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Abstract: In this paper, the Revised Universal Soil Loss Equation (RUSLE) model has been
employed as a critical analytical instrument to assess the likelihood of soil erosion and
pinpoint the most appropriate locations for conservation initiatives in the Wadi Mina basin
(Algeria). The compilation of thematic maps was accomplished through the integration
of the Spatial Analyst module in ArcGIS, resulting in a comprehensive map depicting
potential erosion. This process incorporated rainfall data collected over a four-decade
period from 1971 to 2010. The findings of this study demonstrate that the intensity of soil
erosion and the generation of sediment are influenced by the topographical characteristics
of the region, and the steepness of the terrain. Soil erosion within the Wadi Mina basin
presents notable fluctuations, spanning a spectrum from a low of 0 to a high of 772.16 tons
per hectare annually, with the mean annual erosion rate calculated at 16.69 tons per hectare.
The Sediment Delivery Ratio (SDR) for the basin is estimated to be around 19.20%. Under-
standing soil erosion patterns at different sub-basin levels can be valuable for designing
effective conservation strategies. This information helps to implement erosion control
measures and to improve overall environmental management within the basin.

Keywords: soil erosion; RUSLE; Wadi Mina basin; Algeria; GIS; land management

1. Introduction

Soil erosion poses a multifaceted environmental concern with far-reaching implica-
tions. This phenomenon contributes to soil degradation and depletion, affecting land
fertility and crop yields. Moreover, it accelerates reservoir sedimentation, thereby diminish-
ing water storage capacity crucial for irrigation, hydroelectric power generation, and flood
control. The erosion process also compromises soil infiltration capabilities and influences
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the movement and ecological impact of contaminants, potentially jeopardizing wildlife
habitats and water resources essential for domestic, agricultural, and industrial applications.
In severe instances, soil erosion emerges as a pivotal factor driving the desertification of
semi-arid landscapes. For soil erosion estimation, different kinds of models and methodolo-
gies exist. These range from simple to more complex approaches, encompassing empirical
or conceptual models as well as physically based ones. The various models require diverse
types of input data and differ in their ability to forecast soil erosion caused by hydrological
factors [1,2].

In data-scarce environments, empirical models are widely employed due to their
simplicity and minimal requirements for data and parameters. Notable examples include
USLE [3], updated version RUSLE [4], RMMF [5], and EPM [6]. Conversely, physically
based models simulate the primary mechanisms involved in erosion processes, adhering
to mass and energy conservation principles. These comprise ANSWERS [7], CREAMS [8],
KINEROS?2 [9], EUROSEM [10], EPIC [11], WEPP [12], and PESERA [13]. Conceptual mod-
els, like AGNPS [14], LASCAM [15], and SWAT [16], integrate aspects of both physically
based and empirical approaches. It is important to note that these models vary in their
simulation scope; some focus solely on gross erosion or partial gross erosion, while others
incorporate both land erosion and hydrologic network transport models, including erosion
and deposition processes. For comprehensive reviews of erosion models, readers may refer
to recent publications by De Vente et al. [17], Dutta [18], and Batista et al. [19].

The RUSLE, proposed by Renard et al. [4] as an advancement to the original Universal
Soil Loss Equation (USLE) developed by Wischmeier [3], is one of the most widely utilized
empirical approaches for assessing soil erosion rates in this model. These models are con-
strained to forecasting the typical rates of sheet and rill erosion while failing to incorporate
the impact of gully erosion. Contemporary advancements in geographic information tech-
nology have bolstered traditional methodologies, offering sophisticated tools for resource
control, analysis, and management. The factors utilized in RUSLE for erosion evaluation can
be readily incorporated into a spatial framework for soil loss prediction. Digital Elevation
Models (DEMs) and remote sensing data enable efficient and comprehensive assessments
of erosion threats. The availability of soil erosion data at various sub-basin scales facilitates
the implementation of localized or distributed conservation strategies aimed at erosion
prevention, regulation, and overall enhancement of environmental management within the
basin. The RUSLE model has been extensively employed in recent years to assess soil ero-
sion across various geographical scales. Numerous global studies have utilized this model,
including research by Azaiez [20] and Panagos et al. [21]. Additionally, investigations
have been conducted at both territorial [22] and basin scales [23,24]. In the North African
context, specifically in Tunisia [25,26], Morocco [27,28] and Algeria [29-39], researchers
have applied RUSLE to quantify soil loss across diverse basins and climatic conditions.

The Wadi Mina basin has been the subject of numerous investigations focusing on
erosion and sediment transport assessment [40]. A significant contribution to this field
was made by Achite and Meddi [41], who developed a statistical methodology to quantify
sediment yield at various gauging locations within the basin. This research concentrated
on five upstream sub-basins of the Sidi Me Hamed Ben Aouda dam, drawing upon data
amassed over a 22-year interval from 1973 to 1995. Preliminary findings, derived from
the sediment rating curve technique, revealed that the Oued Haddad basin experiences
more severe degradation than its counterparts, exhibiting a specific degradation rate of
212 t/km?/year. This particular site serves as a clear indicator of soil depletion. A steep
topography and an inconsistent vegetation cover, which fail to provide adequate land
protection, exacerbate the area’s vulnerability to erosion.
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The basin under consideration shows a degradation rate inferior to that of the Oued
Haddad basin (D = 191 t/km?/ year). The Oued El Abd basins at Ain El Hamara station
exhibit a specific degradation of approximately 117 t/km?/year, while at Takhmaret station,
this value is reduced to roughly 65 t/km?/year. The Wadi Mina at the Sidi Mohamed
Ben Aouda dam is estimated to cause a specific degradation of 187 t/km? /year. Research
conducted by Benchettouh et al. [29] utilized thematic maps of various erosive factors,
based on the RUSLE and implemented in GIS using ArcGIS 10.2 software, to delineate
erosive risk areas in the basin. This approach yielded a reliable assessment of annual soil
loss rates. The assessment of erosion categories revealed a range of potential soil loss rates,
from negligible to over 100 metric tons per hectare per year, with an average projected
annual soil erosion of 11.2 t/ha/year. Approximately half of the basin was found to have
from very low to low risk of erosion, exhibiting soil loss values between 0 and 7.4 t/ha/year.
Additionally, regions with a moderate erosion risk, characterized by soil loss rates of 7.4 to
12 t/ha/year, accounted for more than 13.9% of the basin. These findings hold significant
implications for the selection and implementation of effective soil and water conservation
strategies in areas deemed highly susceptible to water-induced erosion.

A methodological approach was presented by Hallouz et al. [42] to investigate the
sources and current state of sediment deposition within the Sidi M'Hamed Ben Aouda
Dam, situated in the northwest region of Algeria. Their approach incorporated hydro-
fluviometric techniques and specific attributes of Wadi Mina. The analysis encompassed
liquid discharge data over a 41-year timeframe (1969-2010), while solids and suspended
sediment concentration data spanned variable periods ranging from 22 to 40 years across
the catchment area. Pluviometric investigations examined rainfall patterns over 77 years
(1930-2007). Statistical analyses of historical precipitation and discharge series revealed
a significant decline in rainfall exceeding 20% across the entire basin since 1970. The
progression of solids input was quantified, with the highest values noted. This study
analyzes yearly soil erosion rates in the Mina basin, located in northwestern Algeria, by
employing geospatial techniques combined with the RUSLE model. The research aims
to contribute to the formulation of effective strategies for soil and water conservation,
particularly in areas highly vulnerable to significant water-induced erosion.

2. Study Area and Data

The Wadi Mina basin, a geographic subdivision of the larger Wadi Cheliff basin,
encompasses an area of approximately 4900 square kilometers. Located in the northwest-
ern region of Algeria, the basin’s geographic boundaries are defined by the coordinates
of longitudes 00°22'59” E and 01°09’02” E and latitudes 34°41'57" N and 35°35'27"" N
(Figure 1).

The Wadi Mina basin is fed by four main tributaries: Wadi Taht, Wadi Haddad, Wadi
Mina, and Wadi Abd. The region features a diverse and rugged landscape, with elevation
levels varying from 164 meters to 1327 meters above sea level. Moreover, according to
the division already drawn up by the National Water Resources Agency (ANRH), the
Mina catchment area is made up of five sub-catchment areas drained by secondary wadis
of varying lengths from one sub-catchment area to another. These main wadis are the
Oued Mina at the Oued Abtal hydrometric station (4126 km?), the Oued Haddad at the
Sidi Abdelkader Djillali station (470 km?), the Oued Taht at the Kef Mehboula station
(680 km?), the Oued Abd at the Takhmaret station (1553) and the Ain Hamara station
(2480 km?) and the entire basin (4900 km?) at the Sidi Mhamed Ben Aouda dam (SMBA).
The morphometric, topographic and hydrographic characteristics of the five sub-catchment
areas and the Mina catchment area at the dam are shown in Table 1.
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Figure 1. Location and map of the elevation within the Wadi Mina basin.
Table 1. Main characteristics of the investigated sub basins in the Mina basin.
] Entire
Type Parameters Symbol Unit SB 01 SB02 SB03 SB04 SBO5 Basin
Area S) Km? 4126.00 480.00 2480.00 680.00 1553.00 4900.00
Perimeter P) Km 33044 106.00 295.61 139.40 218.60 343.30
_ Gravelius (Ko) 1.44 135 166 150 155 137
Morphometric ~compactness index
characteristics ~ Length of equivalent ;) Km 133.03 4122 12727 5735 9156 13676
rectangle
Width of equivalent ) Km 3101 1140 1949 1186 1696  34.86
rectangle
Maximum altitude (Hmax) m 1156.00 1156.00 1327.00 1242.00 1327.00 1327.00
Minimum altitude (Hmin) m 230.00  230.00 283.00 494.00 625.00 164.00
Average altitude (Hmean) m 81563 64586 891.28 86190 983.57 771.50
T hical Median altitude (H50%) m 755.00  800.00 650.00 950.00 1000.00 790.00
opographica . %
characteristics ﬁ;};‘i‘:e atS%ofthe ooy 1y 1200.00 1100.00 1200.00 1185.00 1285.00 1165.00
s‘ﬂﬁg‘i‘ie at95% of the  pro50) 40000 25000 400.00 600.00 685.00 375.00
Global slope index (Ig) m/km  6.01 20.62  6.29 10.20  6.55 5.88
Specific elevation (Ds) m 386.27  447.03 313.03 266.00 25823 408.18
Drainage density (Dd) Km/Km? 0.42 0.31 0.30 0.32 0.28 414
Hydrological ~ Length of the main
haracteristics  wadi Wadi station (Lmw) Km 56.00 32.00 79.00  40.00 35.50 159.60
Concentration time (Tc) Hours  17.61 8.26 16.10 10.70 13.92 25.83




Sustainability 2025, 17, 5038

50f22

The region exhibits a continental climate characterized by pronounced seasonal varia-
tions, including cold winters and scorching summers. Rainfall averages between 250 mm
and 500 mm annually, with the majority occurring between November and March. The
average annual temperature ranges from 16 °C to 19.5 °C. Vegetation occupies a significant
portion of the basin, with the land use distribution comprising 32% scrubland, 35.8% forests,
and areas dedicated to cereal cultivation [43]. The study utilized precipitation and runoff
data sourced from the National Water Resources Agency (ANRH). Monthly observations
spanning four decades (1970/71-2009/10) were collected from sixteen rainfall monitoring
stations (Table 2 and Figure 1).

Table 2. Attributes of the precipitation measurement stations.

Station ID Name Longitude (°) Latitude (°) Elevation (m)
S1 12702 Rahuia 1°00/ 35°31 650
S2 13001 Kef Mahboula 0°49’ 35°18’ 475
S3 13002 Frenda 1°01’ 35°04 990
S4 13004 Ain El Haddid 0°51/ 35°04/ 829
S5 13101 Mechra Safa 1°02/ 35°23 655
S6 13102 Djilali Benamar 0°49/ 35°27' 300
S7 13201 Ain Kermes 1°05 34°55’ 1162
S8 13202 Rosfa 0°49’ 34°54 960
59 13203 Tiricine 0°32’ 34°54 1070
510 13204 Sidi Youcef 0°33’ 34°48’ 1100
511 13302 Ain Hamara 0°39/ 35°23 288
S12 13304 Takmaret 0°37 35°06' 655
513 13306 Oues El-Abtal 0°40/ 35°28’ 354
514 13401 Sidi A.E.K Dijilali 0°34/ 35°29/ 225
515 13407 El Hachem 0028 35023/ 417
516 13410 SMBA 0°35/ 35°34/ 145

For topographic evaluation, the researchers accessed the 30 m Shuttle Radar Topo-
graphic Mission (SRTM) DEM data from the United States Geological Survey (USGS) web-
site (http:/ /earthexplorer.usgs.gov/). Furthermore, a Landsat-5 satellite image captured
on 14 September 2009, was utilized to map the NDVI (Normalized Difference Vegetation
Index) and compute the C factor. Soil data were retrieved from the Harmonized World Soil
Database version 1.2 (http:/ /www.fao.org).

The slope maps were prepared using DEM data (Figure 2) and comprised 54.55% of
relatively low slopes (0-3%) and 40.53% of moderate slopes (3—-12.5%) (Table 3). The central
segment of the basin, spanning from east to west, exhibits pronounced gradients ranging
from 12.5% to 25%, occupying approximately 4.68% of the total area and presenting consid-
erable potential for erosion. Additionally, regions with slopes exceeding 25% constitute a
mere 0.08% of the basin’s surface area and are predominantly concentrated in the central
and northeastern sectors [30].

Table 3. Distribution of slope classes in the Mina Wadi basin.

Classes (%) Area (km?) Area (%)
0-3 2672.95 54.55
3-12.5 1985.97 40.53
12.5-25 229.32 4.68
>25 3.92 0.08

Water bodies 7.84 0.16
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Figure 2. Slope map of the Wadi Mina basin.

The maximum annual average precipitation of 396.42 mm was recorded at Frenda
station (station S3 in Figure 3 and Table 1), while the minimum average value of 218.40 mm
was observed at Rosfa station (station S8, Figure 3a). The annual average maximum daily
precipitation also ranged from the highest value of 35.57 mm at Frenda to a minimum of
20.65 mm at Rosfa (Figure 3b).
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(b)

Figure 3. The spatial distribution of (a) yearly precipitation based on the station-scale average annual
precipitation and (b) daily peak rainfall across the study region exhibits notable variation.

The statistical measures, including the minimum, maximum, mean, standard devia-
tion, coefficient of variation, kurtosis, and skewness for the annual rainfall (P’ in mm per
year) and the annual maximum daily precipitation (d in mm per day), are presented in
Table 4. These data are useful for calculating the erosivity factor of rain (factor R of the
RUSLE model).
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Table 4. Quantitative measures of the data employed in the analysis.
Stations  Min Max Mean SD Cv Cs Ck
P/ d P d P/ d P/ d P’ d P d P’ d
S1 210.00 13.40 524.70 71.60 35253 3439 89.27 16.18 2532 47.05 —-0.87 0.85 019 -0.13
S2 143.00 7.80 67220 63.60 343.63 33.88 106.90 12.83 31.11 37.87 1.06 0.23 0.88 0.13
S3 221.00 17.00 67290 60.20 396.42 3557 112.03 1058 2826 29.76 0.09 0.62 0.61 —0.13
S4 194.80 1540 610.00 67.00 312.83 31.77 10292 1043 3290 3284 1.60 1.30 1.23 2.54
S5 197.70 1750 73440 61.00 378.03 3547 11922 956 3154 2695 1.02 0.06 0.88 —0.02
S6 158.60 16.17 645.10 56.20 345.38 33.32 120.84 9.37 3499 2811 0.15 0.02 0.75 —0.49
S7 155.70 13.00 580.20 66.00 323.70 28.08 10793 10.21 33.34 3635 0.25 1.31 0.83 3.42
S8 7770 710 557.00 7140 21840 20.65 113.76 11.82 52.09 5723 2.18 2.35 1.55 7.90
S9 11520 2390 561.50 44.00 306.84 28.64 10440 385 34.02 1343 0.11 2.04 0.54 6.20
S10 159.20 12.00 631.00 72.80 294.89 29.01 9959 12.71 33.77 43.80 1.76 0.97 1.15 1.95
S11 164.80 16.00 506.40 58.00 265.10 28.13 7497 9.06 28.28 3220 3.13 1.45 1.51 3.09
S12 12050 11.80 413.10 49.70 25425 2926 73.14 939 2877 3209 -0.34 0.18 0.57 —0.67
S13 129.60 15.27 558.00 93.25 278.65 36.00 84.84 17.88 3045 49.67 212 1.50 1.18 2.18
S14 135.60 11.80 47420 43.60 25413 28.61 7212 882 2838 3082 133 —-031 1.08 —-0.99
S15  152.60 15.10 517.00 75.30 291.01 32.75 78.85 1263 27.10 3857 0.21 1.25 0.57 2.14
S16  141.00 10.20 436.60 40.00 23797 2645 63.09 7.66 2651 2895 186 —046 115 —037

The lithological composition of the Wadi Mina basin at the SMBA encompasses a

geological sequence extending from the Primary to the Quaternary periods (Figure 4,

Table 5). Within this area, Quaternary deposits are found in topographic lows and valley

depressions, constituting 4.61% of the total surface area. Pliocene outcrops are extensively

distributed across the northern portion of the catchment, oriented in an east-west direction,

and account for 4.60% of the area. The predominant geological feature, however, is the

Jurassic formations, characterized by gray—green marl, which cover approximately 68.11%

of the study region.
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Figure 4. Lithological map of the Wadi Mina basin.
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Table 5. Lithology of the Wadi Mina basin at the SMBA.

Era Area (km?) Area (%)
Quaternary 226.01 4.61
Pliocene Continental 225.56 4.60
Upper Miocene 154.21 3.15
Lower Miocene 296.26 6.05
Oligocene 272.32 5.56
Middle Eocene 13.49 0.28
Lower Eocene 52.81 1.08
Upper Cretaceous 53.22 1.09
Lower Cretaceous 136.42 2.78
Middle Cretaceous 115.40 2.36
Upper Jurassic 2341.68 47.79
Middle Jurassic 988.82 20.18
Lower Jurassic 6.86 0.14
Triassic 9.09 0.19
Water 7.84 0.16

The diverse forms of water-induced erosion, sediment conveyance, and reservoir
sedimentation observed within the study region are illustrated in Figure 5.

Figure 5. The Wadi Mina basin presents diverse occurrences of hydric erosional phenomena, sed-
imentary transport, and depositional processes within its dam structures (The photographs were

taken at the level of the SMBA impoundment).
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3. Materials and Methods

Precipitation is a pivotal factor in driving soil erosion and sediment deposition through
various water-mediated erosion processes, encompassing rill erosion, sheet erosion, gully
erosion, and splash erosion. The soil particles dislodged by rainfall impact are those that
are carried away from a place by the flow [44].

Focusing on the effects of runoff and sheet flow originating from the RUSLE model
calculates soil erosion for each pixel.

A=RxKxLSxCxP @

The equation describes the yearly soil erosion rate in t ha~! year ! (A), influenced by
several critical factors. Rainfall erosivity (R), measured in MJ] mm ha 1h! y~ 1, reflects
the impact of precipitation on erosion. Soil erodibility (K), quantified in t h MJ~! mm™!,
represents the susceptibility of the soil to erosion. The dimensionless topographic factor
is derived by integrating slope steepness and length (Ls). The cover management factor
accounts for the influence of vegetation and ground cover (C), while the dimensionless
factor considers the effects of anti-erosion practices and techniques (P).

The RUSLE Model is widely regarded as a practical and effective approach for esti-
mating soil erosion, as it can integrate diverse management strategies while necessitating
minimal data inputs. This model is predicated on the principle that soil detachment within
a given slope or region is predominantly driven by sediment transport dynamics [45].

Figure 6 depicts the essential stages outlined in the organizational structure for creating
a comprehensive soil erosion map.

Rainfall Data R
1970/71 —2009/10 Factor

K

F, At h

Texture of soil actor 3

&

Slope lenght ) <

OpE IEng LS .a

30 x 30m - Factor g
Slope

pe 8

@

[

[

Satellite image
Landsat 5
September 14. 2009 |

I'_)

Factor

Spatial distribution of soil erosio ha/year) v

Figure 6. Flowchart of the methodology used in this study.

3.1. Rainfall Erosivity Factor (R)

The R factor provides a quantitative assessment of the erosive capacity of rainfall.
The higher the intensity of rainfall, the greater the erosion power, and vice versa. The
susceptibility to erosional processes increases in accordance with the magnitude and the
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0°20'E

temporal span of rainfall occurrences [46]. In this study, the Diodato [47,48] model was
utilized, which estimates R using the following;:

R=by-P -vd(«+bs-L). )

In this formulation, by represents a constant value of 0.117 MJ mm ha=1' h™ 1, while b;
is defined as-0.015 d®> mm !, and the parameter « is expressed as 2.00 d*°> mm~%°. Here,
L corresponds to the longitude of the site, P’ denotes the total annual rainfall in millimeters,
and d signifies the maximum daily precipitation (in mm d~!) averaged over multiple years.
Rainfall monitoring data from 16 stations across the basin were used to calculate R-values,
which were then interpolated to produce an R-value map through the Inverse Distance
Weighting method (IDW) (Figure 7).
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Figure 7. Spatial representation of the rainfall erosivity factor R within the study region.

3.2. Soil Erodibility Factor (K)

The soil’s ability to resist erosion, known as the erodibility factor, is influenced by
various elements, such as the soil texture, amount of organic matter, structural features,
and capacity to absorb water. This factor represents how easily soil particles can be
detached and carried away by rainfall or surface water flow [49]. The calculation of the
(K) factor is mainly affected by soil texture and organic matter content, as well as by
soil structure and permeability [50]. These data are generally extracted from soil cover
documents [51], which are not available for the Mina watershed. However, some studies
show that there is a relationship between parent rock and texture classification [52] and
that soil develops from parent material [53]. For the La Mina watershed, soil texture was
deduced from the geological map. All textural classes are identified according to the USDA
classification [54]. This allows us to deduce the average percentages of clay, silt and fine
sand, and subsequently the values of soil structure (s) and permeability (pr) coefficients.
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Soil organic matter (OM) content is linked to vegetation type [55]. Consequently, the
relationship between these two parameters (Table 6) allows us to attribute the organic

matter rate for the Mina basin [51].

Table 6. Estimated organic matter (OM) content according to land cover.

Large Type Sub-Type OM (%)
Cereal and forage farming undifferentiated 0-0.5
Market gardening in the greenhouse >1.5
(vegetables, tubers) traditional >1.5
in agricultural zones 0-0.5
in the Steppic region 0-0.5
Recent burn in forested areas 0.5-1.5
in maquis 0.5-1.5
undifferentiated 0-0.5
Arboriculture undifferentiated >1.5
<50% tree cover 0.5-1.5
Fﬁ;gﬁ%ﬁiﬁ?ﬂgg) 50-75% tree cover 0.5-1.5
>75% tree cover >1.5
<50% tree cover 0.5-1.5
Deciduous forest plantation 50-75% tree cover 0.5-1.5
>75% tree cover >1.5
<50% tree cover 0.5-1.5
Resinous forest plantation 50~75% tree cover 0.5-1.5
>75% tree cover >1.5

3.3. Topographic Factor (LS)

The topographic factor is a composite of two subcomponents: the slope gradient
factor and the slope length factor. These factors are obtained through a geospatial analysis
of the Digital Elevation Model (DEM) [55]. These factors are essential in modeling and
understanding surface runoff, also referred to as overland flow, within the context of soil
erosion frameworks. The equation formulated by Moore and Burch [56] has been utilized
by multiple academic authors, e.g., Markose and Jayappa [46], and was utilized as follows:

Cell size

0.4
. 1.3
o ) x (smslopexo.OS%) . (3)

LS = <ﬂow accumulation x

3.4. Cover Management Factor (C)

The cover management factor, also referred to as the C factor, serves to measure
the relative rate of soil erosion observed in cultivated fields compared to that of bare,
continuously tilled fallow land under analogous environmental conditions. This factor is
influenced by several variables, encompassing the characteristics of vegetation cover, the
sequence and rotation of crop types, overall agricultural management practices, as well
as the timing and intensity of erosive precipitation events throughout the different stages
of crop growth [18]. According to Panagos et al. [21] and Mahgoub et al. [57], vegetative
ground cover plays a pivotal role in reducing the threat of soil erosion, with its influence
second only to that of topographical features [58]. Various methodologies for calculating the
C factor have incorporated the Normalized Difference Vegetation Index [59,60]. Reflectance
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values were extracted from Landsat satellite imagery to generate the land use map of the
study area. These reflectance values were then corrected to adjust for the sun angle. NDVI
map was developed by utilizing the red (band 4) and near-infrared (band 5) spectral bands.
The corresponding raster layer for the C factor was derived from the NDVI through the
following specific computational approach:

—aNDVI ] . @)

C_eXp[[S—NDVI

The variable C represents the plant cover factor, while the Normalized Difference Vege-
tation Index (NDVI) is calculated using the following formula: NDVI = (R5—R4)/(R5 + R4).
Here, o and 3 are constants with values of 2 and 1, respectively, as outlined by van der
Knijff et al. [61].

3.5. Conservation Support Practice Factor (P)

The P factor reflects the impact of surface features on water flow dynamics and
hydraulic behavior, encompassing methods like contour farming, strip cropping, and the
construction of terraces. By utilizing diverse P factor scenarios, it becomes possible to
evaluate how various management strategies influence estimates of soil erosion [18]. In the
lack of particular data on conservation techniques in the Mina basin, calculated p-values
using Morgan’s [62] proposal, the proposed approach suggests utilizing p-values that vary
based on the gradient of the terrain. This methodology is widely applied in research and
has been documented extensively in academic literature [21,30].

3.6. Factor of Erosion (A)

RUSLE was applied to estimate soil erosion throughout the Wadi Mina basin. This
process required the creation of five distinct raster layers (*.tif), corresponding to the
equation’s factors: R (rainfall erosivity), K (soil erodibility), LS (topographic factor), C
(cover management), and P (support practices). The total soil loss across the study area was
determined by multiplying these layers on a pixel-by-pixel basis across the entire basin.
(Figure 6).

4. Results and Interpretation

The rainfall erosivity factor was calculated by applying the inverse distance weighting
(IDW) method to generate the corresponding spatial map. Erosivity values ranged from
280.0 M] mm ha—! h=! yr~! at station 516 to 662.90 M] mm ha~! h~—! yr~! at station S7,
with an average annual erosivity of 472.78 M] mm ha~! h~! yr~1. Notably, the southern
region of the basin showed significant erosivity (Figure 7). Toubal et al. [30] attributed these
observations to four primary factors: (1) the correlation between inter-annual erosivity
irregularity and rainfall patterns; (2) the influence of location and precipitation exposure on
basin irregularity; (3) spatial variations in wind patterns; and (4) the presence of vegetation
cover. The K factor map obtained from the basin shows a variation ranging from 0.0175 to
0.04 t-h-MJ~'mm~! (Figure 8a).

Ranging from 0 to 44.09, the LS factor (Figure 8b) exhibits peak values in the basin’s
central and northern regions, where exposed, uneven terrain is particularly vulnerable to
linear erosion processes.
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Figure 8. Map of the (a) K factor and (b) topographic factor LS.
The C factor was computed utilizing a spectrum of values spanning from 0.001 to
1.000 (Figure 9), wherein lower values signify enhanced soil protection. Dense vegetative
cover serves as a safeguard against soil erosion [37,63].
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Figure 9. Spatiotemporal assessment of the C Factor (a) and soil erosion rates (b) within the Wadi
Mina basin.

Regarding the P factor, given that the majority of the basin lacks erosion control
measures, the value P = 1 is predominant. In these regions, soils remain vulnerable to the
displacement of splashed particles via surface runoff.

The analysis demonstrates the geographic variation in erosion levels, which span a
range from 0 to 772t ha~—! yr~! (Figure 9). Within the Wadi Mina basin, erosion risk rates
are classified into 7 distinct categories. Notably, the most prevalent class, accounting for
68.8% of the area, falls within the range of 0 to 5t ha~! yr~! (Figure 10 and Table 7).
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Figure 10. Water erosion variability over the different sub-basins of the wadi Mina basin. The circled

numbers represent the sub-basins.

Table 7. Spatial distribution of soil erosion zones.

Categorization of Erosion

(t ha-1 Year—1) Area (km?) Area (%)
0-5 3372.60 68.83
5-10 69.83 1.43
10-20 216.63 4.42
20-30 245.46 5.01
30-50 402.73 8.22
50-100 402.61 8.22
>100 190.14 3.88

Table 8 presents the statistical data for each RUSLE model parameter across the entire
basin and its five sub-basins (sub-basin locations depicted in Figure 10). Analysis of
the period from 1970/71 to 2009/10 reveals that the basin-wide average erosion rate is

16.69 tha=!yr~1.
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Table 8. Statistics parameters of the different factors of the RUSLE model.
Sub Area P R K LS C A
Basin N° (km?) & arameter o mmhalh-1Year!) @hMJ-1mm-1) () ) (tha—! Year-1)
Minimum  326.10 0.02 000 001  0.00
. Maximum 662.90 0.04 4408 1.00 772.16
Subbasin  415¢ Mean 511.81 0.04 140 064 17.26
01 SD 81.45 0.00 298 008 3529
cv 0.16 0.09 212 012  2.04
Minimum  315.25 0.03 000 000  0.00
, Maximum  421.78 0.04 3586 1.00  343.61
Subbasin gy Mean 373.74 0.04 134 063 1200
02 sD 20.69 0.01 274 009 2502
Ccv 0.06 0.14 204 014  2.09
Minimum  326.10 0.03 000 001  0.00
, Maximum  662.90 0.04 3935 1.00  489.39
Subbasin 5405 Mean 539.11 0.04 126 062  16.06
03 sD 81.48 0.00 260 007 3174
Ccv 0.15 0.10 206 011  1.98
Minimum  447.36 0.03 000 001 0.0
_ Maximum  630.73 0.04 44.09 1.00 77216
Subbasin .y Mean 522.84 0.04 136 063 17.36
04 sD 40.07 0.00 292 008 3621
Ccv 0.08 0.02 215 012 2.09
Minimum  456.49 0.03 000 001 0.0
_ Maximum  662.90 0.04 3575 1.00  489.39
Subbasin ;555 Mean 590.98 0.04 112 063 1582
05 SD 39.22 0.00 210 006 2974
CcVv 0.07 0.13 188 010 188
Minimum  280.02 0.02 000 001 0.0
, Maximum  662.90 0.04 4408 1.00 77216
Entire 4900 Mean 490.94 0.04 141 064 16.69
basin SD 92.46 0.00 299 008 3433
Ccv 0.19 0.08 212 012 206

Achite et al. [64] proposed a method for quantifying the suspended sediment yield
(SSY) at a daily scale for each sub-basin, employing sediment rating curves (SRC) and river
discharge time series over the period from 1970/71 to 2009/10 (Table 8).

Assuming that the SSY values and gross erosion estimates provided for 1970-2010
in this study accurately represent the current conditions of the Upper Mina basin and are
comparable, the analysis provides the following results. At the Wadi Abtal station, the
RUSLE model estimates a specific soil loss of 17.26 t ha~! year~! (or 1726 t km~2 year 1),
while the specific suspended sediment yield is 271.45 t km 2 year~!.

This translates into a Sediment Delivery Ratio (SDR) of 15.73% (Table 9). The same
analytical approach was applied to evaluate the other sub-basins and the entire basin.
Analysis of the Sediment Delivery Ratio (SDR) reveals significant variation across different
basins. The Wadi Taht basin at Kef Mehboula station exhibits a low SDR of 5.50%, while
the Wadi Haddad basin at Sidi Abdelkader Djillali station demonstrates a markedly higher
SDR of 81.27%. Notably, the Oued Haddad basin displays an elevated average specific
load in comparison to other sub-basins, contributing to its substantially high SDR. This
phenomenon can be attributed to the basin’s unique characteristics, including its topo-
graphical features and temporally and spatially variable vegetation cover, which render it
particularly susceptible to peak flow events or flooding [64,65].
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Table 9. Average sediment yield values estimated in tributary sub-basins of the Wadi Mina basin and
gross erosion values over 1970-2010.

SSY RUSLE
Sub-Basin Wadi Area (km?) SRC (tkm—2yr1) (thalyr1) SDR (%)
for 1970-2010 for 1970-2010
Sub basin 01 Ul;f[ti;ejm 4126 Qs = 3.50Q1'38 271.45 17.26 15.73
Sub basin 02  Haddad 480 Qs = 3.48Q1138 975.45 12.00 81.27
Sub basin 03 Abd 2480 Qs =2.27QI1165 227.42 16.06 14.13
Sub basin 04 Taht 680 Qs = 5.32Q1141 95.62 17.36 5.50
Sub basin 05 Abd 1553 Qs = 4.23Q1146 105.20 15.82 6.64
Entire Mina 4900 320.41 16.69 19.20

As regards the dimensions of the sub-basins shown in Tables 8 and 9, it should be
noted that each hydrometric station represents the outlet of the sub-basin considered. Each
hydrometric station monitors the waters of the drainage surfaces of each sub-basin. Of the
five sub-basins, four have common drainage surfaces; only the sub-basin of Wadi Haddad
at the Sidi Abdelkader Djillali station has a drainage surface isolated from the others.

In recent decades, the prioritization of basins has undergone a paradigm shift, largely
attributed to the advancements in remote sensing and GIS technologies [66—-68]. The
integration of decision support systems, exemplified by the analytic hierarchy process
(AHP) [69-71], alongside cutting-edge data-driven approaches such as machine learning
methodologies, has proven instrumental in modeling environmental and natural resource
dynamics. Sub-basins, characterized by their heterogeneous spatial attributes, including
topography, soil composition, land use patterns, and geomorphological features, require
systematic prioritization. This process is crucial for identifying areas that demand imme-
diate conservation interventions, ultimately aimed at enhancing the overall condition of
natural resources and the environment.

In this context, the priority for action is the development of a water and soil conserva-
tion action plan for the basin. To accomplish this, an automated division was performed
based on the digital terrain model of the study area. This process ultimately delineated
28 sub-basins (Figure 11) starting from the division already drawn up by the national water
resources agency (ANRH). The sub-basins of study areas 9, 6, 7, 8, 24, 26, 27, and 28 are the
most critical for development due to their proximity to the dam, estimated at 10 km, and
their average rates of soil loss, estimated at 22.39, 11.48, 12.25, 15.77, 21.39, 16.67, 13.00, and
16.20 t/ha/year, respectively. For the highest intervention priority, an area of 223.24 km?
of land highly susceptible to erosion requires development. Nine sub-basins have been
classified as high priority, with average soil losses ranging from 11.48 to 22.39 t ha—! yr~1.
These are predominantly located in the northern part of the catchment (Figure 11 and
Table 10).

For anyone aiming to model erosion, it is essential that simulations can be validated.
However, in many instances, particularly in semi-arid regions where economic activity
is limited, local authorities often lack the resources to carry out such validation. In these
cases, models are primarily used as tools for spatializing information to identify areas
most vulnerable to erosion. This serves various purposes: conservation planning, guiding
public policy, and prioritizing actions to mitigate soil degradation. In this context, while
full validation of the models is not feasible, the order of magnitude of the results can be
cross-checked using the limited available data, specifically solid transport measurements
from hydrological stations. Using the RUSLE model, the average annual erosion potential
for the entire river basin is estimated at 16.7 tons per hectare, corresponding to a Sediment
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Delivery Ratio (SDR) of 19%. This estimate aligns well with general SDR values reported
in major studies, which range from 13% to 40% [72].
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Figure 11. A priority map delineating the sub-basin of the Wadi Mina basin and the spatial character-

ization of diverse forms of water erosion.
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Table 10. Priority of intervention by sub-basin of the study area.

Distance to the Intervention

Sub-Basin Area (km?)  A(thalyr?) Dam (km) Priority
1 305.70 17.03 100.33 Moderate
2 231.70 16.20 67.88 Moderate
3 213.79 16.50 41.60 Moderate
4 115.23 15.47 28.80 Moderate
5 129.62 17.79 26.40 Moderate
6 249.10 11.48 19.32 High
7 160.76 12.25 7.50 High
8 173.95 15.77 0.00 High
9 223.24 22.10 9.10 ~ VeryHigh
10 315.16 21.08 25.18 High
11 102.85 17.39 54.08 Moderate
12 164.75 19.87 37.98 Moderate
13 184.01 17.84 71.60 Moderate
14 83.56 19.03 92.14 Moderate
15 610.44 15.37 42.50 Moderate
16 216.00 14.78 86.38 Moderate
17 129.36 14.47 88.13 Moderate
18 93.72 16.07 76.10 Moderate
19 334.55 17.29 49.10 Moderate
20 66.43 18.39 61.04 Moderate
21 137.20 15.39 37.66 Moderate
22 124.23 15.84 47.63 Moderate
23 222.37 16.84 32.55 Moderate
24 90.34 21.39 36.50 High
25 32.52 18.62 27.09 Moderate
26 81.00 16.67 14.00 High
27 84.23 13.00 11.20 High
28 24.20 16.20 2.10 High

Sum 4900.0

5. Conclusions and Recommendations

The present study aimed to develop a spatial distribution map of water erosion risk in
Northwestern Algeria by integrating the RUSLE model, remote sensing, and geographic
information systems. This approach incorporated the assessment of five key components: R,
LS, C, K, and P. Findings from the study reveal that the RUSLE model-derived specific soil
loss in Wadi Mina at Oued Abtal station amounts to 17.26 t ha~! yr~!. For the sub-basins
of Wadi Haddad (Sidi Abdelkader Djillali station), Wadi Abd (Ain Ammara station), Wadi
That (Kef Mehboula station), and Wadi Abd (Takhmaret Station), the observed erosion
rates are 12, 16.06, 17.36, and 15.82 t ha~! yr’l, respectively. The Wadi Mina basin at
the SMBA exhibits an average annual erosion rate of approximately 16.69 t ha=! yr=1.
Analysis of GIS-generated maps for various criteria indicates that the northern regions
of the basin demonstrate the highest susceptibility to erosion. The RUSLE model proves
valuable in providing extensive insights into the erosion process and spatially delineating
erosion-prone areas within the basin. While these data offer relative values, they serve as
crucial tools for analyzing potential erosion rates, identifying factors contributing to land
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degradation, developing evolution scenarios, and pinpointing priority areas that require
immediate conservation interventions and erosion mitigation measures.
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Abbreviations

The following abbreviations are used in this manuscript:

RUSLE Revised Universal Soil Loss Equation

R erosive capacity of rainfall

K susceptibility of soil to erosion

Ls length and gradient of slopes

C characteristics of cover management
P conservation measures

SDR Sediment Delivery Ratio

DEM Digital Elevation Model

ANRH National Water Resources Agency
SRTM  Shuttle Radar Topographic Mission
USGS  United States Geological Survey

SSY suspended sediment yield
SRC sediment rating curves
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