

El Niño in the spotlight

El Niño is a major driver of climate variability in the Intertropical Zone. It modifies rainfall, impacts productivity in certain ocean areas and influences cyclone formation, with major consequences for local populations. Understanding this phenomenon better is a high-priority scientific objective.

Ocean surface temperatures during an El Niño event in November 2015.

In the 1980s, meteorologists were adamant that it would never be possible to forecast the weather beyond one or two weeks. Ten years later, climatologists demonstrated the opposite by being able to predict certain climate anomalies several seasons in advance.

This required greater understanding of a phenomenon about which very little was known at the time: El Niño. Achieving this hard-won objective involved observing and collecting a vast amount of data using merchant ships, oceanographic campaigns, satellites and networks of instrumented buoys (such as the TAO buoys, positioned in the Equatorial Pacific since the 1990s).

These observations have gradually revealed the secrets of El Niño, a major climate phenomenon linked to interactions between the ocean and the atmosphere. Normally, in the Pacific, the trade winds blow from east to west, generating upwelling of deep, cold, nutrient-rich waters near the South American coast, and warmer waters favouring heavy rainfall on the other side of the basin. But when El Niño occurs, the trade winds weaken, leading to droughts in Australia and South-east Asia, abnormally warm waters with low productivity in Peru, and tropical cyclones in French Polynesia.

In the late 1990s, major advances were made in our understanding of the ocean-atmosphere interactions that cause El Niño events and the oceanic processes that put an end to them. However, many questions remain unanswered. How can this phenomenon be translated into simple mathematical models? What are the key differences between extreme El Niño events, with devastating impacts, and more moderate episodes, limited to the central Pacific? These are crucial issues, because most of the Intergovernmental Panel on Climate Change (IPCC) models predict that extreme El Niño events will double by 2080, with major consequences for societies that are vulnerable to exceptional climate events.

PARTNERS

Centre for Advanced Studies
in Arid Zones, Chile

Geophysical Institute of Peru

University of Hawai'i, USA

University of French Polynesia, France

Yale University, USA

... Research over many years has made it possible to gain a better understanding of the multiple facets of El Niño, but many questions remain unanswered ...

© Wikipédia/R. Stuckert

Flooding is one of the consequences of El Niño events, Porto Alegre, Brazil.

“El Niño events cause drought in the Amazon basin and Northeast Brazil, as well as flooding in the south of the country. The socioeconomic consequences for Brazil are considerable, ranging from water and energy shortages to crop losses. Research into El Niño has improved forecasting of extreme events, helping to mitigate their impact on Brazil’s water, food and energy security.”

Regina Rodrigues, Federal University of Santa Catarina, Brazil

OUR SHARED **OCEAN**

Science in the Global South
for a Sustainable World

IRD Éditions
Collection Grands enjeux
Marseille, 2025

Editorial management

Marie-Lise Sabrié

Editorial coordination

Corinne Lavagne
Jasmine Portal-Cabanel

Iconographic research

Daina Rechner

Written by

Viviane Thivent
Marie-Lise Sabrié

Design and page layout

Charlotte Devanz

Traduction

Fluent Planet

Proofreading

Anne Causse

Distribution coordination

Christel Bec

Cover photo

Children fishing on a reef flat in Reao, French Polynesia. © IRD/S. Andréfouët

This open-access publication is available to the public under the terms of the Creative Commons CC BY-NC-ND 4.0 license, which can be viewed at <https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr>. It authorizes any dissemination of the original work in its entirety, provided that the authors and publishers are mentioned and that a link to the CC By-NC-ND 4.0 license is included. No modification or commercial use is allowed.

© IRD, 2025

ISBN Papier: 978-2-7099-3070-3

ISBN PDF: 978-2-7099-3071-0

ISBN Open epub: 978-2-7099-3072-7

LIST OF SCIENTIFIC CONTRIBUTORS

Evolving environments

El Niño in the spotlight

Jérôme Vialard, physical oceanographer and climatologist, UMR LOCEAN

PIRATA, the observatory in the Tropical Atlantic

Bernard Bourlès, physical oceanographer, UAR IMAGO

Extreme waves and tropical cyclones

Christophe Menkes, climatologist, UMR ENTROPIE

Jérôme Lefèvre, ecologist, UMR ENTROPIE

The variability of upwellings

Vincent Échevin, physical oceanographer, UMR LOCEAN

Mapping the tsunami hazard

Mansour Ioualalen, physicist, UMR Géoazur

Understanding the complexity of Southeast Asia's climate

Marine Herrmann, physical oceanographer, UMR LEGOS

The unsuspected variability of lagoons

Thomas Stieglitz, coastal ecohydrologist, UMR CEREGE

Resilient Mexican mangroves

Johanna Jupin, Geochemist, UMR LOCEAN

An oasis in an ocean desert

Sophie Bonnet, oceanographer and biogeochemist, UMR MIO

Cécile Guieu, biogeochemist, UMR LOV

Resilient coral in New Caledonia

Riccardo Rodolfo-Metalpa, ecophysiologist, UMR ENTROPIE

Sargassum taking over

Julien Jouanno, physical oceanographer, UMR LEGOS

Soot in the water

Xavier Mari, oceanographer and biogeochemist, UMR MIO

Marc Tedetti, oceanographer and biogeochemist, UMR MIO

Plastics: from the rivers to the ocean

Lisa Weiss, physical oceanographer, UMR LEGOS, UMR LOPS

The fate of river water in the ocean

Nadia Ayoub, physical oceanographer, UMR LEGOS

On the trail of ocean plastic

Christophe Maes, physical oceanographer, UMR LOPS

Our friends from the deep

Leandro Nole-Eduardo, ecologist, UMR MARBEC

From micronekton to tuna

Christophe Menkès, climatologist, UMR ENTROPIE
Anne Lebourges-Dhaussy, ecosystem acoustician, UMR LEMAR

The end of the reign of the anchovy?

Arnaud Bertrand, ecologist, UMR MARBEC

Societies facing the ocean

Senegal: the emergence of a resilient fishing industry

Ndickou Gaye, geographer, Cheikh Anta Diop University, Dakar and UMI SOURCE

The future of the Vezo

Francis Veriza, geographer, University of Toliara and UMR Passages

Alexandria, how not to adapt?

Sylvie Fanchette, geographer, UMR CESSMA

Is the sinking of the Mekong Delta inevitable?

Nicolas Gratiot, geophysicist, UMR IGE

Reducing vulnerability in the city of Douala

Raphaël Onguene, physical oceanographer, University of Douala

Food security in Polynesia

Marianna Cavallo, ecologist, UMR LEMAR

The role of women in fishing

Ariadna Burgos, ethnoecologist, UMR PALOC

Nokoué, a lagoon under pressure

Alexis Chaigneau, physical oceanographer, UMR LEGOS
Yves Morel, physical oceanographer, UMR LEGOS
Victor Okpeitcha, physical oceanographer, Prodata SARL
Zacharie Sohou, oceanographer, fisherman and biologist, IRHOB and UAC
Thomas Stieglitz, coastal ecohydrologist, UMR CEREGE

Towards sustainable resources

A plankton model

Olivier Maury, oceanologist, UMR MARBEC

Tropical tuna under surveillance

Daniel Gaertner, biologist, UMR MARBEC

Towards more sustainable baits

Pascal Bach, ecologist, UMR MARBEC

The birds' share

Philippe Cury, oceanographer and biologist, UMR MARBEC

Artisanal fishing on an industrial level

Arnaud Bertrand, ecologist, UMR MARBEC

Food biodiversity

Fany Sardenne, ecologist, UMR LEMAR

Aquaculture for better nutrition

Maria Darias, biologist, UMR MARBEC

Gathering data by sailboat

Éric Machu, biogeochemist, UMR LEGOS

Swimming over underwater habitats

Rodolphe Devillers, geographer, UMR Espace-Dev

Priscilla Dupont, biologist, UMR Espace-Dev

Shining a light on invisible biodiversity

Laurent Vigliola, ecologist, UMR ENTROPIE

Using artificial intelligence to measure biodiversity

Laurent Vigliola, ecologist, UMR ENTROPIE

The AI that thought it was a seabird

Sophie Lanço, ecologist, UMR MARBEC

Bacteria on the back of plastic

Thierry Bouvier, ecologist, UMR MARBEC

Towards home-made electricity?

Pierre-Pol Liebgott, biochemist and ecologist, UMR MIO

The Comoros in need of sand

Gilbert David, geographer, UMR Espace-Dev

Nourddine Mirhani, geographer, University of Comoros

Let the mangroves grow back on their own

Marie-Christine Cormier-Salem, geographer, UMR PALOC

Shared knowledge

The sound of silence

Timothée Brochier, ocean modeller, UMI UMMISCO

Nicolas Puig, anthropologist, UMR Urmis

Changing our approach to corals

Pascale Chabanet, ecologist, UMR ENTROPIE

Lola Massé, biologist, UMR ENTROPIE

Changing estuary water flows

Stéphanie Duvail, geographer, UMR PALOC

Draw me the sea

Élodie Fache, anthropologist, UMR SENS

Stéphanie Carrière, ethnoecologist, UMR SENS,

Catherine Sabinot, anthropologist, UMR Espace-Dev

Towards a sustainable mangrove crab industry in Madagascar

Jennifer Beekensteiner, fisheries expert, UMR AMURE

Marc Léopold, economist, UMR AMURE, UMR ENTROPIE

Managing milky waters

François Colas, physical oceanographer, UMR LOPS

Jonathan Flye-Sainte-Marie, ecologist, UMR LEMAR

Alice Pietri, physical oceanographer, UMR LOCEAN

Marine heatwave alert

Sophie Cravatte, physical oceanographer, UMR LEGOS

A little-known but coveted deep-sea

Valelia Muni Toke, anthropologist, UMR SeDyl

Puerre-Yves Le Meur, anthropologist, UMR Sens

Towards a new ocean governance

The Seychelles: towards a truly sustainable blue economy?

Patrice Guillotreau, economist, UMR MARBEC

Regulations based on local realities

Catherine Sabinot, anthropologist, UMR Espace-Dev

Marc Léopold, economist, UMR AMURE, UMR ENTROPIE

The Mediterranean Sea as a legal entity

Victor David, environmental lawyer, UMR IMBE

Gabon proactive in protecting biodiversity

François Le Loc'h, ecologist, UMR LEMAR

Making assessments for more effective steering

Adrien Comte, economist, UMR LEMAR

AI at the service of marine environmental law

Marie Bonnin, environmental lawyer, UMR LEMAR

Protecting marine areas more effectively

Tarik Dahou, socioanthropologist, UMR PALOC

When science emancipates people

Latifa Pelage, ecologist, UMR MARBEC