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A B S T R A C T

We present an application of the process-based ecohydrological model EcH2O to evaluate water-energy coupling 
and resulting percolation beneath the root zone under contrasting irrigation practices in a semi-arid region. The 
study uses high-resolution data from two wheat fields employing flood and drip irrigation, in a multi-objective 
calibration and evaluation approach with datasets encompassing soil water content at two depth ranges, energy 
balance components, and percolation rates at two depths. We find that the model reasonably simulates water 
fluxes and energy partitioning, and captures the distinct hydrological responses of the different irrigation 
methods. The best overall performances were found at both sites using calibration scenarios combining all 
available datasets, pointing at complementary information footprints. These footprints were nonetheless heter
egeneous, as for example simulation of energy balance components showed little change between calibration 
scenarios, while percolation fluxes were acceptably captured only if the corresponding datasets were included in 
the calibration. Results highlight larger percolation dynamics and amounts beneath the root zone of flood- 
irrigated wheat, yet the two indices used here for irrigation efficiency reveal opposite rankings between the 
two irrigation methods depending on whether deep percolation is included (as a proxy for aquifer recharge) or 
not in the hydrological system being analysed. These findings challenge the view on greater water-saving benefits 
associated with drip irrigation, given the complex trade-offs between irrigation amounts and timing, plant water 
use, and return flows (e.g. underlying aquifer recharge). This analysis is a step forward for informing integrative 
and sustainable water management strategies in arid and semi-arid agricultural contexts.

1. Introduction

Water resources in arid and semi-arid regions are inherently limited 
and will continue to be a significant challenge in the future (Hargrove 
et al., 2023), due to the combined impact of climate change and the 
substantial increase in water demand for urban areas, industry and 
agriculture (Kharrou et al., 2021, Kundzewicz. 2008, Cai. 2015, Jounaid 
et al., 2020). Irrigated agriculture is by far the dominant driver of 
freshwater consumption, and irrigated areas are projected to increase, 
especially in North Africa (McDermid et al., 2023). In Morocco, irrigated 
agriculture occupies only 15 % of cultivated land surface but consumes 

87 % of national water resources, generates about 45 % of agricultural 
Gross Domestic Product and 75 % of agricultural exports (Global Yield 
Cap Atlas, 2022). This hydrological footprint constitutes one of the main 
challenges for a sustainable Moroccan agriculture sector in the 21st 
century, leading to urgent consideration of improved water manage
ment strategies. Increased pressure on groundwater resources in 
Morocco may partly result from recent ambitious agricultural policies 
(e.g., the Green Morocco Plan launched in 2008, and the green gener
ation program 2020–2030), these strategies promote modern "exces
sively intensive" agricultural models that place additional strain on 
water resources (Akesbi, 2014, World Bank, 2020). The agricultural 
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sector in a number of regions in Morocco has subsidised the reconver
sion of flood irrigation systems to more efficient irrigation technologies 
over the last twenty years, particularly drip irrigation.

The amount of water saved as a result of these programs, on the other 
hand, has rarely been quantified (Benouniche et al., 2014). This 
knowledge gap calls for a careful examination of the efficacy of these 
change in irrigation practices in terms of water resource conservation, in 
the face of the oft-observed “irrigation efficiency paradox”: plot- or 
farm-level gains in irrigation efficiency seldom reduce water consump
tion at larger scales (Grafton et al., 2018). This negative outcome arises 
either because the “saved” portion at farm scale (from increased effi
ciency) is often water that previously recovered through aquifer 
recharge or runoff for downstream reuse, because of a switch to more 
water-intensive crops, or because of an increase of the irrigated crop 
area (Ward and Pulido-Velazquez, 2008). In Morocco’s Souss and Ten
sift basins where the studied Haouz region is located (see Sect 2.1), 
subsidised conversion to drip irrigation has been shown to increase 
overall water consumption due to inadequate practices, increased crop 
transpiration and/or unreduced soil evaporation, and/or cropping 
intensification and expansion (with a growing share of tree plantation) 
(Molle and Tanouti, 2017). These structural issues further put at risk 
underlying aquifers through over-withdrawal and thus groundwater 
depletion, which can also cause land subsidence (Bouchaou et al., 2008) 
and water quality issues (Ez-zaouy et al., 2022, Mansir et al., 2021).

Groundwater recharge occurs when infiltration and percolation ex
ceeds evapotranspiration (ET) and continues to flow downward through 
the vadose zone toward the water table, replenishing the aquifer 
(Jasechko et al., 2014). In arid and semi-arid regions where potential 
evapotranspiration frequently exceeds precipitation, recharge is gener
ally a small component of the annual water balance, making it crucial to 
accurately quantify percolation rates beneath the root zone and there
fore recharge (Ouarani et al., 2023). Among the numerous methods for 
quantifying ET and recharge fluxes, integrated numerical models that 
couple a process-based energy balance solving with subsurface hydrol
ogy and plant phenology (e.g., Tague et al., 2004, Ivanov et al., 2008, 
Fatichi et al., 2012, Maneta and Silverman, 2013, Niu et al., 2014, Bao 
et al., 2017, Kuffour et al., 2020) offer the possibility to disentangle the 
various components and dynamics of the water budget, including soil 
evaporation and root water uptake in relation to percolation patterns. 
This ability for process coupling and predictive power is advantageous 
in the changing high-energy hydroclimatic and land cover conditions 
often characterising semi-arid areas, as compared to modelling ap
proaches with a more empirical calculation of ET components based on 
potential evaporation in such semi-arid crops (e.g., Toumi et al., 2016, 
Er-Raki et al., 2021, Abou Ali et al., 2023, Ourrai et al., 2024).

However, this flexibility with an increasingly-detailed integration of 
physically-based descriptions comes at the price of an increased need of 
input forcings (e.g. climate fields and topography) and a large number of 
parameters related to the different subdomains of the model (vegetation, 
surface, subsurface, aquifer, etc.). Such an issue of process and/or 
parameter identifiability can be addressed by jointly calibrating and 
evaluating simulations with different types of ecohydrological obser
vations in a approach, thus leveraging several types of information 
content in a diversity of ecohydrological datasets to constrain different 
groups of modeled processes (Clark et al., 2011, Fatichi et al., 2016). 
This multi-objective model-data fusion approach can result in degraded 
performance (Fenicia et al., 2008, Scudeler et al., 2016) and poorer 
predictive power (Cao et al., 2006) if the different constraints “pull” the 
model in opposite directions (Clark and Vrugt, 2006, Efstratiadis and 
Koutsoyiannis, 2010), if the model misses key processes (Beven, 2006, 
McDonnell et al., 2007), or if there is a significant discrepancy of scales 
between data and simulation outputs (Piovano et al., 2018). However, 
many applications of multi-criteria calibrations using hydrological 
models reported clear benefits with increased number of diagnostics and 
performance across processes (Clark et al., 2011, Birkel et al., 2014, 
Kuppel et al., 2018a, Piovano et al., 2018, Seibert and McDonnell, 

2002).
In this study, we build on such a successful multi-objective applica

tion (Kuppel et al., 2018a, Douinot et al., 2019, Ackerer et al., 2023) to 
evaluate how a process-based model-data approach with ecohydro
logical datasets can enhance the robustness of water and energy parti
tioning quantification and eventually assessing the impact of irrigation 
practices on the water recharge patterns. To this end, we use the 
process-based model EcH2O (Maneta and Silverman, 2013, Kuppel et al., 
2018a) for the first time in Morocco, in two types of irrigated wheat 
fields in arid agricultural lands. By constraining the model with several 
combinations of data types (soil moisture, energy balance components 
and percolation fluxes) from in situ monitoring over a growing season 
and notably analysing evapotranspiration and percolation fluxes, we test 
two hypotheses: (i) jointly calibrating with datasets of energy fluxes, soil 
moisture, and -where available- percolation is essential for accurately 
simulating both energy and water dynamics, and reduces the un
certainties associated with estimating groundwater recharge. (ii) Drip 
irrigation in winter wheat enhances water efficiency both from an 
agronomic (i.e. ET-oriented) standpoint as well as when jointly 
considering ET and percolation flow recharging the aquifer. The overall 
methodological flowchart is described in Fig. 1. Applying this method
ology aims at paving the way for developing process-oriented, robust 
ecohydrological modelling framework to inform 
hydrologically-sustainable decision making in semi-arid agricultural 
contexts.

2. Materials and methods

2.1. Study sites

The Tensift basin is located in central Morocco, and characterised by 
climate ranging from arid in the Haouz plain with 150 mm of annual 
rainfall to humid continental climate in the Atlas mountains with annual 
rainfall exceeding 1000 mm.yr− 1 (Chehbouni et al., 2008). With an 
average annual potential evapotranspiration (PET) of 1600 mm.yr− 1 in 
the plain (Er-Raki et al., 2010), the evaporative demand is considerable. 
The region’s surface and groundwater resources are being intensively 
exploited by agriculture and domestic uses, which are growing at a rapid 
pace in tandem with the region’s economic development (Boukhari 
et al., 2015). Groundwater levels in the Tensift basin have been steadily 
declining since the 1980s as a result of these climatic and 
human-induced constraints (Le Page et al., 2012). The Tensift wadi’s 
flow, which serves as a collector of surface water downstream of the 
Haouz plain, as well as the recharge of aquifers, are inextricably linked 
to the High Atlas’s flows (Ouassanouan et al., 2022). A portion of the 
High Atlas runoff infiltrates into the wadi beds that lead to the pied
monts (Boukhari et al., 2015). Snowmelt and rainfall each contribute 
significantly different amounts of water to the hydrosystem’s water 
balance.

The central Haouz’s flow regime depends on the watersheds’ rainfall 
and the High Atlas’ melting snow. The reasonably dense hydrographic 
network of this area of Haouz runs from the High Atlas (N′Fis, Reghaya, 
Ourika, and Zat) to the Tensift river, which discharges into the Ocean. 
The Haouz has two sections. Watersheds on the southern side, contrib
uting to output if the rivers water them and they get enough rain and 
snow. Haouz’s plain, with extensive urbanization and agricultural ac
tivities, is considered as a consumption or transit zone.

The Haouz basin has two aquifer systems of varying importance in 
terms of underground water resources. The first concerns the deep 
Jurassic, Cretaceous, and Eocene reservoirs, which have low produc
tivity, limited extension, and end in a few kilometers north of the Atlas 
(Moukhchane, 1983). The second reservoir is the Plio-Quaternary series, 
resulting from the atlasic chain breaking. This one has a free water table 
all over the plain, from 30 to 260 m deep. The region’s most productive 
water table is also the most exploited. The extreme spatial variability of 
the hydraulic gradient reflects the structural complexity of these 
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deposits. These continental formations are highly variable in perme
ability. As one goes deeper, the permeability decreases as the facies 
become more clayey. The water table circulates in the Pliocene and 
Quaternary formations reworked by the Atlas wadis. The plain’s silty 
cover limits vertical supply from rainwater or irrigation water infiltra
tion. Groundwater in the region historically recharged through alluvial 
fans and wadis, with flow patterns directing water from the Atlas 
Mountains toward the Oued Tensift, Oued Tessaout, and Oued Gano 
gaps in the Jebilets. However, recent studies reveal a significant shift, 
indicating that the Tensift River no longer receives base flow from the 
aquifer, resulting in perennial dry conditions (El Mezouary et al., 2024). 
Additionally, the khettaras, once a critical component of traditional 
water management and irrigation systems, have ceased functioning, and 
no groundwater outlets or resurgences currently reach the Tensift wadi 
in the north.

This hydrological imbalance is further exacerbated by continuous 
groundwater overexploitation and the absence of sufficient recharge, 
leading to persistent and severe depletion of the water table. Ground
water extraction is now predominantly achieved through hand wells and 
mechanical pumping, contributing to the accelerated decline of aquifer 
levels and increasing pressure on remaining resources.

The experiment was conducted during 2015–2016 growing season 
over two wheat fields within the irrigated perimeter known as R3 in the 
Haouz plain (Fig. 1), which is located approximately 45 Km east of 
Marrakech (31.6341224 N, − 7.63333 E). F4 field covers 4 ha of flood 
irrigated wheat, whereas F5 field covers 2 ha of drip irrigated wheat. 
Both sites were characterised by a clay soil texture consisting of 47 % 
clay, 35 % silt, and 18 % sand. The sowing dates for wheat were 
December 22nd and December 13th of 2015, for F4 and F5 respectively. 
The volumes of irrigation that were applied at each flood irrigation 

event for field F4 were 512 millimetres spread into 8 irrigation events of 
64 mm, while at field F5 the total applied irrigation amount was lower 
(354 mm) and with more variable amount per events, ranging between 
15 and 46 mm (Fig. 2 and Table S1).

2.2. Data description

The datasets utilised in this work were acquired from two experi
ments conducted during the investigated 2015/2016 agricultural sea
son. Meteorological data were measured very close to both study plots. 
The weather station was equipped with standard automated sensors that 
measure incoming solar radiation, air temperature and humidity, vapor 
pressure, wind velocity, and precipitation. Each study plot was equipped 
with a set of sensors to measure: (i) the four components of the net ra
diation (Rn) using a CNR4 radiometer (Kipp & Zonen); (ii) the soil heat 
flux (G) at different depths using heat flux plates (HFT3-L, Campbell 
Scientific Ltd.); (iii) the surface temperature using IRTS-P’s (Apogee); 
(iv) the soil temperature at different depths using (temperature probe 
108). Beside these measurements, two eddy covariance systems were 
installed at each field to provide continuous measurements of sensible 
(H) and latent heat (LE) fluxes at height of 2 m. This system consisted of 
a 3D sonic anemometer (CSAT3, Campbell Scientific Ltd) and a fast 
hygrometer (KH20, Campbell Scientific Inc., USA). Raw data were 
sampled at a rate of 20 Hz and were recorded using CR3000 data loggers 
(Campbell Scientific Ltd.). The half-hourly fluxes were later calculated 
off-line using post-processing software package ECpack. To assess the 
quality of EC measurements, the surface energy balance closure test is 
commonly used. The analysis of the linear regression forced through the 
origin of the sum of sensible and latent heat fluxes against the available 
energy (Rn - G) yielded slopes of 0.71 and 0.70, with correlation 

Fig. 1. Flowchart describing the methodology of the model-data approach used in this study, indicating the various and associated study sites.
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coefficients of 0.94 and 0.92 for fields 4 and 5, respectively. Compared 
to findings from other experimental studies, where energy balance 
closure errors typically range from 10 % to 30 % (Twine et al., 2000), 
the closure achieved in this study can be considered acceptable.

The soil water content in both fields F4 and F5 was measured using a 
Time Domain Reflectometry (TDR) device (CS616, Campbell Scientific 
Ltd.) at various depths (5, 10, 20, 30, 40, and 50 cm). TDR measure
ments were recorded at a frequency of 1 Hz and saved as averages every 
30 minutes using CR23X data loggers from Campbell Scientific Ltd. 
Similarly, the TDR readings were calibrated by doing weekly gravi
metric measurements of soil water content at various depths. Based on 
these depth-specific measurements, for each time step a vertically- 
integrated values, corresponding to the depth of the model layers (see 
Sections 2.3 and 2.4), were used for model calibration and evaluation 
(sect. 2.5).

In addition to the aforementioned measures, two small lysimeters 
(METER Smart Field Lysimeter) with a diameter of 30 cm were placed 
on the F5 field. These lysimeters, with a depth of 30 cm and 90 cm, were 
used to measure the actual drainage. Both devices use a highly sensitive 
load cell positioned beneath the soil column to measure the amount of 
water that collects or evaporates from the leaves or soil surface with a 
high resolution. Another high-precision load cell is positioned beneath 
the drainage bottle to precisely weigh the water that exits the root zone 
through drainage. The 90-cm depth lysimeter was installed on the same 
date when the wheat field was sown whereas the 30-cm depth lysimeter 

was left under bare soil conditions, while the surrounding area remained 
undisturbed to replicate the environment of the wheat field. To reflect 
the irrigation system conditions, a single dripper supplied water to the 
soil surface above the lysimeter cylinder. Both lysimeters are equipped 
with tension control mechanisms, enabling the measurement of water 
flows at the subsurface (30 cm) and at the bottom (90 cm). No mea
surements were made on F4 site, as the experiment focused on assessing 
the efficiency of the drip irrigation technology, which has been largely 
adopted by farmers, thanks to the government’s financial support in the 
frame of the MGP (“Morocco Green Plan”), particularly over wheat, one 
of the main crops cultivated in the studied region. Finally, the hemi
spherical canopy photos (taken with a Nikon Coolpix 950 and an FC-E8 
fish-eye lens converter, field of view 183◦) and the metric method were 
used every week to measure leaf area index (LAI) over each field along 
the growing season 2015–2016 (Fig. 3).

2.3. Ecohydrological model

The spatially distributed, process-based ecohydrological model 
EcH2O couples a two-layer (canopy and understory) vertical energy 
balance scheme (Fig. 5a), a hydrologic module resolving vertical and 
lateral water transfers (Fig. 5b), and a transpiration-based simulator of 
carbon uptake and allocation for plant growth in order to simulate the 
energy and water dynamics in the soil-plant-atmosphere continuum 
(Lozano-Parra et al., 2014, Maneta and Silverman, 2013). EcH2O has 

Fig. 2. Location of the Tensift watershed in Morocco (a), with a further detailed map of the R3 agricultural sector (b) showing land use and the location of the 
monitored plots F4 and F5 where the instruments are installed, including the small lysimeters in covered wheat (c) and bare soil (d) at F5 plot, and one of the two 
eddy-covariance systems (e).
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been primarily employed in forested ecosystems (Maneta and Silver
man, 2013, Kuppel et al., 2018a) but also agricultural settings (e.g., 
Yang et al., 2021, Ackerer et al., 2023, Luo et al., 2024), along spatial 
scales typically ranging from 1–100 m2 plots (e.g., Douinot et al., 2019, 
Li et al., 2023) to basins of 1–100 km2 (e.g., Neill et al., 2021, Yang 

et al., 2023, Maneta and Silverman, 2013). Our study provides a 
plot-scale application of this model to solve water flows for the first time 
in a semi-arid irrigated agricultural region.

The primary elements of the water balance in the vertical soil- 
vegetation column consist of canopy interception reservoir, the sur
face layer and three soil layers (Fig. 5a). Interception of precipitation 
inputs follows a linear bucket approach, where precipitation exceeding 
the maximum storage capacity makes up throughfall. For this applica
tion, the model was modified to account for irrigation, which is treated 
as a separate forcing input directly bypassing interception. The Green 
and Ampt approach (Mays, 2010) is used for surface water infiltration to 
the top soil layer, while downwards water percolation to deeper layers 
mobilises soil moisture exceeding field capacity; in all cases using a 
hydraulic conductivity linearly increasing with the degree of soil satu
ration using the Brooks and Corey approximation of pedotransfer 
functions (see Appendix of Kuppel et al. 2018a for further details). The 
leakage at the bottom of the simulated domain, which is here analysed 
as feeding groundwater recharge beneath the root zone (see the geom
etry described in Section 2.4) follows the same routing approach 
modulated by a dimensionless leakance parameter (Maneta and Silver
man, 2013). Lateral and channel water routing is not described here, as 
the model is used in 1D with a no-flow lateral condition and without a 
stream network.

At each time step, the energy balance is solved at the canopy and 
surface levels using radiation inputs and separately calculates the rates 
of evaporated plant interception, of soil evaporation, and of plant 
transpiration in tight connection with the available water in the inter
ception reservoir, in the first soil layer, and in the three soil layers 
(weighted by the root fraction), respectively. These evaporative losses 
are also controlled by the seasonal changes in LAI as it notably de
termines canopy conductance, light interception, and maximum canopy 
storage capacity. Instead of using the carbon allocation module to 
dynamically calculate the vegetation state (Lozano-Parra et al., 2014, 
Maneta and Silverman, 2013), following Ackerer et al. (2023) we take 
LAI as an external forcing from observations, which enables to control 
the water demand from foliar dynamics driven by anthropogenic ac
tivities in the two agricultural plots studied here.

2.4. Simulation setup

The model simulations were performed at an hourly time step from 
January 2014 to December 2017 over a 1-ha, one-pixel spatial domain. 
The first 12 months were discarded as a spin-up, to remove transient 
impacts of initial conditions of water content. The depth of the first 
hydrological layer, where soil evaporation occurs, was set to 10 cm, 
while the bottom of the second model layer was set to 30 cm in order to 
directly compare simulated downward water fluxes with the data 
collected from the lysimetric plate at this depth at the F5 site. Similarly, 
the total depth of the simulated domain (i.e. bottom of the third hy
drological layer) was fixed to 90 cm, where the second lysimeter plate is 
situated, while also encompassing the bulk root zone beneath which 
water percolation feeds aquifer recharge.

Hourly meteorological inputs were primarily taken from the local 
weather station datasets for rainfall, incoming short-wave radiation, air 
temperature, wind speed, and relative humidity. Incoming long-wave 
radiation time series, not routinely measured for the local weather sta
tion, were taken from the ERA5-Land hourly climate reanalysis data 
(Muñoz-Sabater et al., 2021), which also served for filling in situ 
meteorological data gaps. Irrigation timing and amount were taken for 
each site (F4 - flood irrigation and F5 - drip irrigation) from the 
2015/2016 growing season (Section 2.2 and Table S1), assuming the 
daily-scale amount for each event was evenly spread over 6 hours at F4 
starting from 10:00 (typical values averaging the variability of the 
mutualised flood irrigation system), while at F5 an average irrigation 
rate of 6.25 mm/hour was used to spread to daily amount on a hourly 
basis starting at 8:00 when farmers usually switch on the drip system; 

Fig. 3. Time series of water inputs (precipitation in blue and irrigation events 
in red) and crop phenology (leaf area index, green) from October 2015 to 
October 2016 at the two study sites: flood irrigation plot (F4, top) and drip 
irrigation (F5 plot, bottom).

Fig. 4. Time periods spanned by the datasets available at the two sites F4 and 
F5, used to feed model inputs (red) over the simulation period (grey) and for 
model calibration/evaluation (green).
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this forcing was then replicated over the other simulated years. Simi
larly, LAI measurements, made over 2015–2016 at each site (see sect. 
2.2), were used as inputs replicated over all simulated years. For model 
evaluation (see sect. 2.5), modelled surface temperature above the 
canopy is taken as an average between soil surface temperature and 
canopy surface temperatures computed during surface- and 
canopy-level energy balance solving, respectively, weighted using the 
canopy fraction available along with LAI measurements.

2.5. Sensitivity analysis, calibration and evaluation strategy

A preliminary sensitivity analysis was conducted to identify the pa
rameters to include in the subsequent model calibration. We used the 
modified version of the Morris method (Morris, 1991) outlined in Sohier 
et al. (2014), which consists in changing parameter values one at a time 
(by half of each parameter’s sampling interval, see Sohier et al., 2014) 
and quantifying the resulting difference in model outputs, here using the 
root mean square error (RMSE), yielding an "elementary effect" when 
divided by the parameter variation. This procedure was repeated over 
20 trajectories following the radial points approach with initial 
parameter values sampled using a Latin Hypercube Sampling (LHS) 
design to maximise parameter space coverage, and the final elementary 
effect for each parameter on each model output of interest is taken a the 
average of the absolute elementary effect in each trajectory, often called 
μ* (Sohier et al., 2014), thus given as: 

μ∗
k =

1
Ntraj

∑Ntraj

i=1

⃒
⃒
⃒
⃒
RMSE

(
M
(
Xi

1, ...,X
i
k− 1,X

i
k + ΔXk,Xi

k+1, ...,X
i
n
)
,M

(
Xi
) )

ΔXk

⃒
⃒
⃒
⃒,

(1) 

where X is the vector of model parameters values, k is the index of the 
parameter to be tested, M is the time series of a given model outputs, Xi

k 
is the initial value of the k-th parameter in the i-th trajectory, ΔXk is the 
variation of the parameter k, and Ntraj is the number of trajectories used. 
In order to be able to compare elementary effects across parameters and 
outputs with ranges and units, we normalised parameter variation by its 
allowed range (yielding a variation Δ̃Xkof ± 0.5, see above) and we also 
normalised each type of model outputs by their 80 %-dispersion range 
across all sensitivity simulations. We applied this method to the 25 pa
rameters related to hydrodynamic properties, soil physics and vegeta
tion functioning, and considering as relevant model outputs those used 
during calibration: soil moisture at two levels, latent heat, sensible heat, 
net radiation, and (only for F5 site) downwards percolation fluxes at two 
depths (see also calibration description below). Finally, we selected the 
parameters that showed a median normalised elementary effect across 
outputs equal or larger than 10 % for at least one the two sites. It 
allowed us to select 13 parameters for model calibration, mostly related 
to soil hydrodynamics properties and vegetation hydrological func
tioning (Table 1).

The EcH2O model was calibrated using a Monte-Carlo multicriteria 

Fig. 5. Schematic representation of the fluxes and stores taken into account in the formulation of the EcH2O model regarding transfers of (a) energy and (b) water.
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approach where the performance of a large ensemble of sampled model 
parameterizations is ranked based on the combined distributions of 
various model-data goodness-of-fit (GOFs) across several outputs, rather 
than combining the cross-outputs GOF values themselves (Ala-Aho et al., 
2017, Kuppel et al., 2018a). The steps are as follows: 1) 88 000 sets of 13 
parameters were generated using a latin hypercube sampling with uni
form distributions within the calibration ranges listed in Table 1; 2) each 
set was used for individual runs at F4 and F5, where various model-data 
GOFs were quantified for each run using a model performance metric 
(see below); 3) the cumulative distribution functions (CDFs) of site- and 
output-specific GOFs were determined; 4) individual rankings were 
combined for each multi-criteria calibration scenario (see Table 2) by 
determining the quantile value above which exactly 30 “best runs” 
simultaneously maximise rankings for each associated GOFs. These 
calibration scenarios were developed to combine the diversity of con
straints by grouping into process related to water storage (soil water 
content at 0–10 cm and 10–30 cm), downward water transfer (perco
lation at 30 cm and 90 cm depths) and energy balance (sensible heat, 
latent heat, and net radiation). The performance metric used for cali
bration is the Kling-Gupta Efficiency (KGE, Gupta et al., 2009), which 
defines an Euclidian distance (ED) from an ideal point, here of perfect 

model-data agreement, to be minimized: 

ED =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α − 1)2
+ (β − 1)2

+ (r − 1)2
√

, (2) 

KGE = 1 − ED, (3) 

where β is the ratio between the mean of simulations and observations, α 
is the ratio between the standard deviations of simulations and obser
vations, and r is the linear correlation factor between simulations and 
observations. KGE is thus to be maximized, with a variation range from 
-∞ to 1, and a KGE value above − 0.41 indicates that simulations are a 
better predictor than the mean of observations (Knoben et al., 2019). 
Note that we did not use calibration metrics based on squared 
model-data difference, such as the Nash-Sutcliffe efficiency (NSE) and 
RMSE, because they are known to overemphasize the constraint brought 
by high-values and neglects low-value portions of the dataset (e.g. 
Krause et al., 2005). In our case, several of the measurements types we 
use for calibration, such as energy balance fluxes and downward 
percolation fluxes, have non-symmetrical distribution, especially at the 
hourly time scales where the calibration is done. KGE comparatively 
offers a more balanced “weighting” of model-data fit during calibration, 
which combines criteria for bias, correlation. Given the short time 
period available for calibration datasets (one growing season), the 
calibration period was not separated from the evaluation period. Our 
evaluation of model performance then focuses on cross-output propa
gation of information content (instead of propagation of model perfor
mance from calibration to evaluation period) by analysing how the 
model performs for output included or not in the 8 calibration scenarios 
considered across the two study sites. Here we use dimensionless GOFs 
to evaluate the model across outputs types: KGE, to which we added the 
RMSE normalised by the mean of observations as a fraction-type metrics 
(taking into account the limitations discussed above).

Finally, the dispersion across ensemble runs is quantified using a 
normalised predictive uncertainty (PU*) defined as the 80 % spread of 
each simulated daily value across the 30 “best runs” of a given cali
bration scenario averaged over the whole simulation period, excluding 
the initial spin-up phase: 

PU∗ =
1

Neval

∑Neval

i=1

M90(ti) − M10(ti)
〈|M(ti) | 〉

(4) 

where M90(ti), M10(ti), and 〈|M(ti) | 〉i are respectively the 90th percen
tile, the 10th-percentile and average absolute value for the i-th time step 
in the calibration period.

3. Results

The following subsections are organised to present the model-data 
patterns in time series and seasonal fluxes (sect 3.1), then the overall 
model performance and dispersion between calibration scenarios (sect 
3.2), and finally relate these analyses to the calibrated values of model 
parameters (sect 3.3). While the numerical simulations of the different 
variables were conducted and the model parameters were calibrated on 
a hourly time step basis, for visual clarity we display the results using 
daily averages for the simulated time series (Figs. 6–8), the corre
sponding performance metrics (Fig. 9) and predictive uncertainty 
(Fig. 10).

3.1. Time series of ecohydrological observables

Fig. 6 shows that the model is able to capture most of the soil 
moisture dynamics down to 30 cm, for most calibration scenarios at 
both sites. At the flood irrigation site (F4), all scenarios are able to 
capture the timing of the response to the 6 irrigation events covered by 
the datasets (Fig. 6, left panel). The calibration scenarios including soil 
moisture data (F4_SWC and F4_SWC_EB) unsurprisingly provide a better 

Table 1 
Main numerical parameters used in the simulations, displaying fixed values and 
ranges used for calibration. *: log-sampling.

Name Description Unit Calibration 
range

Subsurface ​ ​
ɸ Total porosity m3. 

m− 3
0.3 – 0.5

Khsat Saturated horizontal hydraulic 
conductivity

m.s− 1 1e− 7 – 8e− 6 [*]

kleak Leakance parameter - 0.001 – 1 [*]
λbc Pore size distribution parameter - 2 – 12
Ѱae Air entry pressure head in the soil m 0.05 – 0.8
Vegetation ​ ​
gsmax Maximal stomatal conductance m.s− 1 0.005 – 0.025
Topt Optimal photosynthesis temperature ◦C 15 – 30
Kbeer Light attenuation coefficient - 0.4 – 0.7
CWSmax Maximum interception storage capacity m. 

LAI− 1
5e− 5 – 5e− 4

gsvpd Sensitivity of stomatal conductance to 
vapour pressure deficit

Pa− 1 0.0001 – 0.003 
[*]

Ѱlow Soil water potential for complete stomatal 
closure

m 150 – 250

Ѱhigh Soil water potential removing hydrological 
control on stomatal conductance

m 3.5 – 80

kroot Shape coefficient for exponential root 
profile

m− 1 0.4 – 10 [*]

Table 2 
Description of the different calibration scenarios used at the two study sites F4 
and F5.

Site Scenario Constraint Metrics

F4 F4_SWC Soil water content in two upper layers 
(0− 10 cm, 10− 30 cm)

KGE

F4 F4_EB Energy balance components: latent heat, 
sensible heat and net radiation fluxes

KGE

F4 F4_SWC_EB Soil water content in two upper soil layer and 
energy balance fluxes

KGE

F5 F5_SWC Soil water content in two upper layers 
(0− 10 cm and 10− 30 cm)

KGE

F5 F5_EB Energy balance components: latent heat, 
sensible heat and net radiation fluxes

KGE

F5 F5_SWC_EB Soil water content in two upper layers and 
energy balance fluxes

KGE

F5 F5_Prc Downward water fluxes at 30 cm and 90 cm 
depths

KGE

F5 F5_SWC_EB_Prc Soil water content, energy balance fluxes and 
downward water fluxes

KGE
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performances than when only radiation components are used for cali
bration (F4_EB); this difference is most marked in the deeper soil layer 
(10–30 cm) where F4_EB simulations overestimates (ensemble-median 
biases of +0.03 m3.m− 3 at 0–10 cm and +0.09 m3.m− 3 at 10–30 cm) and 
slightly dampens soil moisture dynamics. The misfit of the “radiation- 
only” scenario is even more marked at the F5 site (F5_EB) and visible in 
both layers where biases are similar to F4 (+0.01 m3.m− 3 at 0–10 cm 
and +0.09 m3.m− 3 at 10–30 cm) more overdamped signals (Fig. 6, right 
panel). The scenarios combining several types of constraints but 
including soil moisture (F4_SWC_EB, F5_SWC_EB, and F5_SWC_EB_Prc) 
yield similarly good results as compared to those using soil moisture 
alone, yet sometimes with an increased dispersion across best runs. This 
ensemble dispersion is even larger when only using water percolation 
data as constraint (F5_Prc), but with a good overall capture of observed 
SWC values at both depths. None of the scenarios seem to be able to fully 
catch the decrease of soil water content measured at both F4 or F5 sites 
in the deeper layer (10–30 cm) at the end of the growing season.

Fig. 7 compares the simulated and observed components of the 
surface energy balance: latent heat flux (LE), sensible heat flux (H), net 
radiation flux (Rn) and surface temperature (Ts). The calibrated model 
configurations overall capture the seasonal dynamics over the 
2015–2016 growing season at both sites, with very similar results be
tween calibration scenarios. Latent heat flux displays the best model- 
data agreement, as simulations manage to capture the seasonal in
creases and short term dynamics of LE from January to May 2016 at both 
sites (overall ensemble-median biases lower than 4 W.m− 2 across sce
narios); only the decrease at the end of the growing season is over
estimated by the model at both sites. This good performance is thus 
reflected in the simulation of actual evapotranspiration (ET), well 
reproduced both in terms of range and seasonal dynamics at both sites 
(Fig. 8), with higher modeled and measured ET rates at the flood irri
gation plot F4 as compared to drip irrigation plot F5. Most calibration 
scenarios nonetheless result in overestimating some peak ET rates at the 
beginning of the growing season following irrigation events at both F4 
and F5 sites, yet at the latter site this overestimation seems more sig
nificant and persistent until mid-March 2016, and we note an overall 
bias on order of magnitude larger at F5 (-0.8 to +0.7 mm d− 1) than at F4 
(-0.04 to 0.09 mm.d− 1). Including energy balance constraints at the F4 
site (F4_EB and F4_SWC_EB) results in realistically lowering some of 
these ET peaks. The overestimated LE decrease before the harvest in 
Spring 2016 simulations is also found for ET underestimation at F4 site, 

while late-season ET simulations remain in good agreement with ob
servations at F5 site. At the F5 site, we also note that the energy-balance- 
driven scenario (F5_EB) notably degrades the ET fit, which is under
estimated from mid-February until the harvest period.

At both sites, consistent biases were observed in the simulation of the 
other energy balance components, despite reasonably-reproduced dy
namics at both seasonal and submonthly timescales. The sensible heat 
flux is somewhat overestimated in simulations with an overall ensemble- 
median bias of 13 to 25 W.m− 2 across scenarios; the largest misfit is 
generally at F4, but also at F5 before February 2016 when leaves and 
plants start to grow (see LAI in Fig. 3). Surface temperature showed an 
even larger discrepancy, with a model overestimation of 6 to 6.5◦C 
overall, most visible in the late growing season. Furthermore, net radi
ation is well reproduced at F5 for most of the growing season, but the 
model underestimates this flux before February 2016 at this site (median 
bias of − 25 to − 29 W.m− 2), while at F4 site a larger bias is found 
throughout the analysed period (-42 to 46 W.m− 2). Additionally, the 
F5_Prc scenario results in some overestimated peaks late March 2016 for 
latent heat, sensible heat and surface temperature, when net radiation is 
conversely underestimated by F5_Prc simulations.

Fig. 9 reports the downward water fluxes at 30 cm depth (top) and 
90 cm depth (bottom, corresponding to groundwater recharge) under 
the two different sites and thus irrigation methods, mostly showing 
simulations but also the lysimeter-observed values available at F5 site 
for part of the growing season. At the F4 plot where flood irrigation is 
used, the infiltration peaks closely follow irrigation events. The infil
tration fluxes reach 18 to 68 mm/day at a depth of 30 cm on irrigation 
days and return to a no-flow condition within 2 days, with almost no 
intra-scenarios dispersion and little difference between calibration sce
narios. More differences are visible at 90 cm depth, with scenarios F4_EB 
and F4_SWC_EB displaying more intense percolation events (with 
ensemble-median values up to 14 mm d⁻¹) concentrated over 72 hours 
following the irrigation events, while simulations calibrated using only 
soil water content data (F4_SWC) report a more dampened response to 
irrigation events with smaller peak percolation rates (ensemble-median 
values up to 5 mm/day) with a recession spanning several days up to 2 
weeks.

In the F5 plot managed with drip irrigation, percolation fluxes are 
more numerous but less intense as compared to the F4 site, with marked 
differences between calibration scenarios at both 30 cm and 90 cm 
depths. Quick and intense responses to irrigation events are simulated at 

Fig. 6. Time series of daily-averaged soil volumetric water at the F4 (left) and F5 (right) sites over the 2015–2016 growing season, for the two uppermost layers of 
the simulated domain: 0–10 cm (top), and 10–30 cm (bottom). Data points (black) overlay the median and 80 % dispersion interval of the ensemble simulations for 
each calibration scenario (colours, see Table 2 for details). Vertical dashed lines represent irrigation events.
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Fig. 7. Time series of daily-averaged observed and simulated latent heat, net radiation, sensible heat surface temperature at F4 (left) and F5 (right) sites over the 
2015–2016 growing season, with observations displayed in black and simulations (80 % dispersion range and average of best runs) shown with colours.

Fig. 8. Time series of observed and simulated daily-averaged evapotranspiration rates at F4 (left) and F5 (right) sites over the 2015–2016 growing season, with 
observed data displayed in black and simulations with colours (80 % dispersion and median of best runs) for each calibration scenario. Vertical dashed lines represent 
irrigation events.
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30 cm for all calibration scenarios, although the largest peak infiltration 
values (up to 33 mm d− 1 for ensemble-median, beyond the y-axis of 
Fig. 9 top-right) were found when lysimeter data was not used (F5_SWC, 
F5_EB, F5_SWC_EB). This order of magnitude is larger than the typical 
range given by the available lysimeter data from April to May 2016, 
which reach up to 9 mm d− 1 at 30 cm depth, although data gaps prevent 
a comprehensive comparison with the modelled peaks outside the end of 
the growing season (April-May). At this depth, F5_Prc simulations 
comparatively remained in better agreement with the lysimeter data in 
terms of dynamics and range, while also being the only scenario with 
F5_EB to simulate percolation at 30 cm following the 2 latest irrigation 
events of the season. At the 90 cm level, all scenarios display more 
dampened percolation dynamics than at 30 cm, yet with significant 
contrasts between calibration scenarios. Those not using lysimeter data 
as constraint (F5_SWC, F5_EB and F5_SWC_EB) display one or several 

percolation events concentrated over a few days with values (up to 
15 mm d− 1) much beyond the typical range reported by the available 
lysimeter data (~0.4 mm d− 1), and F5_SWC and F5_SWC_EB fail to 
simulate percolation after late March 2016 although observations indi
cate downward water fluxes at the end of the growing season. By 
contrast, simulations calibrated using lysimeter data information 
(F5_Prc and F5_SWC_EB_Prc) display flatter variations without no-flow 
periods consistent with lysimeter data available at the end of the 
growing season, noting that the scenario F5_Prc allows to better capture 
the observed recession following percolation in May 2016.

The cumulative percolation fluxes reflect the differences reported 
between sites and across scenarios (Fig. 10). Simulations at the flood 
irrigated plot (F4) yields seasonal percolation amounts almost one order 
of magnitude larger than in the drip irrigated plot (F5) in most cases, 
both at 30 cm and 90 cm depths. At the F4 site, all scenarios yield a 

Fig. 9. Time series of downward water fluxes at F4 (left) and F5 sites (right) over the 2015–2016 growing season, showing daily-accumulated percolation rates at 
depth 30 cm (top) and 90 cm (bottom, corresponding to groundwater recharge). Observations at F5 are shown in black, while the median and 80 %-dispersion of 
ensemble simulations are shown with colours corresponding to each calibration scenario. Vertical dashed lines represent irrigation events. For clarity, the y-axis is 
capped at 15 and 1 mm d− 1 at 30 cm and 90 cm for F5, respectively (right), hiding percolation peaks in some scenarios (up to 67 and 17 mm d− 1 at 30 cm and 90 cm, 
respectively).

Fig. 10. Simulated cumulative estimates of downward water fluxes across the growing season (Dec 2015 - June 2016) at 30 cm (left) and 90 cm (right), with box 
plots depicting the distribution of values for the two sites and associated calibration scenarios.
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seasonal 30 cm infiltration within a 290–352 mm range (0.1–0.9 IQ 
range over scenarios), while percolation below the root zone (90 cm) is 
within a 109–181 mm range with the lower values obtained with the 
F4_SWC scenario. At the F5 site, the scenarios including soil water 
content data resulted in lower seasonal percolation at 30 cm (51 to 
164 mm) while other scenarios yield values 2 to 3 times higher. At 
90 cm where estimates may approximate below-root recharge, the 
F5_EB scenario yields much higher values (177–225 mm range) than the 
all other scenarios (including at the F4 site), with F5_SWC yielding a no- 
flow median estimate and the apparently-similar range for the 3 
remaining scenarios within a 18–78 mm range hides drastically different 
short-term dynamics (Fig. 9).

3.2. Overall model performance and predictive uncertainty

The model performances are summarised in Fig. 11, where heat maps 
relate calibration scenarios using two model-data GOFs (KGE and root 
mean square error normalised by the mean of observations - RMSE*) for 
each of the evaluated output variables whose time series are shown in 
Figs. 6–9, including a cross-observable average in each case; Fig. 11
displays ensemble-median values. At the F4 site, most of the evaluated 
outputs display good performance (0.2 < KGE < 0.8) with small KGE 
variations (< 0.2) between calibration scenarios, with two notable ex
ceptions: the sensible heat flux with KGE values around − 0.55 and 
RMSE* values around 1.5 across scenarios and surface temperature (see 
below). The former model-data discrepancy is not found for simulations 
at F5 site which is more consistent with higher KGE values (0.18 to 0.56) 
and lower RMSE* values (< 1) reported in Fig. 11. Normalised RMSE 
values at F4 site otherwise inversely reflect KGE patterns, with the lower 
values found for topsoil water content in the (RMSE* < 0.2 and KGE >
0.7) while most simulated components of the energy balance (LE, Rn) 
and ET display RMSE* below 0.45. Interestingly, at F4 site the surface 
temperature display moderate RMSE* (≤0.7) despite poor KGE values 
(< − 1), and modelled water content at 10–30 cm display low RMSE* 
values on par with topsoil moisture values despite medium-to-good KGE 
(0.23 to 0.44) suggesting a likely impact of comparatively poorer cor
relation factors.

The situation is more contrasted at the F5 plot, with larger ranges of 
KGE and normalised RMSE between scenarios and observables. Topsoil 
water content, latent heat fluxes, evapotranspiration, and net radiation 

simulations display high model-data agreement across calibration sce
narios as seen from KGE values (and to a lesser extent through RMSE* 
values). A cross-scenarios consistency is visible for the poorer perfor
mance of surface temperature simulations (0.14 ≤KGE≤0.18, 
0.51 ≤RMSE*≤0.53). Simulated percolation at both 30 cm and 90 cm 
consistently shows poor model-data fit with mostly negative KGE values 
beyond − 0.1 and RMSE* mostly above 1 whenever lysimeter data is 
absent from the calibration (F5_SWC, F5_EB and F5_SWC_EB); including 
this information significantly improves median model-data fit at both 
depths from a KGE standpoint (-0.21 ≤KGE≤0.14), while RMSE* 
reduction is limited to simulation of percolation at 90 cm. We also note 
that the simulation of water content at 10–30 cm is significantly 
improved by including soil moisture data (F5_SWC, F5_SWC_EB, 
F5_SWC_EB_Prc) both in terms of KGE and RMSE*, as is (to a lesser 
extent) the simulation of ET, LE, H.

Overall, at both F4 and F5 sites, the scenarios including all consid
ered calibration constraints yield the highest cross-observable median 
KGE values of 0.24 for F4_SWC_EB and 0.35 for F5_SWC_EB_Prc. The 
same ranking appears when considering RMSE* at F4 (0.52) and F5 
(0.58).

The relative predictive uncertainty (PU*) in Fig. 12 reports the in
fluence of various calibration scenarios on the ensemble dispersion for 
each evaluated simulation output, following a similar layout as Fig. 11, 
except that percolation outputs at F4 are also reported. It shows that PU* 
values of percolation fluxes at 90 cm (0.2 to 2.8) are often one order of 
magnitude higher than other simulated fields (0.006 to 0.8), with rela
tively similar values between sites for soil water content but generally 
higher values at F5 for energy-related outputs. Regarding these energy 
balance components, we also find that their predictive uncertainties are 
lowest at F4 site when energy terms (H, LE, and Rn) are the very con
straints used in the calibration (top panel: uncertainties of ET, H, LE, Rn 
and Ts -columns 3 to 7- for F4_EB scenarios − 2nd row), with median 
values equal or below 0.12. This analysis also applies to F5 site for soil 
moisture, as scenarios including these datasets (F5_SWC, but also 
F5_SWC_EB and F5_SWC_EB_Prc) yields lower PU* values for SWC than 
other scenarios. It does not apply for energy balance at F5 where F5_EB 
yields larger PU* values for energy balance outputs, nor for water 
storage at F4 site as F4_EB scenarios often yields lower PU* values of 
volumetric water content (1st and 2nd columns) than F4_SWC scenarios, 
yet in the latter case this seems to stem from the higher mean SWC 

Fig. 11. Heat maps of model-data fit over the 2015–2016 time period at F4 (left) and F5 (rights) sites, as measured using the median daily-scale (top) KGE and 
(bottom) normalised RMSE over the ensemble runs for each of the calibration scenarios (rows) and each type of observation (columns), including an “all-obser
vation” value.
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values (with poorer model-data fit) reported in F4_EB scenarios (de
nominator of PU*) rather than a reduced absolute dispersion interval 
(Fig. 6). Regarding percolation fluxes, PU* values are generally much 
lower at 30 cm than at 90 cm, and there is a significant heterogeneity 
between calibration scenarios. Within each site, at 30 cm we find lower 
relative uncertainties for scenarios using SWC data at F5, while it is more 
ambiguous at F4. We also note that the “percolation-only” scenario at F5 
(F5_Prc, 4th row in the lower panel of Fig. 12) yields the largest pre
dictive uncertainty of all non-percolation outputs as compared to other 
calibration scenarios, but also yields large PU* for percolation at both 
depths. In the end, the best-performing scenarios (F4_SWC_EB and 
F5_SWC_EB_Prc) yields a similar predictive uncertainty as compared to 
most of the other scenarios at F4 while at F5 the comparatively large “All 
obs” PU* stems from that of 90 cm percolation (despite better model- 
data performance).

3.3. Parameter values

Fig. 13 shows the selected parameter values across the selected 30 
best runs for each of the calibration scenarios jointly explored at both 
study sites. We first find that the calibrated values for hydrodynamic 
properties (total porosity ɸ, saturated hydraulic conductivity Khsat, pore- 
size distribution coefficient λbc, and air-entry pressure head Ѱae) most 
often exhibit well-constrained values across different calibration sce
narios as compared to the a priori sampling intervals (dashed horizontal 
lines in Fig. 13). The a posteriori values for these parameters are often 
consistent with the clayey nature of the soil at the study sites as grouped 
in Clapp and Hornberger (1978), with λbc values near or above 6 (higher 
values found at F4 site), Ѱae values between 0.5 and 0.7 m, and low 
hydraulic conductivity Khsat (below 3.5e− 6 m s− 1) yet with calibrated 
values at F4 generally higher (1.9 to 3.2e− 6 m s− 1) than at F5 (2e− 7 to 
3.5e− 6 m s− 1), a difference that holds when comparing “all-datasets” 
calibration scenarios (F4_SWC_EB and F5_SWC_EB_Prc). Total porosity 
(ɸ) values are somewhat more variable between scenarios, where cali
brating using the radiation dataset only (F4_EB and F5_EB) yields larger 
values in a narrow range (0.48 to 0.49 m3 m− 3) while other scenarios 
yield lower retention capacity (0.42–0.46 m3 m− 3) except for the F5_Prc 

scenarios where total porosity is even lower with a larger dispersion 
across best runs (0.33 to 0.4 m3 m− 3). We also observe that the a pos
teriori distributions for the leakance coefficient at the bottom (90 cm 
depth) of the simulation domain (kleak) reports highest values for F4_EB, 
F4_SWC_EB, F5_SWC, F5_EB and F5_SWC_EB scenarios, combined with 
the more homogeneous distribution of Khsat described above, explains 
the larger peak percolation rates observed at 90 cm for these scenarios at 
both sites (Fig. 9, bottom panels).

Vegetation parameters interestingly display some degree of clus
tering between sites, most visibly with light extinction coefficient (Kbeer) 
and maximum stomatal conductance (gsmax) exhibiting higher values at 
F4 than at F5 site. This is also visible for the stomatal sensitivity to air 
dryness (gsvpd) where the distinctly higher gsvpd values at F5 (meaning 
more decline of stomatal conductance at higher VPD), combined with 
gsmax patterns above, are consistent with the higher ET rates simulated 
(and observed) at F4 than F5 (Fig. 8). Rooting depth calibration 
(through the kroot parameter) shows heterogeneous results, yet calibra
tion scenarios using both soil water content and energy balance obser
vations yield well-constrained values (i.e. with smaller a posteriori range 
in the log-sampled space) with shallower rooting depth (i.e. higher 
values kroot) at F5 than at F4: the F4_SWC_EB scenarios reports kroot 
values between 1.4 and 3.5 m− 1 (corresponding to having 95 % of roots 
within 0.68 to 0.82 m), F5_SWC_EB reports kroot values from 7.5 to 
9.6 m− 1 (i.e., a 95 % rooting depth ranging from 0.31 to 0.40 m). 
Adding percolation data (F5_SWC_EB_Prc scenarios) slightly increases 
rooting depth at F5 to 0.33–0.43 m (with kroot values from 6.8 to 
9.1 m− 1), noting that constraining the model only with percolation data 
(F5_Prc) yields much deeper rooting depth (>0.81 m). Other vegetation 
parameters, related to interception storage capacity (CWSmax), optimal 
photosynthesis temperature (Topt), the range of soil water potential in
fluence on stomatal conductance (from no control -Ѱhigh- to stomatal 
closure -Ѱlow) comparatively show weaker patterns of calibrated values 
across scenarios.

4. Discussion

Process-based, integrative ecohydrological models bear significant 
potential for understanding and predicting dominant controls on water 
storage/release dynamics in the fast-evolving Anthropocene. However, 
their inherent high parameterization (since many processes are 
coupled/concatenated in related equations) make it challenging but 
crucial to leverage relevant information content yielding a reduced 
space of model configuration (i.e. diversity of parameter sets and/or of 
model structures) to eventually allow for process identification unam
biguously (Clark et al., 2011). Multi-criteria calibration may help in that 
respect, with differentiated constraints among the various processes and 
parameters. Conversely, model-data discrepancies after calibration also 
offer opportunities to discuss and improve the model structure and 
model-data fusion strategy. In the present study, the overall good per
formances of multi-criteria calibration at two agricultural plots with 
contrasting irrigation practices allows such a discussion, focused below 
first on the analyses of identified (and missed) process dynamics, and 
then on the respective values of the combined information contents. 
Finally, we further discuss the potential and limitations of our meth
odology in the context of sustainable agricultural practices, using effi
ciency metrics.

4.1. Representation of biophysical processes

The best-captured output is soil moisture, here analysed down to 
30 cm using two hydrological layers (0–10 cm and the 10–30 cm 
ranges), with the lowest cross-scenario RMSE* values and highest KGE 
compared to other fields. The time series in Fig. 6 further show that the 
EcH2O model effectively captured the distinct patterns observed at the 
F4 and F5 sites throughout the agricultural season, resulting from the 
interplay of short-term responses to irrigation and rain events with 

Fig. 12. Relative predictive uncertainty PU* at F4 (top) and F5 sites (bottom), 
computed for each simulation output (x-axis) as the daily-scale 80 %-range 
among the 30 ensemble runs for each calibration scenario (y-axis) best runs and 
then averaged over the 2015–2016 growing season.
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direct evaporation, shallow root water uptake, and percolation.
The time series however also highlights some limitations, first of all 

at F4 where the model is less dynamic than observations in terms of dry- 
down variability throughout the cropping season: in the topsoil layer 
(0–10 cm) dry-down dynamics are slightly overestimated (meaning that 
simulated VWC decreases too much) during the peak growing season 
(mid-March to late April) but well-captured before and after that, while 
in the intermediate soil layer (10–30 cm) dry-down dynamics are 
underestimated in early March and during the harvest period (early 
May), but well-simulated outside these periods (Fig. 6, left). While the 
magnitude and dynamics of total ET is overall correctly estimated across 
most of the cropping period (Fig. 8), an inspection of ET components 
(Fig. S1) shows that the overestimated ET peaks following irrigation 
events during the peak growing may derive from an overestimation of 
the relative contributions of soil evaporation plus root water uptake 
within the first 10 cm. These discrepancies in soil water content within 
the first 30 cm remain nonetheless quite small at F4 and point at a 
reasonable representation of root water uptake (RWU) along the full 
90 cm profile.

At F5 site, the interplay between model-data fit for soil water content 
and ET is more contrasted. From mid-March until the harvest period 
when LAI declines (May), the excellent model-data fit of soil water 
content at both monitored depths ranges suggest an accurate balance 
between storage and water fluxes (ET and percolation components) 

when leaf cover is medium to high (see LAI in Fig. 3), noting that ET 
remains slightly overestimated. During the earlier growing stages until 
mid-March 2016, the joint inspection of overestimated dry-down dy
namics at 0–10 cm in between well-capture peak moisture contents on 
irrigation days, overly responsive total ET and modelled ET components 
(Fig. S1), also points at an overly responsive contribution of soil evap
oration. The slight underestimation of water content in the 10–30 cm 
depth range at that period further suggests that the model excessively 
evaporates topsoil water instead of percolating to deeper horizons as 
suggested in VWC data. The same early-season discrepancy in soil water 
content may be happening at F4 site where ET is also overestimated 
following irrigation events due to large rates of direct evaporation 
(Fig. S1), yet the absence of soil moisture data at that period limits our 
analysis.

Nonetheless, the recurrence of unreasonably large direct evaporation 
rates at both sites during early growing stages questions the quantifi
cation of available energy and/or available water for this ET component. 
When solving the surface energy balance, the whole storage in the upper 
model layer mobilized, i.e down to 10 cm; while this evaporation depth 
makes sense for clayey soils it represents a steady-state value for the 
evaporation front after several days or weeks (Wythers et al., 1999) 
following the different stages of direct soil evaporation (Or et al., 2013). 
As result, the simplified formulation of direct evaporation in the EcH2O 
model may benefit from using a topsoil layer depth balancing between 

Fig. 13. A posteriori values of the 13 calibrated parameters, showing the distribution of values (interquartile range and median) across the 30 “best runs” for each 
calibration scenario at both sites (colours). A log-scale y-axis is used for the 4 parameters in the bottom row (log-sampled for calibration, see Table 1).
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evaporation depths and resulting evaporation rates over the shorter 
times scales considered in the simulations, given the recurrence and 
timing of rain or irrigation events.

The calibrated rooting depth, down to 0.8 m for most F4 scenarios, is 
consistent with typically-reported values for flood-irrigated winter 
wheat (Kharrou et al., 2021). For the drip-irrigated plot (F5), calibration 
reports a shallower root system (within 40 cm for the best performing 
scenario F5_SWC_EB_Prc), which corresponds to the depth of maximum 
root activity found in these irrigation systems located in the middle and 
lower soil layers at the peak growing stages where drip irrigation in
creases root growth (Ma et al., 2022)]. Note that some of the 
above-described dynamics and discrepancies of (soil) ET may arise from 
the conceptualisation of RWU when solving the canopy-level energy 
balance to quantify transpiration. There, the relative weight of each of 
the three soil layers simulated by the EcH2O model to plant-available 
water derives from a static root profile, embodied in the exponential 
shape parameter kroot (Kuppel et al., 2018a). This was originally 
developed for natural or semi-natural environments where it provided 
an adequate capture of RWU dynamics (Maneta and Silverman, 2013; 
Lozano-Parra et al., 2014; Kuppel et al., 2018a). As a result, it may lack 
the flexibility needed to reflect evolving RWU from the convolution of 
soil water status and root growth stages in crops, and most notably 
increasingly-deeper accessible soil horizons (Ma et al., 2022). Other 
simulation efforts in the same conditions such as Er-Raki et al., (2021)
were also able to reproduce storage et evaporation dynamics despite 
using a fixed rooting depth of 50 cm with the HYDRUS-1D model 
(Šimůnek et al., 2008) under both irrigation systems.

The overall good capture of the broad hydrodynamic behavior along 
the soil profile in the F4 and F5 plots is also consistent with the cali
brated parameters, whose values match the clay-rich texture of the soil 
at these study sites in terms of water retention capacity (medium-to-high 
index for pore size distribution, high air-entry pressure head and large 
total porosity) and low hydraulic conductivity (Fig. 13). We however 
note some differences between the two study sites, where the best- 
performing calibration scenario in the drip-irrigated plot yields lower 
water retention capacity (pore distribution and porosity) and lower 
hydraulic conductivity than the flood-irrigated plot despite similar soil 
properties (Er-Raki et al., 2021, Arjdal et al., 2024). Given that our 
modelling configuration takes into account the main differences be
tween the two plots such as foliar dynamics (LAI signal) and irrigation 
timing and amplitude, we posit that these inter-site differences, as well 
as plant-level parametric differences such as consistently higher 
extinction coefficient, higher maximum stomatal conductance and 
lower VPD control of stomatal conductance at the flood irrigation site, 
could arise from parametric compensation due to using 
vertically-uniform hydrodynamic parameterization in inherently het
erogeneous soil profiles. Our modelling approach indeed emphasized 
the coupling of physically-based canopy- and surface-level energy bal
ance solving with a somewhat simplified subsurface hydrology to keep a 
high computational efficiency and thus allowing for in-depth explora
tion of parametric space through automatic calibration (see Sect. 4.2 as 
well). While it provided good overall results, it is at the expense of 
further exploring profile-level heterogeneity, and follow-up effort could 
use a layer-based parameterization and/or more calibration data such as 
direct measurements of field capacity could enhance the model’s accu
racy without compromising the efficiency.

Beyond parameterization, the present modelling approach sought to 
explore the potential and limitations of using a simplified con
ceptualisation of vertical water movement through and within soil ho
rizons. The EcH2O model streamlines soil hydrology by utilising a layer- 
by-layer (saturated) gravitational flow, neglecting matric potential 
gradients, as opposed to more detailed (and computationally-intensive) 
descriptions such as the Richards-based HYDRUS-1D model used by 
Er-Raki et al. (2021). In addition, as in other 1D modelling approaches, 
the one-pixel domain used in this study laterally averages water storage 
and fluxes. Taken together, such simplifications are useful for utilising 

plot-scale datasets such eddy-covariance data, and leaf cover and 
meteorological forcings, but may hide smaller-scale processes like 
capillary effects and lateral redistribution, which are significant in 
fine-textured soils like those in the research plots (Pueyo et al., 2013). 
We also note some uncertainty regarding leaf area index time series used 
as an input. At F4 site, It is likely to explain the largely underestimated 
final dry-down at 10–30 cm at both sites in May 2016 (where simula
tions remain near field capacity near 0.3 m3 m-3) while it is 
well-captured at 0–10 cm; this is simultaneous with an underestimation 
of ET (Fig. 8, left) and an overestimation of surface temperature in the 
model (Fig. 7, bottom left), and the end of the decrease of LAI, from 1.5 
(1 May) to 0 (13 May). A very similar pattern is observed at F5 where LAI 
recession is similarly timed, with a similar overestimation of surface 
temperature but a smaller misfit for ET and overestimated dry-down at 
0–10 cm. The low-to-null LAI (and thus canopy fraction) values used to 
compute plot-level surface temperature (see sect. 2.4) may give a 
disproportionate weight to soil surface temperature which usually reach 
higher and less dampened values than canopy-level surface tempera
ture, thus explaining the reported departures. We used the same leaf 
cover forcing as in Er-Raki et al. (2021), except for late growing season 
(after late March) where the cited study maintained a constant LAI 
(above 4) and canopy fraction (above 0.9) until early June, whereas it 
seems more realistic to stick to the original LAI dataset, which may 
conversely overestimate the LAI decline through April and May.

Finally, the present modelling approach was able to capture the 
range and the broad dynamics of percolation reported at 30 and 90 cm 
by the lysimeter data at the drip irrigation plot F5, with KGE above − 0.4 
(meaning that simulations performs better than the observation mean) 
at both depth for the overall best performing scenarios (F5_SWC_EB_Prc) 
only bested for this specific datasets by the percolation-only calibration 
scenarios (F5_Prc). Our estimates of cumulative percolation for these 
two scenarios at drip irrigation site (87–214 mm IQ range at 30 cm, 
18–50 mm at 90 cm) are consistent with a previous process-based 
modelling effort estimating 93 mm at 50 cm depth (Er-Raki et al., 
2021). At the flood irrigation site however, the HYDRUS-1D model used 
by Er-Raki et al. (2021) also yields similar yet thigher percolation flux at 
50 cm (347 mm) than we report here at both depths with the reference 
F4_SWC_EB scenario (290–340 mm IQ range at 30 cm, 114–166 mm at 
90 cm). The performances of this aforementioned study with more 
detailed hydrological conceptualization is quite uncertain given the 
discrepancy between measured and modelled percolation depth ranges. 
Directly comparing to available lysimeter data at the drip irrigation site, 
the present model-data fit is remarkable given the above-discussed 
limitations, and the small percolation rates at 90 cm (orders of magni
tude smaller than percolation at 30 cm, ET and irrigation pulses) war
ranting precision for this “residual” percolation term. It emphasizes the 
paramount importance of an explicitly coupled energy balance - hy
drology modelling scheme such as found in EcH2O to explore the dy
namic interactions between soil water status and plant - surface energy 
fluxes.

4.2. Tradeoffs and benefits of multi-observation model constraints

The study used numerous datasets in various combinations for model 
calibration and evaluation to provide new insights into the informa
tiveness and representativeness of these measured quantities in 
enhancing our modelling methodology. This can aid in the development 
of more effective data collection initiatives.

From an energy balance perspective, we find that most of the com
ponents evaluated in this study (sensible heat, net radiation and surface 
temperature) are simulated similarly across the calibration scenarios 
within each site, with model-data fits ranging from fair-to-poor for 
surface temperature to good for net radiation, and with limited (but 
consistent) improvement from having energy balance observables 
included in the calibration (Fig. 11). The case is more significant for 
latent heat (used in some calibration scenarios) and related 
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evapotranspiration (only used for evaluation) as both observables are 
well captured with all calibration scenarios in both study plots (median 
KGE > 0.5 in most cases), yet with noticeable improvements when en
ergy balance (and sometimes soil water content) are included in the 
calibration (Fig. 11). An interesting case is the poor performance of 
evapotranspiration in the “energy-balance-only” scenario at F5 (F5_EB) 
despite consistent improvement for latent heat flux: despite solving the 
energy balance to compute the latter, the transpiration flux remains low 
(Fig. S1) due to a large sensitivity of stomatal conductance to air dryness 
for that scenario (embodied in the large value of gsVPD parameter, 
Fig. 13), and the larger soil evaporation flux cannot compensate 
(Fig. S1). It illustrates the importance of including information content 
from water content along with energy balance to avoid overfitting of 
energy balance components at the expense of consistent ET partitioning 
and resulting degraded water content simulation (Fig. 6). The insuffi
cient information content in the energy balance datasets is also visible at 
the F4 site, where the F4_EB scenario provides good results for these 
observables, but a degraded fit to soil water content (Fig. 6, left).

By contrast, the information provided by soil water content datasets 
alone already yields good performances for both soil water content dy
namics -as expected- but also energy balance components (H, LE, Rn and 
Ts) both in the flood irrigation plot and in the drip irrigation plot. 
Combining with energy balance information in the calibration (in 
F*_SWC_EB scenarios) does bring some improvement to the simulation 
of the latter type of observables and does not significantly degrade 
simulations of soil water content (Fig. 11). This suggests that from an 
ecohydrological perspective the information content given by soil water 
content is broader (process-wise) than that given by the energy balance, 
at least at this plot scale (see also the discussion on the spatial footprint, 
e.g. in Kuppel et al., 2018a). Yet both these water and energy informa
tion contents remain “compatible” and complementary, notably 
enabling to identify narrower ranges of values for many parameters (see 
scenarios F*_SWC_EB in Fig. 13).

In the drip irrigation plot where lysimeter data at both the 30 cm and 
90 cm depth allowed us to further calibrate and evaluate simulated 
percolation fluxes, we find that an acceptable model-data fit (outlined in 
Sect 4.1 as well) can be achieved provided that the calibration includes 
this specific dataset. At 30 cm depth where percolation dynamics are 
quickly responsive to irrigation events with measured rates reaching 
10 mm/d, the model provided first-order agreement for a broader range 
of scenarios where soil water content and/or lysimeter datasets were 
included, although maximum rates may be overestimated. Good per
forming scenarios dwindle at the bottom of the simulated domain 
(90 cm) where the percolation flux is order of magnitude smaller than 
other vertical fluxes at differents horizons (ET, infiltration, percolation, 
irrigation); without lysimeter data, the model behaves similarly to the 
30 cm horizon, resulting in overestimated dynamics and rates (Fig. 9, 
right). The most significant illustration of this discrepancy is the F5_EB 
scenario where this large overestimation of 90cm-percolation dynamics 
results in seasonally-sum flux even larger at the flood irrigation site 
(Fig. 10, right) and is associated with a very large predictive uncertainty 
(which almost covers the whole bottom right panel in Fig. 9). It high
lights the limits of using energy balance constraints to estimate perco
lation since it primarily relates to surface and above-ground transfers 
with limited information content consistent with underground pro
cesses. Including only energy balance also tends to shift infiltrations 
rates and responsiveness up at the flood irrigation site, although the 
contrast with other scenarios combining water content and/or energy 
balance are much less pronounced than at the drip irrigation site, 
notably visible through seasonally-cumulative fluxes (Fig. 10). At this 
site where we noted a much higher baseline for percolation amounts and 
lower attenuation from 30 cm to 90 cm than at the drip irrigation site 
(Sect. 3.1), the larger predictive uncertainty at 90 cm than 30 cm (as 
also found for the drip irrigation site, Fig. 12) highlights the increased 
difficulty to predict downward water fluxes as one moves deeper along 
the soil profile.

Conversely, we also note that the information content of percolation 
datasets alone remains insufficient to effectively constrain soil water 
content simulations: the model-data fit is degraded at 10–30 cm (as 
compared to scenarios including SWC data) and the predictive uncer
tainty for SWC at both depths (0–10 cm and 10–30 cm) is 2 to 4 times 
higher than in other scenarios. This limited footprint of lysimeter data 
may however derive from the limited amount of data collected, which 
was only done on certain days (with numerous gaps) towards the end of 
the growing season, missing the majority of irrigation events and 
following recessions. This issue raises more generally the question of 
data quality and availability. Like any other process-based model in a 
calibration approach, the consistency from evaluation to process iden
tification depends on the exhaustivity of constraining datasets.

In the end we find a more significant variability in model perfor
mance and/or estimates of unobserved fluxes across calibration sce
narios at the drip irrigation site than at the flood irrigation site, but both 
sites converge in that using multiple data types bolsters the model’s 
robustness. It better captures distinct behaviors in flood (F4) and drip 
(F5) irrigation, linking soil moisture, energy fluxes, and percolation 
processes. For instance, F4_SWC_EB captures rapid infiltration under 
flood irrigation, while F5_SWC_EB_Prc reflects stable drip irrigation 
patterns. Extra constraints narrow parameter uncertainty and incorpo
rating lysimeter data aligns recharge simulations more closely with re
ality. Ultimately, such integrated calibration reduces bias, avoids 
overfitting to single datasets, and is more likely to enhance predictive 
accuracy for unobserved conditions.

4.3. Implications for identifying efficient and sustainable irrigation 
practices with process-based modelling

Despite the limitations and remaining uncertainties of the modelling 
strategy adopted here that was discussed in the previous sections, the 
overall good model performances across a range of ecohydrological 
outputs allows for first-order assessments regarding the water budgets of 
the two irrigation types represented in the present study plots. In the 
following, we will mostly thus use the scenarios F4_SWC_EB and 
F5_SWC_EB_Prc as reference scenarios for further analysis, as they were 
found to be the most robust in terms of overall model-data fit and pre
dictive uncertainty (see Figs. 11–12 and Sect. 3.4). The larger evapo
transpiration rates found in the flood irrigation plot (F4), as compared to 
the drip irrigation plot (F5, Fig. 8), also reflect larger simulated tran
spiration rates (directly quantified by the EcH2O model, see Sect 2.3); 
forward modelling with the reference calibration scenarios over the 
2015–2016 cropping season (December to May) yields transpiration 
estimates ranging from 295 to 336 mm at F4 (0.1–0.9 IQ range across 
best runs) and 236 to 288 mm at F5 (not shown). To put this into an 
irrigation efficiency perspective, we divided the cropping-season tran
spiration by the total water input (precipitation + irrigation) over the 
same time period and for the abovementioned reference scenarios, 
yielding an agronomic irrigation efficiency (Fig. 14, left). We found 
slightly lower values at F4 (0.1–0.9 IQ range of 48–55 %) than at F5 site 
(52–63 %). In other words, our results of winter wheat water con
sumption suggest a larger efficiency of drip irrigation as compared to the 
flood irrigation plot studied here, from a pure agronomical standpoint. 
Further analysis including cropping yields would however allow for a 
more in-depth assessment of irrigation efficiency with a “pipe-to-har
vest” perspective (Guo et al., 2023).

Considering that the backdrop of this modelling effort is to assess the 
sustainability of groundwater use practices, it is essential for 
hydrologically-based assessment of agricultural practices to also include 
deep percolation as a beneficial, “locally recoverable return flow” 
(Grafton et al., 2018) to the underlying aquifer, which precisely sustains 
groundwater resource either at the local scale (e.g. through pumping 
and thus the very irrigation inputs) or at the watershed scale for a range 
of hydrological functions. Taking advantage of the modelled percolation 
estimates at 90 cm (i.e. beneath the main root zone), we thus computed 
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another irrigation efficiency metric including both cropping-season 
transpiration and percolation amounts, here summed and divided by 
water inputs (precipitation and irrigation) over the same period, termed 
hydrological irrigation efficiency. Using the same reference calibration 
scenarios as above, we find that this efficiency is this time higher at the 
gravity plot F4 site (72–75 %, 0.1–0.9 IQ range) than at the drip irri
gation site F5 (62–67 %, 0.1–0.9 IQ range) (Fig. 14, right). This estimate 
questions the oft-highlighted “water-saver” characteristic of drip irri
gation over flood irrigation, as during the studied cropping season one 
third of incoming water did not sustain biomass production of 
drip-irrigated winter wheat or water recycling towards aquifer recharge, 
while this fraction is ~25 % for the flood irrigation system. Drip irri
gation, while efficient at delivering water to the root zone and 
enhancing plant water use efficiency, is thus shown here to have a 
relative gain in productivity too marginal to compensate the reduced 
return flow to the hydrological system (percolation beneath the root 
zone) as compared to the flood irrigation system, while soil evaporation 
was not significantly reduced (with even an increased relative weight, 
from 22–24 % in F4_SWC_EB to 29–35 % in F5_SWC_EB_Prc, not shown).

These results may however be taken with caution, for several rea
sons. They are highly sensitive to the precision of our percolation esti
mates at both the drip irrigation site (10 to 100 times lower than other 
fluxes) and the flood irrigation site. For example, doubling the 90 cm 
percolation flux at the drip irrigation site (as compared to the reference 
F5_SWC_EB_Prc scenario) puts the hydrological efficiency on par with 
the flood irrigation, as does decreasing the percolation by 30 % at the 
flood irrigation site (as compared to the F4_SWC_EB scenario, not 
shown). It is not negligible given remaining uncertainties regarding 
local boundary conditions used for this modelling approach, such as the 
crop’s leaf area index (LAI) or our assumption regarding irrigation 
timing. While we always started irrigation events at the same hour(for 
lack of more detailed information) and used average (although field- 
based) irrigation rates throughout the irrigation period, actual irriga
tion may be more variable due to factors such as labor availability, en
ergy costs, and equipment constraints, and other non-physically- 
grounded human factors; this variability may also create temporary 
soil saturation or preferential flow paths influencing infiltration and 
percolation patterns. The latter feature is not accounted for in process- 
based modelling efforts so far (e.g. EcH2O -this study- or HYDRUS-1D 
- Er-Raki et al., 2021). These practical considerations also mean that 
even if the physical models are sound, real-world irrigation patterns may 
not align with hydrologically optimal strategies. Moreover, while we 
used deep percolation as a proxy for aquifer recharge, not all water 

draining below the root zone necessarily reaches the groundwater table. 
In this semi-arid environment, water may be stored or move laterally in 
the unsaturated zone, or even re-evaporate downstream. These pro
cesses are further complicated by the clayey soils that can slow vertical 
movement and by the highly variable groundwater depths in the 
Haouz-Mejjate aquifer region (30 to 260 m). Thus, the relationship be
tween percolation at 90 cm and actual aquifer recharge can vary 
dramatically from plot to plot. Finally, this hydrological perspective on 
irrigation efficiency does not consider crop yield in itself or energy 
consumption through groundwater pumping which is larger for flood 
irrigation given the larger irrigation amounts.

This underscores that a society-relevant, precise assessment of irri
gation systems efficiency here requires more integrative model-data 
approaches combining more field data on percolation with the 
strengths of process-based ecohydrological models like EcH2O and 
HYDRUS-1D and hydrogeological components quantifying not only 
aquifer recharge but also the dynamics of groundwater pumping in 
realistic farming contexts.

5. Conclusions

By comparing a flood- with a drip-irrigated plot, this model-data 
study notably focuses on the resulting percolation beneath the root 
zone as a proxy for aquifer recharge—an increasingly vital under
standing for sustainable water management in agriculture. The multi- 
criteria calibration and evaluation comparing various calibration sce
narios overall showed that the ecohydrological model used in this study 
was able to capture hydrological and surface-atmosphere exchange dy
namics with specific patterns inherent to each type of irrigation practice, 
and validated our first hypothesis that the complementary information 
content brought by soil water content, energy balance and percolation 
datasets warrants their joint use for improved model performance. 
However, our results reject our second hypothesis that drip irrigation 
enhances irrigation efficiency at all levels: when considering both 
transpiration and deep percolation as indices for useful water -the first as 
a proxy for biomass production, the second for recharging the under
lying aquifer sustaining irrigation input, we find that flood irrigation is 
more efficient from a whole “aquifer-soil system” perspective.

These insights thus directly relate to questions which remain central 
for agriculture and policy development aiming at optimising the use of 
scarce water resources in farming environments. These encouraging 
results highlight the value of coupling a process-based description of the 
energy balance and hydrology, even if the latter is simplified, to simulate 
groundwater recharge rates in ET-dominated systems. It also points at 
the need for additional constraints to enhance our comprehension of the 
influence of site-specific characteristics on water movement and refining 
the corresponding estimates of recharge fluxes. One avenue is having 
longer or additional records of lysimeter-based percolation measure
ments across various soil types and irrigation systems, and (non exclu
sively) the integration of stable water isotopes monitoring with tracer- 
enabled ecohydrological models (Kuppel et al., 2018b). By tracking 
water movement both in quantity and in origin along the 
soil-plant-atmosphere continuum, such developments may better 
disentangle and predict the functional changes that low-latitude culti
vated systems are undergoing (Scandellari et al., 2024) due to climatic 
and socio-economic trajectories. Coupling process-based models with 
transparent, basin-scale water accounts would thus allow informing on 
sustainable water management practices using an integrative assess
ment of irrigation efficiency at a variety of spatial and temporal scales; 
under current conditions and testing future scenario integrating water 
management policies and potential changes in cropping choices.
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Yang, X., Tetzlaff, D., Müller, C., Knöller, K., Borchardt, D., Soulsby, C., 2023. Upscaling 
tracer-aided ecohydrological modeling to larger catchments: Implications for process 
representation and heterogeneity in landscape organization. Water Resour. Res. 59, 
e2022WR033033. https://doi.org/10.1029/2022WR033033.

T. Attou et al.                                                                                                                                                                                                                                    Agricultural Water Management 316 (2025) 109584 

18 

https://doi.org/10.1016/j.ejrh.2023.101336
https://doi.org/10.1029/2006WR005588
https://doi.org/10.1002/2014WR015809
https://doi.org/10.3390/w12040928
https://doi.org/10.3390/rs13061133
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.5194/gmd-13-1373-2020
https://doi.org/10.5194/gmd-13-1373-2020
https://doi.org/10.2478/v10104-009-0015-y
https://doi.org/10.1016/j.envsoft.2018.01.001
https://doi.org/10.5194/gmd-11-3045-2018
https://doi.org/10.1007/s11269-012-0068-3
https://doi.org/10.1007/s11269-012-0068-3
https://doi.org/10.1029/2022MS003263
https://doi.org/10.5194/hess-18-1439-2014
https://doi.org/10.5194/hess-18-1439-2014
https://doi.org/10.1016/j.jhydrol.2024.131339
https://doi.org/10.1016/j.agwat.2022.107783
https://doi.org/10.1175/2012EI000472.1
https://doi.org/10.1080/02626667.2021.1924379
http://refhub.elsevier.com/S0378-3774(25)00298-7/sbref48
https://doi.org/10.1038/s43017-023-00438-5
https://doi.org/10.1029/2006WR005467
https://doi.org/10.1029/2006WR005467
http://refhub.elsevier.com/S0378-3774(25)00298-7/sbref51
http://refhub.elsevier.com/S0378-3774(25)00298-7/sbref51
https://doi.org/10.2307/1269043
http://refhub.elsevier.com/S0378-3774(25)00298-7/sbref53
http://refhub.elsevier.com/S0378-3774(25)00298-7/sbref53
http://refhub.elsevier.com/S0378-3774(25)00298-7/sbref53
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/hess-25-4861-2021
https://doi.org/10.5194/hess-25-4861-2021
https://doi.org/10.1002/eco.1362
https://doi.org/10.2136/vzj2012.0163
https://doi.org/10.2136/vzj2012.0163
https://doi.org/10.1016/j.ejrh.2023.101501
https://doi.org/10.1016/j.scitotenv.2022.155328
https://doi.org/10.1016/j.agwat.2024.108861
https://doi.org/10.1016/j.agwat.2024.108861
https://doi.org/10.1002/HYP.13238
https://doi.org/10.1007/s10021-012-9620-5
https://doi.org/10.1016/j.jenvman.2024.121381
https://doi.org/10.1016/j.jenvman.2024.121381
https://doi.org/10.5194/hess-20-4061-2016
https://doi.org/10.1029/2001WR000978
https://doi.org/10.3182/20140824-6-ZA-1003.01968
https://doi.org/10.1175/1087-3562(2004)8&percnt;3C1:RRHSSO&percnt;3E2.0.CO;2
https://doi.org/10.1175/1087-3562(2004)8&percnt;3C1:RRHSSO&percnt;3E2.0.CO;2
https://doi.org/10.1016/j.agwat.2015.09.007
https://doi.org/10.1016/s0168-1923(00)00123-4
https://doi.org/10.1016/s0168-1923(00)00123-4
https://doi.org/10.1073/pnas.0805554105
https://doi.org/10.1073/pnas.0805554105
https://documents1.worldbank.org/curated/en/245801608346893390/pdf/Morocco-Green-Generation-Program-for-Results-Project.pdf
https://documents1.worldbank.org/curated/en/245801608346893390/pdf/Morocco-Green-Generation-Program-for-Results-Project.pdf
https://doi.org/10.2136/sssaj1999.6351341x
https://doi.org/10.2136/sssaj1999.6351341x
https://doi.org/10.1029/2020WR029094
https://doi.org/10.1029/2022WR033033

	A process-based modelling of groundwater recharge under contrasting irrigation methods in semi-arid crops
	1 Introduction
	2 Materials and methods
	2.1 Study sites
	2.2 Data description
	2.3 Ecohydrological model
	2.4 Simulation setup
	2.5 Sensitivity analysis, calibration and evaluation strategy

	3 Results
	3.1 Time series of ecohydrological observables
	3.2 Overall model performance and predictive uncertainty
	3.3 Parameter values

	4 Discussion
	4.1 Representation of biophysical processes
	4.2 Tradeoffs and benefits of multi-observation model constraints
	4.3 Implications for identifying efficient and sustainable irrigation practices with process-based modelling

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supporting information
	Data availability
	References


