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Dynamic optimization of thermophilic hydrogen and by-product production requires the use of robust models
coupled with control strategies. In this work, a model was used to optimize biohydrogen (bioHz) and acetate
production using Thermotoga maritima (T. maritima) with a Multi-Objective Optimization (MOO). The aim was
to find the trade-off between the maxima of yield and productivity of the hydrogen production and acetate in a
continuous dark fermentation process by modifying the inlet liquid flow rate. A dynamic mass balance model
was used to optimize thermophilic bioHz and acetate production using T. maritima MSB8 (DSMZ 3109) strains.
In this study, the simulations were run using an Intel® Core™ i7-9750 H @ 2.60 GHz, 16 GB RAM computer.
The paretosearch integrated function from MATLAB® was used to obtain Pareto Optimal Sets (POSs) for each
inlet substrate concentration (S;,). Some constraints were used to fit to the model dynamics of dark fermentation
performed by T. maritima. using glucose as a substrate; the maximum theoretical hydrogen vyield was 4
mol H,/mol glucose at 80 °C. The MOO was performed for five different substrate concentrations. The
maximum Euclidean distance (d,,.,) from the origin of the normalized coordinates was used to select the Pareto
Optimal Points (POPs). The simulation results indicate that an S;, equal to 70 x 10~3mol/L is optimum to
significantly maximize/minimize Y at 3.48 and 0.33 mol/molgpcose,, and P at 3.49 x 1073 and 1.66 x 1073

mol/L/Lyeqctor - B Simultaneously, respectively, for hydrogen and acetate production.

1. Introduction

Dynamic models are commonly used to understand and predict the outcomes of biological processes in various
industries, such as wastewater treatment, food production, and bioenergy production (Kim et al., 2018). One of
the most important biological processes in bioenergy production is the conversion of organic matter into biogas
using microorganisms. Dark fermentation of microorganisms leading to bioHz production is an example that has
been actively investigated for many years for its reported high energy yields (Chandrasekhar et al., 2015).
However, many challenges are hindering the full control of the process for scale-up and industrialization
perspectives due to the complex nature of the system and the presence of multiple variables that heavily impact
the outcomes. A variety of ways have been identified to improve the bioH2 production of microorganisms,
including process optimization through predictive and dynamic models. Such models can help further overcome
the challenges faced by the bioH2 production industry by informing control strategies that can optimize multiple
variables simultaneously. A popular optimization strategy is Multi-Objective Optimization (MOQO), which involves
optimizing multiple variables that are usually conflicting, such as yield and productivity. MOO is commonly used
in the industry to optimize processes where there are multiple objectives, such as reducing energy consumption,
minimizing waste, and maximizing profitability (Chang et al., 2015; Vertovec et al., 2021).
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MOO generates a Pareto Optimal Set (POS), which is a set of optimal solutions, Pareto Optimal Points (POP),
for different objectives that cannot be improved without sacrificing the performance of other objectives.

This simulation outputs a Pareto front that predicts chosen parameters of a bioprocess (Islam et al., 2021). In
this work, a mathematical model describing dark fermentation was combined with MOO dynamics. A published
model of a hyperthermophile strain has been used and a previously reported MOO methodology was followed
(Auria et al., 2016; Acosta-Pavas et al., 2022). Auria et al. (2016) model has been validated experimentally on
a variety of substrates and has proven its capability to simulate and predict the conversion of organic matter into
bioH2 with high accuracy.

This study proposes a MOO approach to find the trade-off between the maximum yield and productivity of the
biogas and a by-product production process, using a POS. Next, following the desired criteria, POPs are
selected from the set and used as a reference trajectory for experimental applications and a tool for improving
day-to-day performance management at a laboratory or industrial scale.

2. Biohydrogen Model Extension Proposal

Dark fermentation by biomass conversion is considered the most promising method, and the most understood
process for bioHz production (Froio and Bezerra, 2021). Dark fermentation is a process in which complex organic
substrates are converted in the absence of light, by anaerobic heterotrophic microorganisms, to bioHz, CO2, and
various Volatile Fatty Acids (VFAs) (Eq(1) and Eq(2)) (Patel et al., 2018). The theoretical maximum yield of 4
mol H,/mol hexose (Thauer et al. 1977) can be achieved when 2 moles of acetate is produced during dark
fermentation (see Eq(1)).

Hexose + 2 H,0 — 2 Acetate +4 H, + 2 CO, 1)

Hexose — Butyrate+ 2 H, + 2 CO, (2)

However, this maximum vyield (or Thauer limit) can only be achieved with thermophilic Hz-producing
microorganisms. Most of these thermophilic microorganisms can hydrolyze various polysaccharides and
ferment the released hexoses and pentoses. So far, the hydrogen-producing (hyper)thermophilic microbial
species studied belong essentially to the classes Clostridia, Thermotoga, and Thermococcales (Pradhan et al.,
2015). Thermotoga, hyperthermophile marine bacteria, are considered the preferred option for bioHz production
and industrial purposes since they can produce high H2 yields (2.4 to 3.85 mol H,/mol hexose) from many
organic wastes (Saidi et al., 2018). Overall, Hz production yields from dark fermentation by pure cultures such
as T. maritima has been reported to reach up to 3.05 mol H,/mol hexose. T. maritima. is a hyperthermophile
bacterium found in marine environments and is known to produce hydrogen yields close to the thermodynamic
limit (Thaeur limit) from a large variety of substrates (Boileau et al., 2016). However, acetate, but also lactate,
are the main organic products of the fermentation performed by T. maritima. Indeed, when the culture conditions
are not optimal, T. maritima redirects the reoxidation of its cofactors towards the production of lactate, thus
limiting the production of bioH2. T. maritima has been extensively studied and a modeling approach to various
batch experiments was carried out by Auria et al. (2016) (Auria et al., 2016). The batch experiments were carried
outin a 2 L bioreactor with a working volume (Vliq) of 1.5 L and lasted for 10.1 h operating at 80 °C. The initial
substrate concentrations were: 14 x 1073 mol/L of glucose, 1 g/L of yeast extract, and 0.12 g/L of thiosulfate.
These values are reported in Table 1. The inlet gas flow rate and stirring were maintained constant throughout
the entire experiment at 8.33m3/s and 36.65 rad/s, respectively.

Table 1: Experimental data from the literature (Auria et al., 2016)

. Product concentration in  Product concentration in
Substrate concentration

Biomass 3 ) the liquid phase the gas phase
X107 (mol/L); (g/L) x 1073(mol /L) x 1073(mol /L)
Time (h) X (g/L) Glucose I;( ??:c:t Thiosulfate  Acetate Lactate H2 CO2
0 0.053 14 1 0.12 - - - -
10.1 0.155 0 22 - 22 9 35 79

Following a previously published methodology, an extension of the Auria et al. (2016) model is proposed to
convert the operational reactor mode from a batch to a continuous culture. Adjustments of the dynamic model
were carried out and the inlet liquid flow rate with respect to the component concentration change was added
to the equations. This was a necessary step to be able to apply a MOO strategy.
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To present and simplify the changes made, we have defined the gas (Sgqs, ;) liquid (Siq,j) and biomass growth
(X) phases as state variables represented in Eq(1), Eq(2), and Eq(3), respectively as,

dS,asi Vi

gas,i liq Jgas

—5 - N — BB i

dt 1<Vgas> VgaS gasi (3)

dSl i Qi i

—dltc” = —\l,lq = (S}, in—Stiq;) + E BinX—N; (4)
1q

dx qliq in

— =Ty — ng)X

T Vo + (= pa) (5)

where the sub-indexed variables are: i = Hz, CO2, and H2S in the gas phase; j = glucose, yeast extract,
thiosulfate, acetate, lactate, extracellular polysaccharides, Hz, CO2, and H2S in the liquid phase. V;,; and V;;; =
volume of the gas and liquid fraction, respectively; §; = the stoichiometric coefficient of components j; j = Sy,
and S]-l, m = outlet and inlet concentrations of componenti and j in the gas and liquid phases, respectively; X =
is the concentration of biomass; N; = the mass transfer of component i; q44 : and qiq,in = the total outlet gas
and inlet liquid flowrates, respectively; u and pyq = the specific growth and death rates constants of biomass.

3. Multi-Objective Optimization

Multi-Objective Optimization (MOO) implies solving multiple problems simultaneously where more than one
variable is to be optimized (Chang, 2015; Vertovec, Ober-Blébaum Margellos, 2021). Usually, variables to be
optimized in a bioprocess are conflicting. Productivities, yields, experimental stage, and process durations are
examples of variables that are usually conflicting and therefore difficult to optimize. Ultimately, the goal of MOO
dynamics is to find a balance that maximizes the targeted outcomes of the process. The outcome of a MOO
model simulation is a Pareto front. A Pareto front allows the visualization of the obtained Pareto Optimal Set
(POS). A POS is an optimal solution set composed of multiple Pareto Optimal Points (POPs). Lastly, POPs are
parameter values, indicators, or coordinates that fulfill the desired conditions of conflicting variables (Deb et al.,
2002). Generally, a MOO can be formulated as,
dx/dt = f(x,u,p,t) tE€[0,tf]
filx,u,p,t) <0 i=12,..,n ©)
gilx,u,p,t) =0 i=12,..,k

ul<u<u¥
where Y, ..., Y,, = m objective functions; x = to the state variables; u and p = the control variables and
parameters; f; and g; = inequality and equality constraints on the variable states; u* and uY = indicate the
control variables’ lower and upper bounds (Tsiantis et al., 2018).
Based on the desired outcomes, a MOO strategy is proposed to identify the best possible values for the objective
functions. The MOO methodology comprises three main steps: firstly, defining the model that represents the
biological process, secondly, specifying the objective functions Y, ..., ¥;, to be minimized or maximized, including
the control variables u and the constraints that are lower and upper bounds u* and uY, selecting the conflicting
variables to be optimized for the objective functions Y, ...,Y,,.which will be used as a reference in the
optimization process. Finally, a POS is obtained from which one or more POPs are selected following certain
criteria defined by the end user.

min {Y; (x,u,p), ..., Ym(x,u,p)} subject to
xu,p,t

4. Case Study: Multi-Objective Optimization in Dark Fermentation Bioprocess

The primary goal of the study was to optimize, independently, H2 and acetate production processes by
maximizing their respective yields (YHZand YAcetate) and productivities (Py, and Pycetate)- TO reach this goal, it
proposes different sets denoted Pareto optimal sets (POS) of POPs following two chosen control variables: the
inlet liquid concentration S;, and liquid flow rate q;;4 ;. This would allow the user to minimize experimental costs
by developing an experimental design based on the experimental conditions forecasted by the model. To
optimize hydrogen production, Yy, was defined as the amount of hydrogen production rate (ans,HZ) over S;,,
while Py, represents the ratio of g4, 5, to V4, as follows.

QgasH,
Fy, = 0 )
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PHz = Vlil’] (8)

As for acetate, Y, was defined as the final concentration of acetate produced (Sacet,out) OVEr Sin, While Py
represents the ratio between S o, Multiplied by q;;4,:» and V;;, expressed as,

Sacet,out
Yicet = C;' > 9)
in

_ SAcet,out X qliq,in

Ppcet = v (10)
iq

where (qgqs42) Was calculated as,

Pgas,H2> (1 1 )

Qgas, H, = ans< P
gas

with P4 and Py, y, = the total pressure in the bioreactor and partial pressure of H, in Pa.

In this work, multiple simulations were run using an Intel® Core™ i7-9750H @ 2.60 GHz, 16 GB RAM
computer. The paretosearch function provided by MATLAB® was used to obtain Pareto optimal set for each S;,.
The MOO was proposed as,

Equations (3) — (8) and (11)

max (Y, Py,)  subject to{ Yu, < 4 [mol Hy/mol glucose] (12
{a1iq,in} 1x1073 < Quigin < 1 [L/R]

Equations (3) — (6) and (9) — (11)
max (Yacet, Pacer) Subject to Yy, <4 [mol H, /mol glucose] )
{d1iq, in} 1x1073 < dlig,in < 1[L/h]

where Eq(12) and Eq(13) state the constraints that were used where Eq(3) — Eq(5) represent the model
dynamics and 4 mol H,/mol glucose is the theoretical yield limit (Thauer limit) mentioned previously. The MOO
was performed for five S;,, concentrations such that S;, [x 1073 mol/L] € {14,42,70,90,110}. The POS was
composed of 60 points for every S;;,.

5. Selection of Pareto Optimal Points (POPSs)

A normalization of POSs [0, 1] was performed in order to perform the selection. Three POPs were chosen to
maximize the yield and productivity: the first POP to maximize productivity, the second to maximize Euclidean
distance (d,,q,) from the origin to the standardized coordinates, and the third to maximize yield. The results are
summarized in Table 2.

Table 2. Multi-Objective optimization results.

POP
Substratg for maximum Yield (Y)
concentration
(S) for hydrogen for acetate
(x 10~3 mol/L) Yz Py X 1073 Yacet Picer X 1073
(m"le/mOlalucosem) (mol/Lyz/Lreactor - 1) (mOIAcet/mOZGlucosem) (mol/Lacet/Lreactor - 1)
14 3.9906 2.3542 1.4678 0.2141
42 3.8406 3.3605 1.2171 0.2536
70 3.9550 3.4624 0.6380 0.5583
90 3.9302 3.4927 0.4329 0.6313
110 3.9644 3.5074 0.3473 0.6511
for maximum Euclidean distance (d,,,4)
14 3.2867 2.4859 1.1690 0.9550
42 3.5509 3.3987 0.7952 1.3254
70 3.5566 3.5125 0.5209 1.3327
90 3.7967 3.4993 0.2684 1.5657

110 3.7917 3.5125 0.2574 1.3517
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POP
c Substtrattg for maximum productivity(P)
oncentration
(Sin) for hydrogen for acetate
(x 1073 mol/L) Yz Py, x 1073 Yacet Pycer X 1073
(mOlHZ/mOZGlucosem) (mol/Lyz/Lreactor - 1Y) (mOIAcet/molGlucosem) (mol/Lycet/ Lreactor - 1)
14 2.8644 2.5085 0.7319 1.2542
42 2.9857 3.4261 0.5817 1.4420
70 3.4779 3.4857 0.3068 1.6610
90 3.6579 3.5023 0.1872 1.6956
110 3.7199 3.5130 0.1418 1.6949

Figures 1-(A) and (B) show the POSs of hydrogen (left) and acetate (right) for the different initial substrate
concentrations tested. The selected POPs were highlighted in orange, yellow, and purple shapes for maximum
Y, d.ex @nd P, respectively. The result of the simulation shows that POSs ranges are narrower as we increase
Sin and Yy, Py,, and P, increases in contrast to Y ... However, the rise for Py, and P, ranges are noticeable
from S;, 2 42 x 1073 mol/L and was almost unchanged beyond 70 x 1073 mol/L. The same behavior is
observed for Y, and Y,.., POS boundaries from S;, = 70 x 1073 mol/L. The simulation results indicate that an
Sin equal to 70 x 1073 mol/L is optimum to significantly maximize/minimize Y and P simultaneously for both
products. Moreover, studies of continuous-flow dark fermentation reported that at higher carbohydrate (organic)
loading rates, bioH2 production is inhibited by the overaccumulation of hydrogen gas in the working volume (Van
Ginkel and Logan, 2005). It is important to mention that this parameter is taken into account in our proposed
model and during our simulations and therefore could explain our results. Thus, the increase of S;,, beyond
70 x 10~3 mol/L indicates that the carbohydrate source, glucose, is not the limiting factor in those conditions
and bioH2 production could solely be limited by T. maritima growth rate.
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Figure 1: (A). POSs for S;, [x 1073 mol/L] € {14,42,70,90,110}, and selected POPs for yield and
productivity maximization and maximum Euclidean length for hydrogen and (B). acetate produced.

6. Conclusion

A MOO strategy for the bioH2 production process based on the mathematical model used for the two objectives
(maximization of Y and P) was successfully developed for both hydrogen and acetate production.

We analyzed 10 cases, where it was observed that maximizing P lowers Y ratio and vice versa. It is observed
that by increasing the substrate concentration (S;,,) of the inlet liquid, maximum productivity increases whereas
maximum yield decreases for acetate. It was also shown that the hydrogen yield is improved by increasing the
substrate concentration (S;,) of the inlet liquid. The simulation results indicate that an S;, equal
to 70 x 10~3mol/L is optimum to significantly maximize/minimize Y and P simultaneously for both products.
Future work includes the validation of the model using experimental data, the application of the dynamic MOO
methodology, and the use of an economic Pareto, allowing the estimations of the purchase price of substrates
or the sale of bioH2 or acetate.
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