that canals influence the dynam-
ics of the river Saigon locally but have negligible influence on the river as a whole [44].
Additionally, at H1 we conducted two ADCP campaigns during both symmetric and asym-
metric tidal regimes, allowing us to calibrate our model (to be explained in the next section)
based on different tidal types whereas at H3 we only conducted one ADCP campaign.

At the exact location of the ADCP campaign (H1), we consider the spline water level as the
true water level, ztrue. To compute the slope, we select two water level nodes, n0 and nN, around
H1 with a distance of 1 km between them, as illustrated in green in Fig 2. The true slope, Strue,
is then calculated using the following equation:

Strue ¼
nN � n0

x
ð3Þ

with x the along-river distance between the two nodes. This approach allows us to determine
the true slope value for our discharge estimation.

To simulate SWOT water level and slope products, we employ two different approaches.
Firstly, we aim to obtain the SWOT variables as they are expected to be outputted by the satel-
lite’s measurements. Secondly, we propose a new methodology to compute water levels and
slope from the SWOT water level products at 200 m resolution.

2.5.2. Approach 1: Expected SWOT products. In this approach, we compute the average
water level from the 200 m nodes for the 10 km reach between nodes ni and nN as illustrated in
red in Fig 2, where N is the total number of water level nodes in the reach and ni the ith water

Fig 2. Flowchart of methodology. Flowchart of data used for estimating discharge based on the spline water level
(green) to obtain the “True” discharge; based on water level as expected to be provided directly by SWOT (red) to
obtain the “SWOT-like” discharge; and based on water level using improved reach selection methodology (blue) to
obtain an improved SWOT-like discharge. Discharge is obtained from a modified Manning-Strickler law referred to as
the “MODEL” in this flowchart.

https://doi.org/10.1371/journal.pwat.0000226.g002
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level node. The SWOT-like water level, zswot, is thus given by:

zswot ¼
1

N

XN

i¼0

ni ð4Þ

The obtained value for zswotmimics the water level product as directly provided by SWOT
at the reach scale. We then add the expected noise of 10 cm [12, 45–47] directly to this value.
To study the variability of the error, we employ a Monte Carlo white noise approach with stan-
dard deviation equal to the expected error and mean equal to zero as has been done in previous
studies [22, 36]. For the computation of SWOT-like slope, we follow the methodology pro-
posed by the SWOT team [48] at reach level where the first, n0, and last node, nN, of a given
reach are used to compute the slope as follows:

Sswot ¼
nN � n0

x
ð5Þ

where x is the distance spanned by the reach. Similar to the SWOT-like water level, �Zswot , we
directly add the expected SWOT error of 1.7 cm/km [12, 45–47] to the computed slope using a
Monte Carlo white noise approach. Using this methodology we obtain 1000 samples of
SWOT-like water level and slope with associated errors that correspond to the 10 km reach
products that will be provided by the SWOTmission.

2.5.3. Approach 2: Improved methodology for water level and slope estimation from
SWOT observations. The order of magnitude of the Saigon river’s slope (cm/km) is the same
as the expected SWOT error’s magnitude. Thus, we anticipate that SWOT slope products may
introduce significant errors in discharge estimation when used as is. To mitigate this, we pro-
pose a new methodology to compute water levels and slope from the SWOT water level prod-
uct at 200 m resolution, which are expected to have an error of 35 cm [12, 45]. To incorporate
this error, we add it to the 200 m nodes of the spline using the Monte Carlo white noise
approach as previously described. The water level, z2, is taken as the average water level
between points n0 and nN (Fig 2, blue illustration):

z2 ¼
1

N

XN

i¼0

ni ð6Þ

For the slope computation we take a reach length of x km and compute two supplemental
water levels: the first, P1, is the average of the nodes in the section between point n0 and the
ADCP point (yellow triangle in illustration, Fig 2) with a length of x/2 km, and the second is
the average of the nodes in the section between the ADCP location and nN, also with a length
of x/2 (point P2). The slope is then computed as follows:

S2 ¼
P1 � P2

x
ð7Þ

We conduct experiments for reach lengths equal to 10, 15, 20 and 25 km. These lengths
translate to using 50, 75, 100 and 125 nodes for the water level and slope computations, respec-
tively. By utilizing more information from the SWOTmeasurements and increasing the num-
ber of river nodes used to compute the hydraulic variables we expect a reduction in the error
associated with discharge estimation.

The simulated water levels and slopes, obtained through the aforementioned approaches,
are utilized to estimate the discharge. The details of the discharge estimation process are
explained in the subsequent section.
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2.6. River discharge estimation
The instantaneous river discharge was estimated by applying a stage-fall-discharge (SFD) rat-
ing curve adapted from the general Manning-Strickler law (Eq 8), previously tested and vali-
dated by [49] and used to predict the total discharge of the Saigon river in [20, 30]. The
discharge is estimated as follows:

QðtÞ ¼ signðSÞ � K � AwðzðtÞÞ � RhðzðtÞÞ
2=3
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSðt þ DtÞj

p
ð8Þ

with Q the water discharge [m3s−1], K the Manning-Strickler coefficient [m1/3s−1], Rh = Aw/Pw
the hydraulic radius [m], Aw the wet section [m2], Pw the wet perimeter [m]. Note that Aw and
Pw are both a function of the water level and thus, of time. Furthermore, in Eq 8 above z(t) =
ztrue(t) for computing the “True” discharge, z(t) = zswot(t) for approach 1 and z(t) = z2(t) for
approach 2. The term sign(S) is equal to the sign of the slope, S, taking the values of +1 or -1.
The energy slope, S [-], is assumed equal to the water slope and is computed as in sub-sections
2.5.2 and 2.5.3 for approaches 1 and 2, respectively. Since there is no fixed datum between
river gauges, we normalize all signals by mean removal, as previously mentioned. This makes
the tidal harmonics oscillate about zero for all gauge locations thus, making them comparable.
However, datum errors still persist and a vertical adjustment is required for discharge compu-
tation. This adjustment is done via an additional term, dz, which serves as an extra tuning
parameter of our model and allows it to better capture the surface slope dynamics of the Saigon
river. This parameter is introduced in the slope computation as follows:

SðtÞ ¼ sþ
dz
x

ð9Þ

where s = Strue for computing the “True” discharge, s = Sswot for approach 1 and s = S2 for
approach 2. In addition, a time lag, Δt, is required to account for the propagation of the tidal
wave between the two points used to compute the slope. This method allows the computation
of three time-series of discharge namely: the “True” discharge which is used as the benchmark
for the discharge computed using approach 1, the SWOT-like discharge, and using approach
2, the improved SWOT-like discharge.

2.7. Performance evaluation indices
The evaluation of the applied approaches was carried out using two statistical indicators: root
mean square error (RMSE)and the coefficient of determination (R2). The RMSE has been eval-
uated both in terms of absolute (m3/s) and relative (rRMSE expressed as a percentage) values.
These indicators have been widely used in literature for this purpose [36]. Those performance
indices have been evaluated referring to the discharge time-series obtained via the Monte
Carlo approach for each of the methods described ind section 2.6. The equation, range, and
optimal value of each index are presented in Table 1.

Table 1. Equations and optimal values of statistical indices.Qi and Qi
true denote the predicted discharge from SWOT-like variables and “True” discharge from spline var-

iables, respectively, at time i.

Indices Equation Range Optimal values
Root Mean Square Error RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i¼1
ðQi � Qi

trueÞ
2

q
0 to1 0

Coefficient of determination R2 ¼ 1 �

P
i
ðQitrue � Q

iÞ2
P

i
ðQitrue �

�Qitrue Þ
2

0 to 1 1

https://doi.org/10.1371/journal.pwat.0000226.t001
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3. Results
3.1. Validation of the spline spatial interpolation
In Fig 3, the time-series from the in-situ water level gauges are shown in the top panel. Six
curves are shown for each river gauge from the most downstream (bottom, darker green) to
the most upstream (lighter green, top) locations DN2 and CC, respectively. As can be seen,
tidal fluctuations govern the water level dynamics at all locations. In fact, the Saigon river’s lev-
els are influenced by tides up until the Dau Tieng reservoir (Fig 1) [20]. The panels 0 to 3 illus-
trate the spatial spline interpolation (black points) and in-situ measurements (triangles) for
the four SWOT passes that would occur during the time period of in-situ measurements. For
simplicity, we assume that the first pass over the Saigon river (Orbit 1, Day 4, Pass 90) happens
on the first day of in-situ measurements. Additionally, the SWOT spatial coverage of the river
is indicated in red (pass 90) and blue (pass 271).

Fig 3. Illustration of spline interpolation and SWOT satellite passes. Time-series from in-situ water level gauges at all locations (top panel). Water
levels have been displaced by 3 meters for easier reading. Measurements are shown in increasingly darker shades of green from closest to source to
further away from source namely, CC, H1, H2, H3, LG and DN2. Additionally, 4 time stamps corresponding to what would be the SWOT satellite
temporal resolution during the period of in-situ measurements are indicated by black, vertical lines. Panels 0 to 3 correspond to the timestamps in the
top panel. The results of the spatial interpolation using a second degree spline are illustrated for the SWOT passes over the region namely, pass 90 and
271. Additionally, the SWOT spatial coverage of the river is shown in red (pass 90) and in blue (pass 271). Triangles in panels 0 to 3 indicate in-situ
measurements whereas the black dots are the interpolated spline values at the SWORD nodes location.

https://doi.org/10.1371/journal.pwat.0000226.g003
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At the DN2 gauge different tidal regimes can be seen propagating upstream. At the begin-
ning of the time-series, a symmetric regime can be seen where different cycles of high and low
tide present similar amplitude (Fig 3, from timestamps 0 until November 8th, 2022 in top
panel). Then, the tide fluctuations transition to an increasingly asymmetric semi-diurnal
regime (timestamp 1) that passes through a diurnal phase (around November 17th, 2022)
before cycling back towards a symmetric regime.

From panels 0 to 3 in Fig 3, it can be seen that the quadratic spline fits well to the measured
values. From the depicted examples the H3 location seems to be consistently below the spline
curve whereas H2 is consistently above. In Table 2, the RMSE and R2 values for all locations
are presented. The results reveal that river measurements at the H2 and H3 locations differ the
most from the spline values with, respectively, RMSE of 10 cm and -8 cm. At the other loca-
tions RMSE values are below ±10 cm agreeing to the measured values. Additionally, the R2 val-
ues at all locations are above 0.96 which indicates that the spline replicates well the tidal
fluctuations along the river.

The tidal metrics are reference water levels describing the characteristic periodic variations
in sea surface elevation relative to a vertical datum at a particular location. Table 3 presents
tidal metrics for the six gauge locations in meters. For each location, two values are provided
in the format “measured, spline.” The first value represents the metric computed from mea-
surements (in-situ data), while the second value represents the metric computed from the
spline interpolation. The results show consistency in the measured MHHW and MHW values
across all locations with values ranging from 0.56 to 1.14 meters and 0.50 to 1.03 meters,
respectively. Note that both metrics increase from upstream to downstream within the Saigon
river (from CC to LG) and then decrease between the Saigon river (LG) and the Dongnai river
(DN2). The spline-based estimates closely align with the measured values, demonstrating the
reliability of this method for capturing the tidal dynamics. However, the aforementioned
behaviour between the Saigon and Dongnai rivers is not captured by the spline-derived met-
rics as they monotonically increase from upstream to downstream.

Table 2. Water level Root Mean Square Error (RMSE) and coefficient of determination R2 at each measurement location. Comparison between the spline fit and in-
situ data.

River Location CC H1 H2 H3 LG DN2
RMSE [m] 0.02 0.09 0.10 -0.08 -0.05 0.04

R2 0.99 0.98 0.96 0.99 0.99 0.99

https://doi.org/10.1371/journal.pwat.0000226.t002

Table 3. Tidal metrics for each gauge location in meters. Two values are shown in the form “measured, spline”: the first is the value computed frommeasurements and
the second is the value computed from the spline.

CC H1 H2 H3 LG DN2
MHHW 0.56, 0.56 0.78, 0.79 0.84, 0.88 0.89, 0.85 1.14, 0.98 1.07, 1.06
MHW 0.50, 0.51 0.72, 0.72 0.77, 0.81 0.81, 0.76 1.03, 0.88 0.95, 0.95
MRL -0.11, -0.11 0.00, 0.02 0.00, 0.05 0.00, -0.04 0.15, 0.00 0.00, 0.00
MLLW -1.28, -1.28 -1.26, -1.25 -1.37, -1.32 -1.46, -1.49 -1.49, -1.65 -1.80, -1.81
MLW -0.81, -0.81 -0.79, -0.76 -0.84, -0.78 -0.89, -0.91 -0.83, -0.99 -1.04, -1.03
Gt 1.84, 1.84 2.04, 2.04 2.21, 2.20 2.35, 2.35 2.63, 2.63 2.87, 2.87
Mn 1.31, 1.31 1.51, 1.47 1.61, 1.59 1.69, 1.67 1.86, 1.87 1.99, 1.98
DHQ 0.06, 0.05 0.06, 0.07 0.07, 0.07 0.09, 0.09 0.10, 0.10 0.12, 0.12
DLQ -0.47, -0.47 -0.47, -0.49 -0.53, -0.54 -0.57, -0.58 -0.66, -0.66 -0.77, -0.77

https://doi.org/10.1371/journal.pwat.0000226.t003
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MRL values exhibited some variability among locations. The expected measured values for
this metric should be around zero which is the case for most stations. However, at the CC sta-
tion MRL is negative (-0.11 m) and at LG it is positive (0.15 m) potentially due to a measure-
ment bias in the sensors. Spline interpolation provided MRL estimates generally close to zero
for all locations. It matched the MRL at the CC station but not at the LG station. This could
indicated that the spatial interpolation removed the bias from the measured data at LG as it is
located between two other measurement points whereas at CC it could not as it was the last
point in the studied river reach.

The results show consistency in the measured MLLW and MLW values across all locations
with values ranging from -1.28 to -1.8 meters and -0.81 to -1.04 meters, respectively. As for
MHHW and MHW, these metrics increase (in modulus) as we travel downstream but do not
show the decrease in value from LG to DN2. The spline-based estimates closely follow the
measured values, reinforcing the robustness of the interpolation technique. Other metrics
such as Gt, Mn, DHQ and DLQ are computed fromMHHW, MHW, MLLW and MLW. As
expected these derived metrics show similar characteristics as those discussed and a close
agreement between the measured and spline-derived values.

In the Saigon river the tidal wave progresses upstream and is detected by all sensors distrib-
uted along the river’s course. Wave celerity, a parameter unaffected by the vertical reference of
water level measurements, emerges as a dependable means of accessing the capacity of the
spline interpolation to propagate the tidal wave. By calculating wave celerity through the use of
available in-situ measurements, we can compare it with the wave celerity estimated from the
spline-generated water level data. Table 4 presents the wave celerity computed from measured
values and from the spline interpolation for river sections between sensor locations.

The results show an average wave celerity along the whole domain of 6.4 m/s based on mea-
sured data and 6.8 m/s for the spline interpolation across the domain. Wave celerity values
show variability between river sections as these are of different lengths and sinuosity. The most
sinuous section is H3-LG with the river being 3 times longer than the straight line course.
Overall, the spline is capable of simulating the propagation speed of the tidal wave over the
whole domain. However, it seems to have problems in the parts of the river that are most sinu-
ous namely, H2-H3 and H3-LG. This proxy highlights that variations in wave propagation are
influenced by the interpolation method and its capacity to capture the timing of high and low
waters.

3.2. Calibration of the discharge model using ADCP measurements
Two ADCP (Acoustic Doppler Current Profiler) campaigns were conducted in November
2022 and December 2022, with the utilization of a Rio Grande 600 kHz instrument [50]. Over

Table 4. Along-river length, La, straight-line length, Ls, and sinuosity of each river section between two sensors.Wave celerity is computed for each river section. The
“Measured” column refers to the wave celerity computed frommeasurements and the “Spline” column to wave celerity computed from the spline interpolant. The last row
shows the wave celerity for the whole domain.

River section La [km] Ls [km] Sinuosity Measured [m/s] Spline [m/s]
CC-H1 27.8 16.8 1.65 6.0 5.3
H1-H2 10.5 9.2 1.14 5.6 6.0
H2-H3 8.2 3.8 2.56 6.3 7.3
H3-LG 15.9 5.3 3.00 7.5 6.9
LG-DN2 23.5 13.8 1.70 6.8 6.8
CC-DN2 85.9 48.5 1.77 6.4 6.8

https://doi.org/10.1371/journal.pwat.0000226.t004
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a 24-hour period, hourly gauging activities were carried out, encompassing two transects, at
locations H1 and H3 (indicated by yellow triangles in Fig 1) using a boat equipped with a geor-
eferenced ADCP device. Nevertheless, the subsequent discussion will focus solely on the H1
location and results for the H3 location can be found in the Figs A-D in S1 Appendix. These
ADCP campaigns aimed to calibrate the estimation of water discharge, calculated according to
Eq 8 [49]. The methodology followed for calibration was a one-at-a-time procedure that mini-
mizes the RMSE between predicted and observed values. The parameters K, Δt, and dz were
adjusted to ensure that the model-derived discharge matched the observed data. Calibration
was performed under both symmetric (November 2022) and asymmetric (December 2022)
tidal conditions to ensure the robustness of the discharge estimation law. Once calibrated, the
parameters are kept constant. In addition, these ADCP campaigns were employed to deter-
mine the river’s cross-section characteristics and compute Aw and Rh as functions of water
level. Considering adverse conditions, ADCP measurement errors were assessed at 10%, with
a minimum error threshold set at 100 m3/s [51]. The optimal results were obtained with a
Manning-Strickler coefficient of K = 25 m1/3/s, a time step of Δt = -75 minutes, and a vertical
resolution of dz = 0.05 meters. Results are depicted in Fig 4. The November 2022 campaign
exhibited notably accurate outcomes. In contrast, the December 2022 campaign yielded
slightly less precise results but remained in good agreement with the data. The discernible
influence of the asymmetric semi-diurnal tidal signal accounted for some of the discrepancies
[30]. The discharge time-series for the full period under scope is presented in S1 Fig. The com-
bined RMSE for both campaigns was 450 m3/s, equivalent to approximately 22% of the maxi-
mum observed discharge. Error sensitivity to the calibration parameters was performed and is
presented in S2 Fig.

Fig 4. Comparison of river water discharge.Water discharge Q comparison between model results (dashed, green), ADCPmeasurements (black
points), SWOT-like discharge (red) and improved SWOT-like discharge (shades of blue) at the H1 location: (A) symmetric tide during campaigns of
November 2022 and (B) asymmetric tide during campaign of December 2022. The curves for SWOT-like discharge and improved SWOT-like
discharge are the average of the 1000 Monte Carlo simulations of discharge. All curves were obtained using the optimal parameters namely, K = 25m1/3/
s, dz = 0.05 meters and dt = −75 minutes.

https://doi.org/10.1371/journal.pwat.0000226.g004
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3.3. Discharge estimation using SWOT-like measurements
Fig 5 provides a comprehensive view of the performance and accuracy of SWOT-like discharge
estimation techniques based on satellite-derived measurements. In Fig 5A SWOT-like dis-
charge is plotted against the “True” discharge. SWOT-like discharge (red in the figure) is
obtained from measurements of water level and slope as SWOT would directly provide and
including its expected errors. This estimation of discharge has an R2 value of 0.31. This signi-
fies a weak correlation between the estimated and “true” discharge values. This discrepancy is
particularly noticeable as SWOT-like discharge consistently underestimates true discharge,
primarily for higher discharge values (in modulus). Notably, this underestimation is most
apparent within the range of positive discharge values spanning from 0 to 1000 m3/s.

A notable improvement in discharge estimation is introduced through the enhanced
SWOT-like discharge estimation methodology, applied to a 10 km reach size (lightest blue in
Fig 5A). The resulting R2 value rises to 0.72, signifying a more robust correlation with true dis-
charge values in comparison to the prior SWOT-like approach. The enhancement is especially
evident in cases of negative discharges and positive values exceeding 1000 m3/s. Nevertheless,
we note a persisting underestimation of discharge within the range of 0 to 1000 m3/s,
highlighting ongoing challenges in accurately assessing moderate positive discharge values.

In Fig 5A the effect of varying reach sizes on SWOT-like discharge estimation can be seen
with reaches ranging from 15 km to 30 km (increasing shade of blue in figure). As reach size
increases, the R2 value progressively improves, with an improvement from an R2 of 0.88 at 15
km to 0.94 at 30 km. However, it is essential to acknowledge that this increase in reach size
introduces error, leading to a deterioration in discharge estimation accuracy for values
between 0 m3/s and 1000 m3/s, often yielding negative discharge estimates within this range.
Furthermore, the figure shows that beyond a 20 km reach size the improvement in the R2

Fig 5. R2 and RMSE.A) comparison between model discharge taken as “True” discharge, SWOT-like discharge at 10 km reach size and improved
SWOT-like discharge at 10, 15, 20, 25 and 30 km reach sizes. Each particle corresponds to the one timestamp in the discharge time-series from each
Monte Carlo run. B) RMSE boxplots fromMonte Carlo runs between model discharge take as “True” discharge, and SWOT-like discharge at 10 km
reach size and improved SWOT-like discharge at 10, 15, 20, 25 and 30 km reach sizes.

https://doi.org/10.1371/journal.pwat.0000226.g005
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value becomes less significant. This suggests a diminishing return in accuracy associated with
larger reach sizes.

Fig 5B provides a visual representation of the Root Mean Square Error (RMSE) values
between the “True” discharge and SWOT-like discharge estimates for a range of Monte Carlo
runs. The x-axis comprises six entries, denoting the different methods: SWOT-like (red), 10,
15, 20, 25 and 30 km reaches (shown as increasingly darker shades of blue). Each entry corre-
sponds to a boxplot in the figure, derived from the analysis of time-series from 1000 Monte
Carlo runs.

The first box corresponding to SWOT-like discharge estimation exhibits substantial errors
across all Monte Carlo runs. The median RMSE for SWOT-like discharge is around 1500 m3/s
(red box in Fig 5B), indicative of a significant discrepancy between the estimated values and
the “True” discharge. Moreover, the presence of relatively high outlier RMSEs, reaching values
around 800 m3/s, underscores the variability and extent of errors associated with discharge
estimated directly from SWOTmeasurements in this region. These findings emphasize the
limitations of the SWOT satellite and the challenges it presents in accurately approximating
“True” discharge values. Conversely, the introduction of the improved SWOT-like methodol-
ogy with a 10 km reach size results in a enhancement in discharge estimation accuracy. The
median RMSE decreases to approximately 700 m3/s, signifying a considerable improvement in
accuracy compared to the SWOT-like approach. Furthermore, the maximum RMSE values
remain below 1200 m3/s, demonstrating a reduced spread in error magnitudes. This marked
improvement suggests that the presented methodology for a 10 km reach size is critical in
enhancing the precision of discharge estimation from SWOTmeasurements.

As the reach size increases beyond 10 km, the boxplots in Fig 5B illustrate a trend of dimin-
ishing RMSE values. The median RMSE values progressively decrease with larger reach sizes,
seemingly reaching a plateau at approximately 180 m3/s. This plateau suggests that further
increases in reach size do not significantly improve the accuracy of discharge estimation, and
the methodology approaches a stable level of error. However, it is noteworthy that even at
reach sizes between 20 km and 30 km, certain outlier maximum RMSE values remain high at
around 800 m3/s, indicating that challenges persist in accurately estimating discharge for spe-
cific Monte Carlo runs. Consequently, a 20 km reach size appears to be an optimal choice for
discharge estimation from SWOTmeasurements, as improvements in median RMSE are not
significant with increasing reach size.

Fig 6A presents the relative Root Mean Square Error (rRMSE) values expressed as a per-
centage (%) between “True” discharge and SWOT-like discharge estimates. These values are
shown across the different reach sizes under scope (10 km, 15 km, 20 km, 25 km, and 30 km).
Each data point in the figure corresponds to the rRMSE value for a timestamp in the 1000
time-series obtained from the Monte Carlo method, capturing the variability of discharge esti-
mation under different conditions. As can be seen for all estimation methodologies under
investigation, the rRMSE values exhibit a trend of increasing error as discharge approaches
zero. This trend implies that discharge estimation accuracy diminishes as discharge values
approach the lower end of the spectrum.

SWOT-like discharge estimation emerges as the least accurate method, with the highest
rRMSE values (red, Fig 6A). The minimum error in discharge is of 50% rRMSE observed at
the highest discharge values. This suggests that the SWOT-like methodology struggles to accu-
rately estimate discharge along the full spectrum of discharge values of the Saigon river. Even
at the highest discharge values, the rRMSE remains relatively high. Conversely, when imple-
menting the improved SWOT-like methodology with a 10 km reach size (lighter blue particles
in Fig 6A), a substantial reduction in rRMSE values is observed. The minimum rRMSE drops
to approximately 20% for the largest discharge values, reflecting a considerable enhancement

PLOS WATER Enhancing discharge estimation from satellite data in a tidal river environment

PLOSWater | https://doi.org/10.1371/journal.pwat.0000226 February 12, 2024 17 / 25

https://doi.org/10.1371/journal.pwat.0000226


in accuracy compared to the SWOT-like approach. However, rRMSE values greater than 30%
persist for discharge values ranging from -1500 m3/s to +1500 m3/s, indicating that challenges
in accurate estimation remain within this range.

As in previously seen, the figure demonstrates that increasing the reach size leads to a
decrease in rRMSE values. For instance, at a 20 km reach size (indicated by the intermediate
blue data points), the minimum rRMSE approaches 10% for the largest discharge values,
representing a substantial improvement. Nevertheless, for discharge values between -800
m3/s and +1200 m3/s, rRMSE values exceeding 30% are still observed, highlighting the per-
sistence of estimation challenges. Additionally, beyond the 20 km reach size, further
increases in reach size do not substantially improve the minimum rRMSE at the largest dis-
charge values. However, these larger reach sizes do result in an increase in the quantity of
particles falling below the 30% error threshold. For instance, at a 30 km reach size, discharge
values between -600 m3/s and 1000 m3/s are still above this threshold. This suggests that
while the reach size increase may not substantially enhance accuracy at the highest discharge
values, it does contribute to reducing the number of instances where the error exceeds 30%
rRMSE.

In Fig 6B the bar plot of the percentage of Monte Carlo particles that are below 30% is
shown. As can be seen, we increase the number of particles below this threshold from 0% to
25.6% when applying the improved discharge estimation method for the same reach size. Fur-
thermore, as reach size increases so does the number of particles below the threshold. Increas-
ing reach size from 20 to 30 km increases the number of particles below the 30% rRMSE
threshold by 9.3%. Consequently, selecting an appropriate reach size is a crucial consideration
for achieving a balance between minimizing error and effectively capturing discharge
variability.

Fig 6. rRMSE.A) rRMSE between model discharge take as “True” discharge, and SWOT-like discharge at 10 km reach size and improved SWOT-like
discharge at 10, 15, 20, 25 and 30 km reach sizes. Each particle corresponds to the rRMSE value for a given timestamp in a given Monte Carlo run. The
horizontal dashed line represents the 30% rRMSE threshold. B) Bar plot of percentage of Monte Carlo particles below or equal to 30% rRMSE.

https://doi.org/10.1371/journal.pwat.0000226.g006
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In order to study the influence of lower SWOT measurement errors on our discharge esti-
mation methodology, we conducted a sensitivity analysis. The first, publicly available observa-
tions of SWOT were remarkably promising, surpassing the SWOT mission team’s
expectations, and revealing the satellite’s impressive ability to discern water nodes in river sys-
tems and bodies of water with widths less than 100 meters [13]. Hence, we proceeded to
explore the ramifications of reduced SWOTmeasurement errors. Specifically, we assessed the
implications of reducing errors to 30 cm (a 5 cm reduction from the original error) and 25 cm
(a 10 cm reduction from the original error) at 200-meter nodes, followed by the application of
our methodology under these revised error scenarios. The outcomes of this sensitivity analysis
are presented in S3 Fig. We provide comprehensive insights into the rRMSE and the propor-
tion of Monte Carlo particles that fall below the critical 30% rRMSE threshold. Notably, the
reduction of SWOTmeasurement errors to 30 cm yielded a subtle improvement. These
improvements were reflected in the percentages of Monte Carlo particles associated with
improved SWOT discharge estimates, which ranged from 29.4% to 82% for reaches of 10 to 30
km in length. Similarly, the further reduction to 25 cm in measurement error yielded
improved results, demonstrating percentages between 33% and 83.6% of Monte Carlo particles
below the 30% rRMSE threshold for various reach sizes spanning from 10 to 30 km. It is
important to note that, despite the favorable outcomes observed with the reduced SWOT error
scenarios, SWOT-like discharge Monte Carlo particles consistently remained above the speci-
fied threshold. However, the overall improvements, albeit notable, remained somewhat limited
in magnitude. This restricted enhancement can be attributed to the inherent sensitivity of our
simplified discharge estimation model, particularly concerning flow transitions during the
shift from positive to negative flow regimes. Consequently, the marginal increment in the
number of particles falling below the 30% rRMSE threshold underscores the inherent con-
straints of our methodology in capturing the intricate dynamics governing tidal flows.

4. Discussion
4.1. Validation of the spline spatial interpolation
It was found that spline interpolation generally fits well with the measured values however, it is
noteworthy that the H3 gauge measurements consistently fall below the spline, while H2 gauge
values consistently exceed it. This pattern is also reflected in the root mean square error
(RMSE) values, which are notably higher at these two locations compared to other gauge loca-
tions. This divergence can be attributed to the fact that H3 and H2 stations are situated in an
area characterized by high sinuosity (as indicated in Table 4) and an intricate artificial canal
network. These two factors exert a significant influence on the propagation of the tidal wave
and the hydraulic behavior of the river. Consequently, the spline interpolation encounters
challenges in accurately fitting the measurement values at these locations. We also found that
the behaviour between the Saigon and Dongnai rivers is not captured by the spline. The spline
method is not adapted for simulating adequately discontinuities, such as the confluence
between the two rivers.

In contrast, we observed that the spline interpolation aligns well with measurements when
considering metrics such as Mean Higher High Water (MHHW), Mean High Water (MHW),
Mean Lower LowWater (MLLW), and Mean LowWater (MLW). This consistency suggests
that the spatial interpolation method simulates average high and low tides in a coherently over
the studied time frame. As anticipated, these metrics, as derived from measurements, exhibit a
decline as one moves upstream along the Saigon River, progressing from LG to CC. However,
it’s worth noting an exception with the DN2 gauge, which shows a decrease in these metrics
compared to the LG gauge, even though DN2 is the most downstream measurement location.
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This discrepancy arises because DN2 is situated in the Dongnai River, which is considerably
wider (by a factor of 3, sometimes more in some regions) and shallower (also by a factor of
two) compared to the Saigon River. The spatial interpolation method does not capture this
behavior, as it is primarily a mathematical construct.

The use of wave celerity as a proxy to evaluate the spline’s ability to propagate the tidal wave
yielded promising results across the entire domain. This methodology proved effective in sim-
ulating wave celerity. A crucial aspect for discussion pertains to the spatial variability of wave
celerity. The spline interpolation performs well in river sections characterized by lower sinuos-
ity (below a value of 2). However, it is evident that the spline-derived wave celerity diverges
from measurements within the city center area, where the river exhibits the highest sinuosity,
notably between H2 and LG. In the lower reaches of tidal rivers, wave celerity is primarily
influenced by friction [1]. Since the spline method represents a mathematical interpolation
rather than the physical properties of the water surface, it encounters difficulties in accurately
representing wave celerity in highly sinuous sections of the river, leading to either overestima-
tion or underestimation. Moreover, these sinuous areas are often characterized by hydraulic
infrastructure and frequent dredging activities, which further contribute to the discrepancies
between spline-derived and measured wave celerity values. Dredging, in particular, has a sig-
nificant impact on this parameter [52].

4.2. Discharge estimation using SWOT-like measurements
SWOT-like discharge obtained from measurements of water level and slope, mirroring the
data SWOT satellite would directly provide, demonstrates a relatively weak correlation with
“True” values. This observation holds true for both negative and positive discharge values.
Notably, an immediate improvement in correlation becomes evident when we implement our
new methodology to compute these variables at the same reach size. In fact, the correlation
coefficient (R2) rises to 0.95 for a reach size of 30 km. However, it is noteworthy that as the
reach size is increased, the estimation of discharge values within the 0 to 1000 m3/s range
tends to be underestimated compared to SWOT-like discharge (as shown in Fig 5A). This
behavior is indicative of the limitations inherent in our discharge estimation method, which
relies on the Manning-Strickler law and assumes uniform flow conditions. In situations where
the discharge is about to transition from positive to negative or vice versa, uniform flow condi-
tions do not apply, leading to discrepancies. This also elucidates why larger positive and nega-
tive values of discharge exhibit a better correlation with “True” values, as flow conditions tend
to be closer to uniform when the discharge sign remains constant. Furthermore, as depicted in
Fig 4, the mean Monte Carlo profiles for SWOT-like and improved SWOT-like discharge
exhibit no temporal discrepancy or time shift. This observation reinforces the notion that the
consistent errors mentioned earlier are primarily attributed to the limitations of our discharge
estimation model.

Our analysis also revealed that increasing the reach size results in a decrease in discharge
RMSE values, eventually reaching as low as 180 m3/s (as demonstrated in Fig 5B). Neverthe-
less, it’s worth noting that even for larger reach sizes, several outliers persist, with RMSE values
reaching up to 800 m3/s. The presence of these outliers can be attributed to the challenges asso-
ciated with accurately estimating discharge around zero values, as discussed previously.

Furthermore, our examination revealed that within the range of -500 to +500 m3/s, the rela-
tive RMSE (rRMSE) values surge to more than 200 percent. This phenomenon can be attrib-
uted to the same factors discussed earlier. However, it is encouraging to note that our method
substantially improves the proportion of Monte Carlo particles that fall below the 30 percent
rRMSE threshold, widely considered as satisfactory [9, 53, 54]. The reduction in rRMSE values
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can be achieved for discharge values outside the aforementioned range, primarily because we
leverage a greater number of SWOT data points for water level. Despite their larger associated
errors, the abundance of data points provides more information, which, when averaged, effec-
tively enhances discharge estimation. This aspect is particularly relevant in the context of the
Saigon River, given its tidal nature where slope values are of the same order of magnitude as
the slope measurement errors provided by SWOT [26].

5. Conclusion
SWOT satellite-based river discharge estimates are poised to offer global discharge informa-
tion for rivers with widths exceeding 100 meters, encompassing some of the world’s largest
unmonitored basins. These discharge datasets hold the promise of catalyzing a transformative
shift in global hydrological research, contingent on the acceptance of their space-time sam-
pling and associated uncertainties by the global scientific community. The computation of
SWOT discharge estimates will rely on relatively straightforward flow laws, which involve the
amalgamation of SWOT measurements encompassing water surface elevation (WSE), river
width, slope, and parameter estimates related to flow laws.

This study aimed to explore the potential role of the upcoming SWOT satellite data in esti-
mating discharge, a vital variable in various hydraulic and hydrology-related applications. In
particular, tidal rivers and their associated floodplains represent critical yet understudied envi-
ronments that serve as focal points for various human activities and provide habitats for
diverse ecosystems. Managing flood risk in these areas is of paramount importance, necessitat-
ing comprehensive monitoring and a profound understanding of their hydrological dynamics.
In this context, we employed a stage-fall-discharge rating curve derived from the widely recog-
nized Manning-Strickler law [49] to evaluate the potential of SWOT satellite measurements to
estimate in real-time water discharge levels in the Saigon-Dongnai River system.

Our analysis focused on a 86-kilometer segment of the Saigon-Dongnai River system in
Southern Vietnam, leveraging in-situ water level measurements to obtain a second-degree
spline spatial interpolation of the river mimicking that of SWOT (every 200 meters). As the
main purpose of this study was to evaluate SWOT-error propagation to discharge estimations
as a function of reach size we did not consider the temporal resolution of SWOT data. Further-
more, for low latitude regions the greatest advantage of SWOT is its spatial resolution (river
variables at the scale of 10-km reaches or 200-m nodes) rather than its temporal resolution (2
to 3 measurements per month). These simulated measurements were intentionally corrupted
with random errors adhering to mission requirements [25]. Especially interesting are the effect
of SWOT-derived slope errors on discharge estimates as these are within the same order of
magnitude as the Saigon river’s slope variations. Subsequently, we estimated discharge values
by employing five different river stretch resolutions (equal to 10, 15, 20, 25 and 30 km), follow-
ing the methodology of [35, 36].

The comparison between synthetic true and SWOT-based discharge at the gauging stations
underscores the satellite’s potential. The discharge records anticipated from the satellite mis-
sion appear capable of providing reliable assessments of the flow regime at various locations.
Among the tested discretizations, 20 km stretches exhibited the best performance to computa-
tion time ratio, with mean root mean square error (RMSE) values lower than 200 m3/s and
70.6% of Monte Carlo particles below 30% relative Root Mean Square Error (rRMSE). How-
ever, it’s imperative to acknowledge that the proposed methodology encounters challenges
when estimating discharge values during the transitions between high and low tides, given the
non-uniform flow conditions in these situations. Consequently, the estimates are most reliable
for high, consistently uniform discharges, whether positive or negative.
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Future applications of this research will delve into the potential of spatio-temporal interpo-
lation criteria, such as data assimilation or statistical approaches, which are expected to
enhance spatial and temporal coverage of the river network within the mission’s constraints
(i.e., low revisit time). It’s crucial to note that the reliability and completeness of the acquired
hydrological information will also hinge on the specific characteristics of the rivers, including
discharge variability, seasonality, and more. Rivers with relatively stable discharge patterns are
likely to yield more accurate discharge estimations through satellite monitoring. In contrast,
rivers characterized by rapid flood waves and high discharge variability may pose challenges
for capturing all hydraulic conditions through satellite observation. Subsequent analyses will
further investigate these aspects, emphasizing discharge sensitivity to the satellite overpass
period and the significance of the river’s hydrologic regime. Additionally, since the proposed
methodology is independent of the discharge estimation model it can be applied using any
other approach for discharge estimation, such as hydraulic numerical models. An effort
towards an accurate modelling of the Saigon-Dongnai system is already under way [44].

In conclusion, the methodology put forth to enhance SWOT output and, consequently,
improve discharge estimation can be extended to other regions facing data scarcity, hindering
continuous monitoring of hydraulic variables. It is crucial to emphasize that in the case of the
suggested discharge estimation law it the availability of at least one ADCP campaign at the spe-
cific location of interest, and adherence to the assumptions outlined in the proposed model is
required.
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