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Abstract Foreshocks, though well‐documented phenomena preceding many large earthquakes, have
limited forecasting utility due to their non‐pervasive occurrence and non‐distinctive characteristics. Using
California as an example, we investigate how seismic monitoring capability, particularly the completeness
magnitude (Mc), influences the inferred proportion of mainshocks with foreshocks (Pf ). We test four foreshock
identification methods, namely the fixed‐window, nearest neighbor clustering, empirical statistical (ES)
methods and the epidemic‐type aftershock sequence (ETAS) model. The fixed‐window method shows Pf
decreasing with higher Mc due to the misclassification of background events as foreshocks. In contrast,
clustering and ES methods yield relatively stable Pf across differentMc values. The ETAS model suggests that
many foreshocks in California are associated with aseismic driving processes, but the identification of the
processes diminishes at high Mc. These results show that improved seismic monitoring capability does not
significantly increase Pf but is crucial for distinguishing processes driving foreshocks.

Plain Language Summary Foreshocks are seismic events that sometimes occur before large
earthquakes. However, they are not always present and do not have clear distinguishing features, limiting their
usefulness for earthquake forecasting. We examine how the earthquake monitoring capability affects the
observed proportion of large earthquakes that have foreshocks. Using seismic data from California, we apply
four foreshock identification methods: the fixed‐window method, nearest neighbor clustering, empirical
statistical (ES) methods, and the epidemic‐type aftershock sequence (ETAS) model. Our results show that the
fixed‐window method leads to less observations of large earthquakes with foreshocks when the monitoring
capability is worse. In contrast, clustering and ES methods provide more stable proportions of large earthquakes
with foreshocks even when the monitoring capability varies. And the ETAS model suggests that
many foreshocks in Califorina are associated with aseismic processes. However, poor monitoring capability
limits the ability to distinguish between foreshocks driven by aseismic processes and those triggered by
cascading seismic failure through stress transfer. These findings indicate that while enhanced seismic
monitoring does not necessarily lead to a higher proportion of identified foreshocks, it is essential for
understanding the underlying physical mechanisms driving foreshock activity.

1. Introduction
Foreshocks are small to moderate earthquakes that occur shortly before a mainshock (Mogi, 1963) and are
considered promising for short‐term earthquake forecasting (Dodge et al., 1995; Kato et al., 2012; Ruiz
et al., 2014; Wang et al., 2006). Laboratory experiments commonly observe precursory slip events resembling
foreshocks, interpreted as nucleation processes preceding ultimate rupture (Bolton et al., 2019; Goebel
et al., 2024; Marty et al., 2023). Similarly, theoretical fault friction models, such as the rate‐and‐state framework,
predict an aseismic nucleation phase before dynamic rupture (Ampuero & Rubin, 2008; Dieterich, 1994; He
et al., 2023; Rubin & Ampuero, 2005). However, the question of how pervasive are foreshocks remains debated:
estimates from past studies range from 10% to 70% (Abercrombie & Mori, 1996; Chen & Shearer, 2016; Rea-
senberg, 1999; Trugman & Ross, 2019; Wetzler, Lay, et al., 2023).

Foreshock detection is affected by seismic monitoring capability (Mignan, 2014; Trugman & Ross, 2019).
However, seismic monitoring capability affects the detection of both foreshock and background events, raising
the critical question of whether increasing monitoring capability leads to more mainshocks being identified as
having foreshocks. A meta‐analysis of 37 studies by Mignan (2014) found that lower magnitude thresholds
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correlate with a higher proportion of mainshocks identified as having foreshocks (Pf ), suggesting many fore-
shocks remain undetected due to limited monitoring capability. Using a template‐matching enhanced catalog
(QTM; Ross et al., 2019), Trugman and Ross (2019) reported that Pf is 72% in Southern California, much higher
than the 53% reported by Chen and Shearer (2016). However, reanalyzes of the same QTM catalog with methods
accounting for background seismicity fluctuations found lower foreshock proportions, ranging from 20% to 40%
(van den Ende & Ampuero, 2020).

Moreover, foreshock mechanisms are still a matter of research (Bouchon et al., 2011; Ellsworth & Bulut, 2018;
Wang et al., 2024; Zhu et al., 2022) and may be influenced by the catalog completeness (Mignan, 2014). Proposed
models include fluid‐driven processes, slow‐slip events, cascade triggering, pre‐slip nucleation, or their com-
bination (Dodge et al., 1996; Kato et al., 2012; Lei, 2024; Martínez‐Garzón & Poli, 2024; Zhu et al., 2022). These
models can be broadly categorized into two end‐members (Gomberg, 2018): (a) the aseismically‐driven model,
which includes slow‐slip events, fluid‐driven processes or a combination of them. These aseismic processes may
represent a preparation process for large earthquakes (Bouchon et al., 2011); and (b) the cascade model, where
foreshocks trigger other foreshocks and the mainshock, with no intrinsic distinction in triggering mechanisms
between foreshocks, mainshocks and aftershocks (Ellsworth & Bulut, 2018; Felzer et al., 2004). Distinguishing
these models requires understanding the relative contributions of aseismic and seismic processes during the
precursory phase. However, direct observations of aseismic slip are available for only a few cases (Gom-
berg, 2018; Peng & Lei, 2024). An alternative approach is to use the Epidemic‐Type Aftershock Sequence
(ETAS) model (Ogata, 1988), which effectively characterizes the cascade‐triggering behavior and is widely
applied to distinguish between aseismic‐type and cascade‐type foreshocks (Manganiello et al., 2023; Moutote
et al., 2021). However, ETAS‐based studies are inconclusive, with some favoring aseismic‐type foreshocks
(Petrillo & Lippiello, 2021; Seif et al., 2019) and others supporting cascade‐type foreshocks (Helmstetter
et al., 2003; Helmstetter & Sornette, 2003).

Here, we systematically investigate the impact of seismic monitoring capability on foreshock identification in
California. Specifically, we quantify how the magnitude of completeness Mc of the catalog influences the
foreshock identification results of four popular methods: the Space‐Time Window (STW) method, Nearest‐
Neighbor Clustering (NNC) method, the Empirical Statistical (ES) method and the ETAS model. Our findings
reveal that, while the STW method exhibits a strong dependence of Pf on Mc, the other approaches are largely
unaffected. Our results from the ETAS model imply that high Mc may hinder the distinction between aseismic‐
type and cascade‐type foreshocks.

2. Data
We use the relocated Southern California catalog from 1981 to 2023 and the Northern California catalog from
1984 to 2023 (Hauksson et al., 2012; Waldhauser & Schaff, 2008). To identify independent mainshocks, we apply
the NNCmethod to events withM≥ 1.5 (Baiesi & Paczuski, 2004; Zaliapin et al., 2008). This method calculates a
space‐time‐magnitude distance (η) between each event j and a previous event i:

ηij =
⎧⎨

⎩

tij(rij)d f 10− bmi tij < 0

∞ tij > 0
(1)

where tij is the time interval between both events, rij the spatial distance, d f the earthquake fractal dimension, b the
slope of the frequency‐magnitude distribution and mi the magnitude of event i. In this study, we set d f = 1.6 and
b = 1 (Cheng & Chen, 2018; Zaliapin & Ben‐Zion, 2013a, 2013b). Each event is linked to its nearest parent with
the smallest η. Earthquake clusters are identified based on a threshold distance η0 (Figure S1 in Supporting In-
formation S1), which is determined by a Gaussian Mixture Model (Dempster et al., 1977). The largest earthquake
in each cluster is designated as an independent mainshock. We focus on clusters with mainshock magni-
tudes M ≥ 5.

We assess the local completeness magnitude Mreal
c of the catalog within a 50 km radius of each mainshock

epicenter over a 10‐year window (5 years before and after) using the maximum curvature and Goodness‐of‐Fit
Test (GFT) methods (Wiemer &Wyss, 2000; Woessner &Wiemer, 2005). The higherMreal

c value among the two
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methods is adopted. Sequences where Mreal
c values differ by more than 0.5 between the two are excluded. These

selections result in 97 earthquake clusters from the two relocated catalogs (Figure 1 and Table S3 in Supporting
Information S1). For validation, we also analyze the 46 mainshocks with M ≥ 4 from the QTM catalog used by
Trugman and Ross (2019). See Text S1in Supporting Information S1 for more details.

3. Methods
To assess the impact of monitoring capability on foreshock identification, we simulate reduced seismic moni-
toring resolution by removing events below a test magnitude threshold,Mtest

c . We adopt two strategies to select a
pool of mainshock sequences to examine the proportion of foreshocks:

1. “Fixed‐sample‐size strategy”: We keep using 32 sequences whose actual completeness magnitude satisfies the
conditionMreal

c ≤ 1.5. Then, for each value ofMtest
c ranging from 1.5 to 3.0, we remove small earthquakes that

satisfy M < Mtest
c . In this strategy, the number of sequences is 32 for values of Mtest

c (Figure 1c).
2. “Dynamic‐sample‐size strategy”: For each value ofMtest

c ranging from 1.3 to 3.0, we select all sequences that
satisfy Mreal

c ≤ Mtest
c , then remove earthquakes with M < Mtest

c . This results in an increasing number of se-
quences as a function of Mtest

c , ranging from 20 to 97 sequences (Figure 1c).

The STW method identifies foreshocks as events with M ≥ Mtest
c occurring within 20 days and 10 km of a

mainshock (Trugman & Ross, 2019). The NNC method applies the previously described NNC approach to a
smaller space‐time region, targeting earthquakes with M ≥ Mtest

c within a 50 km radius of the mainshock and
spanning a 10‐year window (5 years before and after the mainshock). Events preceding the mainshock in the same
clusters are identified as foreshocks (Zaliapin & Ben‐Zion, 2013b). For both methods, a mainshock is considered
to have foreshocks if at least one qualifying event is detected.

Figure 1. Map ofM> 5 mainshocks in California from 1981 to 2023. (a) Spatial distribution ofM> 5mainshocks, color‐coded by the magnitude of completeness (Mreal
c )

around the mainshocks. (b) Histogram of Mreal
c . (c) Comparison of two strategies for selecting the minimum magnitude threshold (Mtest

c ). Fixed sample strategy uses a
fixed sample of 30 events withMreal

c ≤ 1.5, allowingMtest
c varying from 1.5 to 3 (red dots). Dynamic sample strategy selects events withMreal

c ≤ Mtest
c allowingMtest

c to vary
from 1.3 to 3.0.
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The ES method evaluates foreshock activity by comparing seismicity within a short spatiotemporal window
(20 days before and 10 km around the mainshock) to the long‐term background activity (van den Ende &
Ampuero, 2020). Background activity is estimated from 5,000 randomly selected 20‐day intervals between 380
and 40 days before the mainshock. Foreshock activity is quantified by counting the number of events in the 20‐day
window prior to the mainshocks (Nobs). The probability of observing at least Nobs events in a random 20‐day
period (pES) is computed as:

pES (N ≥Nobs) = 1 − i/{N} (2)

where i is the rank of Nobs within the sorted list of background earthquake counts from random 20‐day windows,
arranged in ascending order, and {N} the total number of iterations (here {N} = 5,000). A value pES < 0.01
indicates statistically significant foreshock activity.

The ETAS model simulates cascade‐triggering behavior through earthquake interactions. Therefore, how well an
earthquake sequence is fitted by this model provides a hint for the sequence being cascade‐type rather than
aseismic‐type (Manganiello et al., 2023; Moutote et al., 2021; Ogata, 2017; Ogata & Katsura, 2014). The seis-
micity rate at any given time is represented as the sum of a background rate and the rate of aftershocks triggered by
past events:

λ(t) = μ +∑i|ti<t
Keα(Mi − Mc)(t − ti + c)− p (3)

where μ is the background rate, K scales aftershock productivity, the coefficient α characterizes the magnitude
dependence of aftershock productivity, and the exponent p governs the temporal decay of aftershock rates. All
parameters are constant over time to focus on earthquake interactions without transient aseismic forcing. We
estimate the ETAS parameters using maximum likelihood estimation, and assess their uncertainties with Hessian
Matrix method (Guo & Ogata, 1997; Moutote et al., 2021; Ogata, 2017). For each mainshock sequence, we select
earthquakes within a 50‐km radius and a 10‐year window (5 years before and after the mainshock) to ensure
sufficient aftershock converage and stable inverison. The ETAS parameters are estimated independently for each
Mtest

c (Figure S3 and Table S1 in Supporting Information S1).

FollowingMoutote et al. (2021), we compare the observed number of events (Nobs) with the expected number (N):

N(t,T) =∫
t

t− T
λ(u) du (4)

where t is the mainshock occurrence time and T the 20‐day window length. The probability pETAS to have Nobs or
more events in the ETAS model is:

pETAS = P(N ≥Nobs) = 1 − ∑Nobs− 1
n=0

Nne− N

n!
(5)

A value pETAS < 0.01 indicates the presence of an aseismic forcing driving aseismic‐type foreshocks.

4. Results
We found that the proportion of mainshocks with foreshocks Pf varies with the test completeness magnitude
(Mtest

c ) to different degrees, depending on the foreshock identification methods (Figure 2). For the fixed‐sample‐
size strategy (Figure 2a), the STWmethod shows a marked decrease in Pf asMtest

c increases (declining from 80%
to 90% at Mtest

c = 1.5 to approximately 40% atMtest
c = 3.0). In contrast, the NNC and ES methods produce stable

Pf values across all Mtest
c values (∼40% for NNC and 20%–30% for ES). Results from the dynamic‐sample‐size

strategy (Figure 2b) align well with the fixed‐sample‐size strategy: Pf from the STW method shows a significant
decreasing trend with increasing Mtest

c , while Pf from NNC and ES methods remains generally constant or de-
creases slightly.
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In the ETAS method, Pf represents the proportion of mainshocks that have aseismic‐type foreshocks (Figures 3a
and 3c). For cases without significant foreshock anomalies (Figure 3b) or those with cascade‐type foreshocks
(Figure 3d), the ETAS‐based analysis does not show statistical significance (pETAS > 0.01). The foreshocks
identified by the ETAS and ES methods are not always consistent. For example, the 17 July 2001, M5.2 Coso
Junction event is classified by the ETASmethod as having an aseismic‐type foreshock sequence but does not pass
the statistical significance test in the ES method (Figure 3c). Pf from the ETAS method in relocated catalogs
shows slight decrease trend with Mtest

c (Figure 2), aligning with previous studies indicating that lower minimum
magnitudes tend to detect more aseismic‐type foreshocks (Mignan, 2014).

Similar patterns are observed in the QTM catalog (Figure S4 in Supporting Information S1): the STW method
shows a clear dependence of Pf on Mtest

c , while the Pf from NNC and ES methods show weak dependencies.
Moreover, the Pf obtained by the ES and ETAS methods are slightly lower in the QTM catalog than in the
relocated catalog. These result contrast with the high Pf (∼70%) reported by Trugman and Ross (2019), but align
with van den Ende & Ampuero (2020) and Moutote et al. (2021), who found no significant improvement in Pf

using the QTM catalog. The lower Pf from the ETAS in the QTM catalog may be caused by missing small
earthquakes that differ from the templates (Text S1 and Figure S2 in Supporting Information S1). The difference
in the ES method may arise from the larger magnitude of foreshocks, hence of foreshocks, in the relocated catalog
compared to the QTM catalog, making them easier to distinguish from background events (Text S1 and Figure S5
in Supporting Information S1).

5. Discussion
5.1. Discrepancies Between the STW, NNC and ES Methods

For the events with significant foreshock activity, such as the 21 July 1986, M6.4 Chalfant Valley earthquake
(Figure 3a), all three methods identify foreshocks. However, the STW method may misclassify background
events as foreshocks, particularly at lowMtest

c . This leads to an increase in Pf at lowMtest
c (Figure 2). For example,

the STW method classifies the 14 December 2016, M5 Geysers event as having foreshocks (Figure 3b), in

Figure 2. Dependencies of foreshock proportion (Pf ) andMtest
c from the relocated catalogs (Hauksson et al., 2012; Waldhauser & Schaff, 2008), using (a) a fixed sample

size and (b) dynamic sample sizes. Foreshock proportions are determined by different methods, including fixed window (Space‐TimeWindow, yellow circles), Nearest
neighbor clustering (NNC, blue triangles), Empirical Statistical (ES) method (ES, red squares), and epidemic‐type aftershock sequence (ETAS) analysis (ETAS, green
diamonds).
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contrast to the other two methods which account for background seismicity. Therefore, the STW method may be
unsuitable for foreshock identification in catalogs with low Mc.

The Pf value derived from the NNC method is slightly higher than that from the ES method due to different
definitions of foreshocks. NNC identifies clusters based on the space‐time‐magnitude distance and considers
foreshocks as pre‐mainshock events within the same cluster, making it less sensitive to background activity. In
contrast, ES detects foreshocks as significant increases in seismicity compared to the background activity. As a

Figure 3. Spatial and temporal distribution of selected mainshocks. Left panels: Temporal distributions of earthquakes. Right panel: Spatial distribution of earthquakes.
Red lines and dots represent events occurring 380 to 20 days before the mainshock, while blue lines and dots represent earthquakes occurring 20 to 0 days prior to the
mainshock. Insets are a zoomed‐in view of earthquakes occurring within the final 20 days. Green stars denote the mainshocks.
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result, events with high background seismicity, such as the 17 July 2021, M5.2 Coso event (Figure 3c), are
identified as having foreshocks by the NNC method, but not by the ES method. This discrepancy can be reduced
by loosening the threshold of pES: with a threshold of 0.1, the ES method produces results more consistent with the
NNC method (Figure S6 in Supporting Information S1).

To further evaluate their performance, we use the ETASmodel to generate synthetic catalogs with known “ground
truth”, that is, in which mainshocks (M ≥ 5) that have foreshocks are explicitly identified (Text S2 in Supporting
Information S1). In these catalogs, approximately 50% of mainshocks have foreshocks. While these synthetic
catalogs are simpler than real ones and do not capture all complexities such as transient aseismic processes, they
provide a valuable benchmark for assessing the methods performance. The NNC method achieves 82% accuracy,
while the ES method performs worse (65% accuracy), miss more sequences with small‐magnitude foreshocks
(Figure S7 in Supporting Information S1). These results suggest that the NNC method can exploit small earth-
quakes better than the ES method.

Both methods have their own strengths: For studying small‐magnitude mainshocks, which has become
increasingly popular due to improvement in seismic networks and detection methods (Beroza et al., 2021;
Li, 2021a, 2021b), the NNC method is more effective as it may detect foreshock activity within a globally high
level of background seismicity. Conversely, for short‐term earthquake forecasting, where strict metrics are
necessary to minimize false predictions (Zaccagnino et al., 2024), the ES method is more suitable. Moreover, as
the NNC method relies on entire clusters to define foreshocks, it is inherently restricted to retrospective analyses
and is unsuitable for real‐time forecasting scenarios. To address these limitations, for the NNC method, inte-
grating clustering‐based approaches with techniques like supervised learning (Cui et al., 2024) might improve its
predictive capabilities.

5.2. Magnitude Difference Between the Largest Foreshocks and Mainshocks

The estimated proportions of mainshocks with foreshocks, Pf , derived from both the NNC and ES methods
remain largely constant with improved detection capability, suggesting that the magnitude difference between
mainshocks and their largest foreshock (ΔMmf ) is typically small in the analyzed data; otherwise, raising Mtest

c

would cause a noticeable decrease in Pf .

Previous studies of ΔMmf have reported contradictory results: some suggest the ΔMmf distribution is relatively
uniform (Michael & Jones, 1998; Reasenberg, 1999), while others proposed that small ΔMmf values are more
common (Agnew & Jones, 1991; Lindh & Lim, 1995). However, these analyzes focus on a narrow range between
Mc and mainshock magnitude (mostly around 2). We analyze 14 sequences with foreshocks identified by the
NNC method (Figure 4a). The results show that ΔMmf is typically smaller than 2 (Figure 4b). Therefore, most
mainshocks retain detectable foreshocks as Mtest

c increases, which explains the stable Pf from NNC and ES
methods. To assess whether this narrow magnitude is influenced by biases from the differences between main-
shock magnitude andMc, we compare the magnitude differences for events with and without foreshocks (Figure
S8 in Supporting Information S1). The nearly identical distributions suggest that Mc has a minimal influence on
the observed trend.

In the ETAS framework, the dependence of Pf on Mc is governed by the difference between the ETAS model
parameter α and the Gutenberg‐Richter parameter β. α characterizes the magnitude dependence of aftershock
productivity, and β = b × ln(10) , characterizes the exponential decay of the Gutenberg‐Richter frequency
distribution (Gutenberg & Richter, 1944). The total number of earthquakes triggered by events of magnitude m
scales as 10(α − β)m (Helmstetter, 2003). When α < β, small earthquakes dominate triggering, and lowering Mc is
expected to increase the fraction of large events with detectable foreshocks. Figure S3b in Supporting Infor-
mation S1 shows that most sequences exhibit α − β < 0, consistent with previous analyses in California
(Helmstetter, 2003; Nandan et al., 2017). However, this expectation is at odds with our observation of a constant
Pf when varying Mtest

c for the NNC and ES methods.

To investigate this discrepancy, we generate synthetic catalogs with α= 1.7 and β= 2.3 (b= 1) based on previous
studies (Mizrahi et al., 2021) and our observed α ‐ β values (Figure S3b; see Text S2 in Supporting Information S1
for more details). As expected for α < β, the synthetic sequences show large magnitude differences between the
mainshock and its largest foreshock (Figure 4b and Figure S9 in Supporting Information S1), different from the
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observed sequences in California (Figure 4). Notably, many sequences with small magnitude differences are
associated with pETAS < 0.01, suggesting foreshocks related to aseismic processes (Figure 4a). Thus, the
discrepancy indicates that the constant Pf value and small magnitude difference are likely due to the contribution
of aseismic processes to some foreshock sequences, consistent with previous findings (Chen & Shearer, 2013;
Petrillo & Lippiello, 2021). Chen and Shearer (2013) reported widespread aseismic‐type foreshocks in California.
Petrillo and Lippiello (2021) showed that ETAS models underpredict the number of events preceding the
mainshocks (M≥ 5) observed in California, implying the presence of additional triggering mechanisms.

5.3. ETAS Model Evaluation With Varying Mtest
c

At Mtest
c = 1.5, among the 14 sequences with foreshocks identified by the NNC method, more than half (8) have

pETAS < 0.01, which are classified as aseismic‐type foreshocks; the remaining 6 are classified as cascade‐type
foreshocks. As Mtest

c increases, the pETAS value of the original 8 aseismic‐type foreshock sequences tend to
rise, often exceeding 0.01, whereas the original 6 cascade‐type foreshocks show a slight decrease of pETAS
(Figures 4c and 4d and S10). Consequently, at higherMtest

c , fewer sequences are classified as aseismic‐type. Thus,
the ETASmodel's ability to distinguish between the two foreshock types diminishes asMtest

c increases, which may
be due to: (a) a smaller number of events available for ETAS parameter inversion, which increases uncertainty
(Table S1 in Supporting Information S1); and (b) fewer small events, which limits the branching information
needed for distinguishing aseismic‐type foreshocks. The diminishing distinction at high Mtest

c possibly explains
the inconsistencies in the interpretation of the foreshock types in many previous studies. Studies reporting that

Figure 4. Magnitude differences between mainshocks and their largest foreshocks. (a) Scatter plot of magnitudes of mainshocks (stars) and their largest foreshocks
(circles) detected by the Nearest‐Neighbor Clustering atMtest

c = 1.5. Colors indicate pETAS values derived from ETAS: white and blue colors (pETAS ≤ 0.01) correspond
here to aseismic‐type foreshocks. (b) Distribution of magnitude differences, normalized to a maximum of 1, for observed events in the California earthquake catalog
(green) and ETAS‐simulated catalogs (red). (c) Histogram of pETAS at Mtest

c = 1.5 (blue) and 2 (green). (d) Histogram of pETAS at Mtest
c = 2.5 (yellow) and 3 (red).
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pre‐slip and cascade processes are indistinguishable from ETAS modeling typically use catalogs with high Mc
(Felzer et al., 2004; Helmstetter et al., 2003; Helmstetter & Sornette, 2003), while those attributing foreshocks to
aseismic slip often use catalogs with lowMc (Chen & Shearer, 2016; Petrillo & Lippiello, 2021; Seif et al., 2019).

Our results suggest that catalogs that are complete down to smaller magnitudes help distinguish better aseismic‐
type foreshocks from cascade‐type foreshocks, but they do not substantially improve the capacity to identify
whether a mainshock has foreshocks. More complete catalogs are also useful for other purposes. They can enable
a more accurate tracking of changes of b‐values, which can enhance short‐term earthquake forecasting in traffic‐
light systems (Gulia & Wiemer, 2019). Additionally, small earthquakes can better capture the spatiotemporal
evolution and migration speed of earthquake sequences, offering key insights into the underlying aseismic
processes (Danré et al., 2022, 2024; Ellsworth & Bulut, 2018; Peng & Lei, 2024). Moreover, incorporating es-
timates of additional source properties into the analysis, such as stress drop, may further enhance the detection and
interpretation of foreshock activity (Chen & Shearer, 2013; Socquet et al., 2017).

6. Conclusions
We systematically evaluated the impact of seismic monitoring capability on the proportion of mainshocks
identified as having foreshocks (Pf ) in California. By examining four foreshock identification methods, we find
that the dependence of Pf on the catalog completeness magnitude (Mc) is weak for NNC and empirical statistic
methods (ES). This consistency likely arises from the typically small magnitude differences between mainshocks
and their largest foreshock in moderate earthquake in California. In contrast, the fixed‐window method shows a
strong anti‐correlation between Pf and Mc, primarily due to its overlook of background fluctuations. Discrep-
ancies between the NNC and ES methods stem from their different definitions of foreshocks, with ES methods
excluding sequences with a rate similar to the background seismicity level. Epidemic‐type aftershock sequence
model analysis further shows that improved detection of small earthquakes enhances the model's ability to
distinguish aseismic‐type foreshocks from cascade‐type foreshocks. Our results suggest that improving seismic
monitoring capability may not significantly improve estimations of the pervasiveness of foreshocks, but is crucial
for accurately identifying foreshock types.

The ETAS analysis further reveals that α − β < 0 for most mainshock sequences in California, suggesting that
small earthquakes dominate triggering. This contrasts with the observed weak dependence of Pf on Mc and the
small magnitude differences between mainshocks and their largest foreshocks. Moreover, more than half of the
foreshock sequences cannot be fully explained by the ETASmodel, implying that aseismic processes likely play a
significant role for those sequences in California.
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