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Introduction 

The past few decades have seen a deluge of information in agronomy. However, a substan-
tial proportion of this information is available in unstructured scientific documents, such 
as journal articles, reviews, abstracts, and reports. Despite advances in data sciences, inno-
vations in agronomy are still often text-based. One of the challenges is to extract the bio-
logical entities and their relationships contained in text fields and scientific papers. Many 
of these text fields contain molecular mechanisms and phenotypes of interest that are often 
described by complex expressions associating biological entities linked by specialised se-
mantic relationships (e.g., “Ehd1 and Hd3a can also be down-regulated by the photoperiodic 
flowering genes Ghd7 and Hd1” source PMID: 20566706). To address this issue, the objec-
tive is to develop computational tools to extract biological entities and their relationships 
in order to extract relevant information—here, the entities Ehd1, Hd3a, Ghd7, and Hd1 
and the down-regulated relationship. The biomedical field has long experience in develop-
ing NLP approaches. The Biocreative [1] and BioNLP conferences [2] have demonstrat-
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Due to the rapid evolution of high-throughput technologies, a tremendous amount of data 
is being produced in the biological domain, which poses a challenging task for information 
extraction and natural language understanding. Biological named entity recognition (NER) 
and named entity normalisation (NEN) are two common tasks aiming at identifying and 
linking biologically important entities such as genes or gene products mentioned in the lit-
erature to biological databases. In this paper, we present an updated version of OryzaGP, a 
gene and protein dataset for rice species created to help natural language processing (NLP) 
tools in processing NER and NEN tasks. To create the dataset, we selected more than 
15,000 abstracts associated with articles previously curated for rice genes. We developed 
four dictionaries of gene and protein names associated with database identifiers. We used 
these dictionaries to annotate the dataset. We also annotated the dataset using pre-
trained NLP models. Finally, we analysed the annotation results and discussed how to im-
prove OryzaGP. 

Keywords: biological dataset, gene mention, named entity recognition, natural language 
processing, Oryza species
Availability: OryzaGP is available at https://github.com/pierrelarmande/OryzaGP,while an-
notations can be visualised and downloaded at http://pubannotation.org/projects/Ory-
zaGP_2021.
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ed numerous advances in this area achieved through the develop-
ment of datasets and tools. However, little research has been done 
on this issue in plant science and, more precisely, in the rice sector. 
For these reasons, we developed a dedicated dataset for rice named 
OryzaGP. The first release of OryzaGP was initially published in 
2019 during BLAH5. The first version originally gathered relatively 
few PubMed abstracts and focused on named entity recognition 
(NER) by providing only entities tagged with gene or protein la-
bels. In this new version, we updated the number of PubMed ab-
stracts and provided both NER and the results of named entity 
normalisation (NEN) when available. Moreover, we tried to merge 
several database identifiers coming from different resources under 
the same name. The next section will describe the procedure of 
building the OryzaGP dataset and how it was annotated. 

Methods 

Similarly to the first version, we started by downloading the Oryz-
abase reference datasets from the Oryzabase [3] web application. 
Oryzabase provides a manually curated dataset for new rice-related 
PubMed entries. We filtered out a list of PubMed identifiers that we 
used to create the OryzaGP_2021 project on PubAnnotation [4]. 
PubAnnotation [5] is a repository of text annotations related to lit-
erature in the life sciences, such as PubMed or PMC articles. It also 
provides features to create, manage, and access annotations through 
APIs. 

Annotations were conducted through two applications: PubDic-
tionary and HunFlair [6]. PubDictionary is a repository of public 
dictionaries for the life sciences. It was developed as a model anno-
tation service for PubAnnotation and provides the RESTFul API 
for dictionary-based text annotation. HunFlair is a NER tagger cov-
ering five biomedical entity types. It is integrated into the Flair NLP 
framework, and it uses a character-level language model pre-trained 
on roughly 24 million biomedical abstracts and 3 million full texts. 

In order to use PubDictionary to annotate OryzaGP, we created 
several dictionaries of gene/protein entities. We first downloaded 
the Oryzabase gene dataset, which contains several gene mentions 
associated with database identifiers. We created the Oryzabase dic-
tionary containing labels, gene names, symbols, synonyms and 
Oryzabase identifier URIs. Next, we repeated the same process to 
create the RAPDB [7], MSU [8], and UniProt [9] dictionaries. Ad-
ditionally, we refined the RAPDB and UniProt dictionaries by add-
ing new entries extracted from the RAPDB gene datasets. All these 
dictionaries were uploaded to PubDictionary and used to create 
several annotators. Table 1 shows the size (i.e., the number of en-
tries) of these dictionaries. Finally, we utilized PubAnnotation to 
run several annotations on OryzaGP using these dictionaries. We 

merged these annotations in a single project (Fig. 1). 
HunFair, which comes with models for genes, proteins, chemi-

cals, diseases, species and cell lines, is an advanced NER tagger for 
biomedical texts. Compared with other biomedical NER tools, 
such as GNormPlus [10] and HUNER [11], HunFlair showed 
better performance on the BioNLP 2013 CG [12] and Plant-Dis-
ease corpus [13]. In the OryzaGP project, we imported the Hun-
Flair pre-trained model directly to annotate the abstracts in Ory-
zaGP. HunFlair annotated each abstract with genes, proteins, 
chemicals, diseases, and species, and converted the JSON results 
into a format that met the requirements of the PubAnnotation plat-
form. All annotations created by HunFlair were prefixed with hun-
flair:NA plus the entity type (e.g., gene, disease, cell line, chemical, 
and species). 

Results 

Compared to the first version of OryzaGP, this updated version was 
significantly improved. Table 2 compares basic statistics on both ver-
sions. The number of articles was increased from 10,000 to 15,000, 
and consequently the number of sentences and words increased as 
well. The number of annotations also increased. In the first version, 
the annotations were produced with an improved Bi-LSTM-CRF 
model from [14,15] previous research [12,13]. Around 29,000 an-
notations were found. In this current version, we used multiple an-
notators to achieve this goal (see the Materials and Methods section) 

Table 1. Description of the dictionaries

Name Size
OryzaGeneName_Oryzabase 175,158
OryzaGeneName_RAPDB 110,539
OryzaGeneName_MSU 112,309
OryzaGeneName_UniProt 66,934

Table 2. Description of the dataset

Name OryzaGP OryzaGP 2021
Text genre Article Article
Text type Abstract & Title Abstract & Title
Entity type Gene, Protein Gene, Protein
No. of articles 10,400 15,041
No. of sentences 75,096 150,604
No. of words 2,697,726 4,101,648
No. of annotations 29,098 1,064,353
No. of gene mentions None 677,938

The number of annotations corresponds to the total annotations detailed 
in Table 3. The number of gene mentions was calculated from the fourth 
PubAnnotation (oryzabase.gene, rapdb.gene, uniprot, msu.gene) results 
because the corresponding dictionaries contained the URIs of the entities.
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and obtained about 1 million annotations (Table 3). The annota-
tions were merged into the single project. Fig. 1 shows an example 
of merged annotations with the TextAE editor from PubAnnota-
tion. We can see tagged entities with a class label and other entities 
tagged with database identifiers (i.e., NEN). We obtained NEN re-
sults in 64% of cases, which means that nearly two-thirds of the an-
notations are linked with a database identifier. 

To our knowledge, OryzaGP is the first dataset created for genes 
and proteins in rice species. It can help to better train NLP tools to 
recognize rice-related biological entities. Moreover, this new ver-
sion contains a large number of normalized genes and proteins. 
However, manual checking of these annotations revealed some 
false positives. For this iteration of the project, it was not possible to 
develop a strategy to automatically evaluate the rate of false-positive 
and false-negative annotations. This remains a task for future work. 

Future work 
Our future work will first focus on identifying false positives and 
negatives to improve annotations. We manually observed that false 
positives often occurred with gene and protein full names. Some 
annotations did not match the whole sequence of words. Our hy-
pothesis is that there often exist co-occurrences of full names and 
symbols in the same sentence or abstract. Thus, we will analyze and 

classify these co-occurrences. 
Next, we plan to normalise the annotations done by HunFlair. 

Some are already merged with NEN, but some are not. We plan to 
analyse these annotations, especially those standing for gene sym-
bols, and set up a strategy to normalise them. 

Finally, we are interested in adding new annotation types such as 
plant organs or plant traits. Thus, we will create dictionaries and 
train NLP tools to achieve this goal. 
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