

L'inéluctable enfoncement du delta du Mékong?

Avec 55 000 km² et 17,4 millions d'habitants, le delta du Mékong est, en surface comme en densité de population, l'équivalent des Pays-Bas... pour le moment. Car le delta s'enfonce.

Filtration d'eau de mer pour l'analyse des nutriments, Vietnam.

D'ici à 2100, 85 % du delta du Mékong pourraient être engloutis par la mer. La faute un peu à la montée des eaux, beaucoup aux activités humaines de la zone. Explications : d'un point de vue géomorphologique, le delta du Mékong ressemble à un mille-feuille où alternent des couches de vases et de sables gorgées d'eau. Cette structure géologique a tendance à se tasser, à se densifier, notamment parce que les habitants y puisent trop d'eau.

Résultat: plus l'eau souterraine est extraite par les puits, plus la vitesse d'enfoncement (subsidence) est élevée. Ce phénomène est encore accentué par le prélèvement, parfois illégal, de sable pour la construction et par la réduction de l'apport d'alluvions stockés en amont par de multiples barrages.

Depuis quelques années, le delta du Mékong est l'une des zones les plus vulnérables du monde puisqu'il s'enfonce de 2 cm par an, là où le niveau de la mer ne s'élève annuellement que de 3 à 4 mm. Mais comme sa submersion annoncée est principalement causée par l'urbanisation et d'autres activités humaines, elle peut être contrée. Car ce que les hommes font, ils peuvent aussi parfois le défaire.

« Le delta du Mékong, qui compte 17,4 millions d'habitants, est une région vitale pour le Vietnam. Si le pompage des eaux souterraines est le principal facteur de l'enfoncement des sols (subsidence), les communautés locales estiment que d'autres facteurs prédominent. Les études menées par le Centre asiatique de recherche sur l'eau dans le domaine de l'hydrologie et de l'hydrogéologie sont très utiles pour identifier et hiérarchiser les facteurs, et pour développer des voies optimales d'adaptation, garantissant ainsi la résilience à long terme du delta. »

Ha Quang Khai, université de Technologie de Hô Chi Minh-Ville, Vietnam

Hô Chi Minh-Ville, sur les rives de la rivière Saïgon, Vietnam.

••• Des analyses esquissent des pistes d'adaptation pour éviter que la majeure partie du delta vietnamien ne finisse sous l'eau •••

Ainsi, les recherches montrent que la maîtrise ou la réduction de la quantité d'eau pompée dans les nappes pourrait réduire, voire stopper, l'enfoncement de ce delta qui recule actuellement de I2 m par an. Reste maintenant à identifier et à lever les freins sociaux, techniques et politiques pour entrer dans la voie de la résilience, de l'adaptation, pour ne pas dire de la survie. L'enjeu est de taille, car le phénomène frappe d'autres villes deltaïques, en premier lieu Jakarta qui s'enfonce si vite que les Indonésiens ont déjà décidé de déplacer leur capitale de 2 000 km sur l'île de Bornéo, détruisant au passage une partie de sa forêt.

PARTENAIRES

LMI Care (université de Technologie de Hô Chi Minh-Ville, IRD, Grenoble INP), Vietnam

Université de Technologie de Hô Chi Minh-Ville, Vietnam

Sciences au sud pour un monde durable

IRD Éditions Collection Grands enjeux

Marseille, 2025

Direction éditoriale

Marie-Lise Sabrié

Coordination éditoriale

Corinne Lavagne Jasmine Portal-Cabanel

Coordination iconographique

Daina Rechner

Rédaction

Viviane Thivent Marie-Lise Sabrié

Conception maquette et mise en page

Charlotte Devanz

Préparation de copie

Isabelle Amsallem

Correction

Stéphanie Quillon

Coordination diffusion

Christel Bec

Photo de couverture

Pêche effectuée par des enfants sur le platier à Reao, Polynésie française. © IRD/S. Andréfouët

Publication en libre accès selon les termes de la licence Creative Commons CC BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr. Elle autorise toute diffusion de l'œuvre, sous réserve de mentionner les auteurs et les éditeurs et d'intégrer un lien vers cette licence. Aucune modification n'est autorisée et l'œuvre doit être diffusée dans son intégralité. Aucune exploitation commerciale n'est autorisée.

© IRD, 2025

ISBN papier: 978-2-7099-3067-3 ISBN PDF: 978-2-7099-3068-0 ISBN open/epub: 978-2-7099-3069-7

LISTE DES CONTRIBUTEURS SCIENTIFIQUES

Des milieux en évolution

El Niño dans le viseur

Jérôme Vialard, océanographe physicien et climatologue, UMR Locean

Pirata, l'observatoire océanique de l'Atlantique tropical

Bernard Bourlès, océanographe physicien, UAR Imago

Vagues extrêmes et cyclones tropicaux

Christophe Menkes, climatologue, UMR Entropie Jérôme Lefèvre, écologue, UMR Entropie

De la variabilité des upwellings

Vincent Échevin, océanographe physicien, UMR Locean

Cartographie de l'aléa tsunami

Mansour Loualalen, physicien, UMR Géoazur

Comprendre la complexité du climat de l'Asie du Sud-Est

Marine Herrmann, océanographe physicienne, UMR Legos

De la variabilité insoupçonnée des lagunes

Thomas Stieglitz, hydro-écologue côtier, UMR Cerege

Mangroves mexicaines résilientes

Johanna Jupin, géochimiste, UMR Locean

Une oasis dans un désert océanique

Sophie Bonnet, océanographe biogéochimiste, UMR MIO Cécile Guieu, biogéochimiste, UMR LOV

Des coraux résistants en Nouvelle-Calédonie

Riccardo Rodolfo-Metalpa, écophysiologiste, UMR Entropie

Sargasses colonisatrices

Julien Jouanno, océanographe physicien, UMR Legos

De la suie dans l'eau

Xavier Mari, océanographe biogéochimiste, UMR MIO Marc Tedetti, océanographe biogéochimiste, UMR MIO

Plastiques : des fleuves à l'océan

Lisa Weiss, océanographe physicienne, UMR Legos, UMR Lops

Du devenir des eaux fluviales dans l'océan

Nadia Ayoub, océanographe physicienne, UMR Legos

Sur la piste du plastique océanique

Christophe Maes, océanographe physicien, UMR Lops

Nos amis des profondeurs

Leandro Nole-Eduardo, écologue, UMR Marbec

Du micronecton au thon

Christophe Menkès, climatologue, UMR Entropie Anne Lebourges-Dhaussy, acousticienne écosystémique, UMR Lemar

Fin de règne pour l'anchois?

Arnaud Bertrand, écologue, UMR Marbec

Des sociétés face à l'océan

Sénégal : émergence d'une pêche résiliente

Ndickou Gaye, géographe, université Cheikh-Anta-Diop de Dakar et UMI Source

De l'avenir des Vezo

Francis Veriza, géographe, université de Toliara et UMR Passages

Alexandrie, un contre-exemple d'adaptation?

Sylvie Fanchette, géographe, UMR Cessma

L'inéluctable enfoncement du delta du Mékong?

Nicolas Gratiot, géophysicien, UMR IGE

Réduire la vulnérabilité de la ville de Douala

Raphaël Onguene, océanographe physicien, université de Douala

De la sécurité alimentaire des îles polynésiennes

Marianna Cavallo, écologue, UMR Lemar

La part féminine de la pêche

Ariadna Burgos, ethno-écologue, UMR Paloc

Nokoué, une lagune sous pression

Alexis Chaigneau, océanographe physicien, UMR Legos Yves Morel, océanographe physicien, UMR Legos Victor Okpeitcha, océanographe physicien, Prodata SARL Zacharie Sohou, océanographe pêcheur biologiste, IRHOB et UAC Thomas Stieglitz, écohydrologue côtier, UMR Cerege

Pour des ressources durables

Un modèle de plancton

Olivier Maury, océanologue, UMR Marbec

Thons tropicaux sous surveillance

Daniel Gaertner, biologiste, UMR Marbec

Vers des appâts plus durables

Pascal Bach, écologue, UMR Marbec

La part des oiseaux

Philippe Cury, océanographe biologiste, UMR Marbec

Une pêche artisanale à l'échelle industrielle

Arnaud Bertrand, écologue, UMR Marbec

Biodiversité alimentaire

Fany Sardenne, écologue, UMR Lemar

Une aquaculture pour une meilleure alimentation

Maria Darias, biologiste, UMR Marbec

Battre campagne en voilier

Éric Machu, biogéochimiste, UMR Legos

Nage au-dessus des habitats sous-marins

Rodolphe Devillers, géographe, UMR Espace-Dev Priscilla Dupont, biologiste, UMR Espace-Dev

Éclairer la biodiversité invisible

Laurent Vigliola, écologue, UMR Entropie

L'intelligence artificielle pour mesurer la biodiversité

Laurent Vigliola, écologue, UMR Entropie

L'IA qui se prenait pour un oiseau de mer

Sophie Lanco, écologue, UMR Marbec

Des bactéries à dos de plastique

Thierry Bouvier, écologue, UMR Marbec

Vers une électricité faite maison ?

Pierre-Pol Liebgott, biochimiste et écologue, UMR MIO

Les Comores en manque de sable

Gilbert David, géographe, UMR Espace-Dev Nourddine Mirhani, géographe, université des Comores

Laissons les mangroves se reboiser seules

Marie-Christine Cormier-Salem, géographe, UMR Paloc

Des savoirs partagés

Le son du silence

Timothée Brochier, modélisateur océanographe, UMI Ummisco Nicolas Puig, anthropologue, UMR Urmis

Changer de regard sur les coraux

Pascale Chabanet, écologue, UMR Entropie Lola Massé, biologiste, UMR Entropie

De l'eau au rythme de l'estuaire

Stéphanie Duvail, géographe, UMR Paloc

Dessine-moi la mer

Élodie Fache, anthropologue, UMR Sens Stéphanie Carrière, ethnoécologue, UMR Sens Catherine Sabinot, anthropologue, UMR Espace-Dev

Vers une filière durable du crabe de mangrove à Madagascar

Jennifer Beckensteiner, halieute, UMR Amure Marc Léopold, économiste, UMR Amure, UMR Entropie

La maîtrise des eaux laiteuses

François Colas, océanographe physicien, UMR Lops Jonathan Flye-Sainte-Marie, écologue, UMR Lemar Alice Pietri, océanographe physicienne, UMR Locean

Alerte aux canicules marines

Sophie Cravatte, océanographe physicienne, UMR Legos

Des grands fonds marins peu connus mais convoités

Valelia Muni Toke, anthropologue, UMR Sedyl Puerre-Yves Le Meur, anthropologue, UMR Sens

Vers une nouvelle gouvernance

Seychelles : vers une économie bleue réellement durable ?

Patrice Guillotreau, économiste, UMR Marbec

Fonder la réglementation sur les réalités locales

Catherine Sabinot, anthropologue, UMR Espace-Dev Marc Léopold, économiste, UMR Amure, UMR Entropie

La mer Méditerranée, entité juridique

Victor David, juriste en droit de l'environnement, UMR Imbe

Le Gabon proactif pour préserver la biodiversité

François Le Loc'h, écologue, UMR Lemar

Évaluer pour orienter

Adrien Comte, économiste, UMR Lemar

L'IA au service du droit de l'environnement marin

Marie Bonnin, juriste en droit de l'environnement, UMR Lemar

Pour des aires marines plus efficacement protégées

Tarik Dahou, socio-anthropologue, UMR Paloc

Quand la science émancipe

Latifa Pelage, écologue, UMR Marbec