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Abstract: High-altitude wetlands in the Ecuadorian Andes are key ecosystems for water
regulation and biodiversity conservation but remain poorly monitored due to persistent
cloud cover and complex terrain. This study aims to develop a multitemporal approach
to map and monitor these wetlands under challenging environmental conditions. We
integrated Sentinel-1 (SAR) and Sentinel-2 (multispectral) satellite imagery within the
Google Earth Engine platform, applying a Random Forest classifier and soil moisture
estimation through the Water Cloud Model. Results show that using only multispectral
data underestimated wetland extent (18,919 ha in 2022; 4.7% of the area). In contrast,
integrating radar and multispectral data enabled dynamic analysis, identifying 2023 as the
peak year (28,972 ha; 7.2%), with the highest monthly coverage in April (6.7%). Soil moisture
estimates showed stable monthly wetland extents (15.3–15.9%), with a maximum of 3065 ha
in January–February, and demonstrated a strong link with cumulative rainfall patterns.
This integrated approach offers a reliable method for high-resolution, seasonal wetland
monitoring in cloud-prone mountain environments, supporting data-driven conservation
and land management strategies.

Keywords: high wetlands; bofedal; mapping; Sentinel; water cloud model; surface
soil moisture

1. Introduction
Mountain headwater ecosystems are vital for their hydrological services, supporting

economic and social development downstream [1]. Andean páramos span over three
million hectares across northern South America, from the Mérida range in Venezuela to
the Huancabamba depression in Peru [1–3]. In Ecuador, they cover 1.52 million hectares,
ranging from 3300 m.a.s.l. in the eastern cordillera to above 3500 m.a.s.l. in the western
cordillera [4,5]. Páramos provide essential ecosystem services such as water supply, carbon
storage, erosion control, and water regulation. Their hydrology relies on the capacity
to store and release water, which depends on the watershed’s water balance of inputs,
storage, and outputs [6]. El Distrito Metropolitano de Quito (DMQ) relies on water from the
northern Ecuadorian Andes, with at least 85% of its water supply coming from páramos.
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In 2020, the Papallacta system captured 101.91 million m3, while the La Mica system
contributed 47.88 million m3, together providing 53.63% of the DMQ’s water supply [7].

Although rainfall intensity in the paramo is usually low, the frequency of those
events is high, with annual precipitation above 2000 mm [8]. Once precipitation reaches
the soil, infiltration capacity redistributes water through surface and subsurface flows.
This capacity ranges from 20 to 80 mm·hr−1, while precipitation intensity remains below
10 mm·hr−1 [1,9]. Consequently, paramo soils have a notable water storage capacity [10],
enabling the formation of saturated land areas (wetlands) for significant periods of the
year, with or without the presence of peat [11]. Wetland soils generally differ from mineral
soils due to their high organic matter content (approximately 30–100%), low bulk density
(0.09–0.68 g·cm−3), and high porosity (up to 98%), resulting in a significant volumetric
water content [12].

According to the Water Protection Fund (FONAG for its acronym in Spanish), wet-
lands are characterized by floodable grasslands with the presence of cushions associated
with bodies of water and areas susceptible to flooding. In Ecuador, efforts to classify and
delineate wetlands primarily relied on the use of multispectral images, starting with Cover-
age and Use Map with an Ecosystem Approach [13]. This mapping defines the category
“Bofedales Altoandino Paramuno”. Later, in 2013, the ecosystem classification system
of Ecuador introduced the “Herbazal inundable de Páramo” ecosystem (HsSn04) [14,15],
described as areas with cushion plants associated with water bodies and flood-prone zones,
including peatlands and swamps. In 2022, FONAG developed the project “Generation
of a Map of Ecosystems, Vegetation Cover, and Land Use of the Metropolitan District
of Quito—DMQ at a scale of 1:10,000 and Reference Multitemporal Analysis with Exist-
ing Maps”, using 4287 multispectral images (Planet) from 2021 and 2022 with a spatial
resolution of 2.5 m and generating a mosaic in such a way that the percentage of cloud
cover is less than 8%; the project determined that the “Herbazal inundable del Páramo”
(wetlands) accounts for 1.58% of the ecosystem surface area within the DMQ [15]. The
Ministry of Environment, Water and Ecological Transition (MAATE) estimates that páramo
wetlands represent approximately 1% of the total area. However, recent mapping using
multitemporal remote sensing information and a combination of multisensor radar and
multispectral imagery combined with a Digital Elevation Model (DEM) suggests this value
is closer to 5–18% [5,16].

In the Ecuadorian context, wetland monitoring initiatives have predominantly relied
on traditional methods such as field surveys or the occasional use of unmanned aerial
vehicles (UAVs). While these approaches offer high spatial resolution, they face significant
limitations in terms of spatial coverage, temporal frequency, and operational scalability [17].
In response to this scenario, remote sensing has emerged as a strategic alternative for the
delineation and characterization of wetlands, utilizing both multispectral sensors (e.g.,
Landsat, Sentinel-2, PlanetScope) and synthetic aperture radar (SAR) technologies such
as Sentinel-1 and ALOS PALSAR [17–19]. However, in high mountain environments like
the Andes, these technologies face substantial technical challenges; multispectral sensors
are limited by persistent cloud cover, while SAR data interpretation requires specific
considerations related to terrain geometry and directional backscatter response [17].

The launch of the European Space Agency’s Copernicus Sentinel-1 (S1) satellite series
in 2014 provides free access to high-temporal-resolution (approximately 6 days) and high-
spatial-resolution (10 m) images [20]. Active microwave remote sensing (radar) has the
advantage of providing 24 h observation capability under almost all weather conditions
(except in the presence of convective systems) compared to multispectral images [21,22].
Wetlands are characterized by the presence of water, which can be found on the surface, be-
neath the vegetation canopy, or within the soil, rather than being associated with a specific
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type of vegetation cover. These features pose challenges for mapping when using multispec-
tral data, radar backscatter information, or a combination of both [23]. While multispectral
imagery has proven effective for mapping wetlands in low-elevation high-latitude regions,
delineating high-altitude wetlands has required studies that incorporate both multispectral
images and radar data from C-band [24] and L-band radar images [16,18,25].

In recent years, significant progress has been made in remote wetland monitoring
through the integration of multispectral platforms and machine learning algorithms. The
use of LiDAR data has enhanced the ability to capture the structural characteristics of
vegetation, while SAR sensors have proven effective in detecting hydrological changes and
variations in soil moisture [26,27]. Additionally, the implementation of classifiers such as
Random Forest (RF), Support Vector Machines (SVMs), and deep neural networks has led
to more robust classifications in spectrally heterogeneous environments like high-altitude
vegetation mosaics [28]. However, many of these applications lack a systematic implemen-
tation in Andean regions, where multitemporal monitoring is essential to understand the
ecological dynamics of these ecosystems.

Specifically in northern Ecuador, the literature reflects relevant efforts focused pri-
marily on multispectral sensors. García et al. (2019) used Landsat 8 along with the CART
algorithm to detect degradation processes in paramo soils, while Valencia et al. (2020)
applied supervised classification with Landsat 7 to map land covers such as snow, rock,
grassland, and wetlands for ecological purposes. Similarly, Valencia et al. (2022) proposed
a hybrid approach based on UAVs, fieldwork, and satellite imagery to characterize high
Andean wetlands. Hribljan et al. (2017) integrated multispectral and SAR data from multi-
ple sources (Landsat TM, PALSAR, RADARSAT-1) to map peatlands and estimate carbon
stocks. While these studies demonstrated the applicability of remote sensing, they did not
incorporate a systematic temporal strategy capable of capturing seasonal and interannual
variations in wetland extent and condition [16,17,29].

To address this gap, the present study proposes a comprehensive multitemporal
approach based on Sentinel-1 (SAR) and Sentinel-2 (multispectral) image series, which
allows overcoming the operational limitations imposed by cloud cover in high mountain
regions. This integration facilitates the identification of phenological and hydrological
dynamics throughout the year, providing a more accurate view of the spatiotemporal
variability of wetlands. Collectively, these methodological elements strengthen the technical
foundation for evidence-based management and conservation of high-altitude wetlands,
directly addressing methodological gaps identified in previous studies.

Estimating Soil Surface Moisture (SSM) using Synthetic Aperture Radar (SAR) sensors
relies on microwave backscatter measurements from the soil (σ◦), which are closely related
to the soil’s dielectric constant (ε) [30]. For dry soil, ε ≈ 6; for saturated soil, ε ≈ 30; and for
liquid water, ε ≈ 80 [31]. The intensity of σ◦ depends on the object’s physical and electrical
properties, wavelength (λ), polarization, radar incidence angle (θ), vegetation, and surface
roughness [32]. However, retrieving SSM from radar signals is challenging, as multiple
combinations of SSM, roughness, and vegetation can produce identical electromagnetic
responses [22]. To address this complexity, various algorithms and methods have been
proposed for SSM inversion, including (a) SSM retrieval using theoretical scattering models,
(b) SSM retrieval via empirical scattering models, (c) Dielectric Mixing Models, (d) change
detection approaches, and (e) SSM retrieval through polarimetric processes [22,31].

Semi-empirical backscatter models combine the complexity of theoretical models with
the simplicity of empirical ones. They are based on physical principles and use simulated
or experimental datasets to simplify theoretical models. Widely used semi-empirical
models include those developed by Oh (1992), Shi (1997), and Dubois (1995), primarily
designed for bare soil and sparsely vegetated surfaces [31]. The Water Cloud Model (WCM),
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developed by Attema and Ulaby (1978), effectively represents the σ◦ of vegetation cover
and underlying soil [31,33]. The WCM assumes the vegetation cover consists of identical
scattering elements distributed homogeneously, resembling a cloud of water particles. The
observed backscatter coefficient (σ◦ obs) (m2/m2) is expressed as the sum of the vegetation
backscatter coefficient (σ◦ veg) and the soil surface backscatter coefficient (σ◦ soil), adjusted
by an extinction factor (τ2), which is the vegetation optical depth or VOD for radiation loss
through vegetation [30,34]. The WCM facilitates the retrieval of bare soil backscatter [22,33],
enabling wetland delineation based solely on SSM values and minimizing errors associated
with vegetation cover. This approach was already applied to Sentinel-1 SAR images to
retrieve either SSM and VOD at medium resolution (1 km) [35–37].

The application of the WCM to determine soil moisture in cropland and grassland
areas has been extensively studied [38–45]. This information has proven valuable for
improving crop yields. However, applying this technique to map wetlands in Andean
páramos remains a research challenge. In this study, we assume that mapping bofedales
(páramo wetlands) can be achieved through indirect soil moisture measurements. To test
this hypothesis, we propose using radar images (C-band) at VH and VV polarizations and
applying the Water Cloud Model (WCM). The primary objective of this research is to map
wetlands (bofedales) within the FONAG/EPMAPS hydrological interest area, covering
401,531 hectares in the northern Ecuadorian Andes, across the provinces of Pichincha,
Napo, and Cotopaxi. The study will use the results of FONAG’s analysis based on Planet
multispectral imagery from 2022, a supervised classification using Sentinel-1 and Sentinel-
2 data, and soil moisture measurements. These three data sources will be leveraged to
establish the intra- and inter-annual variability of the wetland areas.

2. Materials and Methods
2.1. Study Area and Field Data

The study area is located in eastern South America, specifically in the northern Ecuado-
rian Andes, approximately at coordinates 0◦13′12′′ S/78◦30′45′′ W. The FONAG/EPMAPS
hydrological interest area covers 401,531 hectares, as illustrated in Figure 1. The study area
includes 11 meteorological stations collecting precipitation data from 1 January 2017 to 1
May 2024 with a monthly temporal resolution. Five of them are equipped with soil surface
moisture stations, measuring volumetric soil water content (%) at a depth of 10 cm from
01/2019 to 05/2024 (https://sedc.fonag.org.ec/reportes/consultas_periodo (accessed on
17 June 2024)). Additionally, soil moisture data are available for the Jatunhuayco area from
1 January 2020 to 30 August 2022, as reported by Páez-Bimos et al. 2023 [3,46]. Information
from the stations that characterize rainfall and SSM are detailed in Table 1.

2.2. Multiespectral Wetlands (WET_MLTSP)

Mapping wetlands using multispectral images was developed by FONAG in 2022.
The analysis was carried out using 4287 Planet images with a spatial resolution of 2.5 m,
generating a mosaic with less than 8% cloud cover. Cloudy areas were corrected by
replacing them with extracts from cloud-free images captured between April 2021 and April
2022. Subsequently, a general review of the mosaic was performed to verify the presence of
displacements, gaps, or voids, ensure spatial logic between entities, and confirm that the
mosaic was suitable for further processing [15]. The bands from the Planet mosaic used for
identifying and validating spatial entities (land cover types) are detailed in Appendix A.

https://sedc.fonag.org.ec/reportes/consultas_periodo
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Figure 1. Study Area. (A) Ecuador is located in eastern South America. (B) The FONAG/EPMAPS
hydrological interest area (red polygon) is located in the northern Ecuadorian Andes. (C) Additionally,
based on data availability of SSM data provided by Paez-Bimos, an area called the Jatunhuayco
area (orange polygon) has been defined. Red points represent the 11 stations that characterize the
precipitation, blue points represent the stations that have SSM measurements available, yellow points
represent the SSM measurements in the Jatunhuayco area, and green polygons represent the wetlands
identified by FONAG, 2022 through the Planet image (WET_MLTSP).
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Table 1. Localization and characteristics of the precipitation and surface soil moisture stations.

Id Name Latitude Longitude Elevation
(m.a.s.l) Variable

M5021 Yuracaccha Oyacachi 0◦11′18.09′′ W 78◦6′38.36′′ S 3710 PREC
M5025 La Virgen Papallacta 0◦20′1.43′′ W 78◦11′54.52′′ S 4020 PREC
M5026 Cotopaxi Control Norte 0◦33′49.76′′ W 78◦26′36.04′′ S 3670 PREC
M5124 Campo Alegre 0◦36′57.99′′ W 78◦23′19.1′′ S 3888 PREC
M5126 Jatunhuayco 0◦29′27.30′′ W 78◦13′59.03′′ S 4092 PREC
M5179 Paluguillo 0◦18′24.13′′ W 78◦13′55.72′′ S 3717 PREC
M5028 Hcda Prado Miranda 0◦28′59.91′′ W 78◦23′26.5′′ S 3526 PREC/SSM
M5029 El Carmen 0◦30′5.97′′ W 78◦20′0.12′′ S 4100 PREC/SSM
M5031 Chumillos 0◦5′40.97′′ W 78◦12′38.18′′ S 3750 PREC/SSM
M5074 Puntas 0◦9′54.64′′ W 78◦13′14.47′′ S 4142 PREC/SSM
M5075 Itulcachi 0◦17′24.99′′ W 78◦15′49.97′′ S 4029 PREC/SSM
CU_UP Jatunhuayco Area 0◦29′1.90′′ S 78◦14′38.15′′ W 4197 SSM
CU_UR Jatunhuayco Area 0◦29′1.69′′ S 78◦14′37.69′′ W 4196 SSM
CU_MI Jatunhuayco Area 0◦29′4.22′′ S 78◦14′36.51′′ W 4185 SSM
CU_LO Jatunhuayco Area 0◦29′6.89′′ S 78◦14′35.08′′ W 4174 SSM
TU_UP Jatunhuayco Area 0◦29′27.94′′ S 78◦14′37.07′′ W 4225 SSM
TU_UR Jatunhuayco Area 0◦29′26.99′′ S 78◦14′38.14′′ W 4227 SSM
TU_MI Jatunhuayco Area 0◦29′22.36′′ S 78◦14′34.01′′ W 4186 SSM
TU_LO Jatunhuayco Area 0◦29′19.08′′ S 78◦14′31.42′′ W 4181 SSM

Note: PREC: Precipitation; SSM: Surface Soil Moisture. Precipitation data: January 2017–May 2024. SSM data:
January 2019–May 2024.

Additionally, the Normalized Difference Vegetation Index (NDVI) is considered, which
allows the estimation of vegetation characteristics such as vigor and health (quantity, quality,
and development) based on the measurement of radiation reflected by the red and near-
infrared bands of vegetation in the area. The ecosystem classification was carried out using
the unsupervised classification method, where a category is assigned to each pixel based
on the spectral signature of the image (composed of different bands). The unsupervised
classification was performed using ArcGIS Pro 2.9 with the wizard tool. The results of the
WET_OPT mapping can be seen in Figure 1.

2.3. Satellite Data

Multitemporal Sentinel-1 and Sentinel-2 images from 1 January 2019 to 31 May 2024,
available on GEE (https://developers.google.com/earth-engine/datasets/catalog/sentinel
(accessed on 3 November 2024), were used in this study. Image processing, including cloud
and shadow masking, NDVI, NDWI calculations, and spectral signature extraction, was
conducted using the Google Earth Engine platform.

2.3.1. Sentinel-1

The Sentinel-1 satellite provides Level 1 GRD data in IW mode for ascending and
descending orbits, with C-band frequency, approximately 6 cm wavelength, 10 m spatial
resolution, and dual polarization VH and VV [33,36]. The preprocessing of Sentinel-1
images was carried out in GEE, available at: https://github.com/adugnag/gee_s1_ard
(accessed on 3 November 2024).

2.3.2. Sentinel-2

The Sentinel-2 Earth observation mission consists of two satellites (Sentinel-2A and
Sentinel-2B) with a temporal resolution of 5 days and spatial resolutions of 10, 20, and
60 m in the visible, near-infrared (NIR), and shortwave infrared (SWIR) spectra [25,47].
Clouds and cloud shadows were masked at the pixel level using the GEE Cloud Score +

https://developers.google.com/earth-engine/datasets/catalog/sentinel
https://github.com/adugnag/gee_s1_ard
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S2_HARMONIZED dataset, which assigns values of 0 and 1 to pixels based on surface visi-
bility, where 0 represents unclear (occluded) pixels, and 1 represents clear (non-occluded)
pixels. The procedure involves obtaining a collection of surface reflectance images (Sentinel-
2) filtered by date and region of interest, adding the Cloud Score + S2 bands, and extracting
a binary mask for each image. Finally, a reducer is applied to generate a clear compos-
ite [47,48]. For this study, the median was used as the compositing criterion. Table 2 shows
the summary of the satellite information used in the study.

Table 2. Summary of satellite information collected for this study.

Satellite Type Variable Description Period of Images

Sentinel-1 SAR

VV Backscatter value (σ◦) for vertically polarized transmission
and vertically polarized reception. Mensual Median

1 January 2019 to 31
May 2024

VH Backscatter value (σ◦) for vertically polarized transmission
and horizontally polarized reception.

VV/VH Ratio between VV and VH.
Angle Incidence Angle.

Sentinel-2 Multispectral

NDVI
Normalized Difference Vegetation Index. Indicates the

presence of vegetation based on the normalized difference
in NIR (band 8) and red (band 4) reflectance. Annual Median (2019,

2020, 2021, 2022, 2023)
NDWI

Modified Normalized Difference Water Index. Indicates the
presence of water bodies based on the normalized

difference in green (band 3) and SWIR (band 11) reflectance.

Alos Palsar SAR DEM Digital Elevation Model with a spatial resolution of 12.5 m. 2022

2.4. Methodology

The methodology begins with wetlands identified by FONAG in 2022, referred to as
WET_MLTSP. Subsequently, wetland mapping using radar (Sentinel-1) and multispectral
(Sentinel-2) imagery, known as WET_RADAR, is carried out in Google Earth Engine with
the RF. The classification process incorporates various bands, including slope, topographic
index, VH, VV, VH_VV_ratio, incidence angle, NDVI, and NDWI. Additionally, wetland
mapping based on SSM measurements, termed WET_SSM, involves calibrating the WCM
model. Once the calibration constants are determined, the mapping is implemented in
Google Earth Engine. Finally, data from the three mapping approaches (WET_MLTSP,
WET_RADAR, and WET_SSM) are used to analyze wetland area variations on both an
annual and monthly scale. Figure 2 shows a graphical summary of the methodology.

2.4.1. Radar Wetlands (WET_RADAR)
Masking Sentinel-1 Images

Once the preprocessed Sentinel-1 image is obtained, masking is applied, considering
intervention areas, bare soil, water bodies, slopes greater than 30%, and altitudes below
3147 m.a.s.l. and above 4343 m.a.s.l. The intervention polygons were selected from the
classification developed by FONAG in 2022. Specifically, the following ecosystems were
chosen: Intervention Areas, Natural Water Bodies, and Areas without Vegetation Cover.

According to the definition of the “Flooded Grassland of the Páramo”, wetlands are
located in areas with altitudes between 3300 and 4500 m.a.s.l. Based on the multispectral
classification by FONAG in 2022, wetlands are found in areas with altitudes ranging from
3147 m.a.s.l. to 5650 m.a.s.l. Figure 3A shows the histogram of elevations at which the
WET_MLTSP polygons are located. Based on the established criteria, it was determined
that, although the definition of Flooded Grasslands of the Páramo states that wetlands are
located at maximum altitudes of 4500 m.a.s.l., the cumulative distribution analysis revealed
that the polygons are situated in areas up to 5600 m.a.s.l. In this study, the lower limit for



Water 2025, 17, 1637 8 of 30

determining wetlands is set at 3147 m.a.s.l., while the upper limit corresponds to the 95%
percentile of cumulative distribution observations, which is 4343 m.a.s.l.

Figure 2. Methodology for dynamic mapping wetlands (A) WET_ OPT developed by FONAG, 2022.
(B) WET_RADAR uses radar (Sentinel-1) and multispectral (Sentinel-2) information and a RF in GEE.
(C) WET_MLTSP uses SSM data from the stations and the Jatunhuayco area to calibrate WCM, and
the mapping is executed in GEE.

(A)  (B) 

Figure 3. (A) Elevation histogram (m.a.s.l) of wetlands identified by multispectral image. The
maximum altitude value recorded in the multispectral wetlands corresponds to 5650 m.a.s.l, while
the mode corresponds to 4056 m.a.s.l. The value that covers 95% of the observations is 4343 m.a.s.l.
(B) Slope histogram (%) of wetlands identified by multispectral image. The maximum slope value
recorded in the multispectral wetlands corresponds to 73%, while the mode corresponds to 4%. The
value that covers 95% of the observations is 25%.

The slope masking considers that convex contours and steep slopes promote the
accumulation of surface runoff, subsurface flow, and groundwater in the lower slope
positions. The foot of the slope (footslope) represents the transition between the backslope
and flatter zones, with typical slopes ranging from 5◦ to 15◦. The toeslope, being the lowest
and nearly flat area, features slopes of <5◦ [49–51]. Multispectral classifications determined
that wetlands are found in areas with slopes ranging from 0% to 73% (Figure 3B). For
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this study, the slope was determined by including 95% of the observations conducted by
FONAG. Thus, slopes <25% were established as the masking criterion.

Topographic Wetness Index (TWI)

The Topographic Wetness Index (TWI) is a model used to predict the spatial distribu-
tion of soil moisture and is calculated using the following equation [52]:

TWI = ln
(

α

tan(β)

)
(1)

where α represents the drainage area per unit contour length (contributing area), which
corresponds to the amount of water that can accumulate at a specific point on the terrain,
and β is the local terrain slope expressed in radians. In this research, the TWI was calculated
using a 12.5 m DEM and the GEE platform. The calculation of α (drainage area) was
determined by combining flow direction analysis and flow accumulation, while β was
directly derived from the DEM.

Multispectral Spectral Indices

The characterization of soil water saturation considers the Normalized Difference
Water Index (NDWI), expressed as

NDWI =
(GREEN − NIR)
(GREEN + NIR)

(2)

where NIR and GREEN represent spectral reflectance values from multispectral images,
acquired in the near-infrared and green bands of the electromagnetic spectrum [53]. On the
other hand, the characterization of hydrophilic plant species growing in wetlands considers
the Normalized Difference Vegetation Index (NDVI), expressed as

NDVI =
(NIR − RED)

(NIR + RED)
(3)

where NIR and RED represent the reflectance values of the near-infrared and red bands of
the electromagnetic spectrum [54].

Wetland Classification

Previous studies have determined that RF and SVM are the most suitable algorithms
for wetland classifications. However, RF is much easier to implement and is robust against
noise and overfitting [55]. In this study, the RF algorithm was used, a non-parametric
supervised machine learning algorithm that employs a random ensemble of decision trees.
This algorithm has proven effective for classifications involving large amounts of satellite
image data, primarily because it can distinguish between different land cover classes [23].
The bands used in the classification are shown in Table 3.

Training points for the RF were established based on the multispectral classification
from FONAG, 2022. Specifically, 547 points were considered, distributed in different
ecosystems as follows: Wetlands (Herbazal inundable del páramo) with 156 points, Páramo
Grassland with 231 points, Humid/Ultra-Humid Grassland with 102 points, and Forest
with 58 points. Appendix B shows the description of the training points. The RF model was
configured with 100 decision trees (numberOfTrees = 100), providing a balance between
accuracy and computational efficiency. The sampling fraction (baggingFraction) was set
to 0.7, meaning that each tree was trained using a random 70% subset of the training
dataset. The splitting criterion used was Gini impurity, which is the default setting in the
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RF implementation of Google Earth Engine (GEE). All other parameters were kept at their
default values, following standard practices in similar remote sensing applications.

Table 3. Bands used in classification of WET_RADAR.

Satellite Type Variable Description

Sentinel-1 SAR

VV
VH

VV/VH
Angle

Consists of preprocessed and filtered radar images, meaning images where
intervention pixels, water bodies, and areas without coverage have been
removed. Additionally, pixels with slopes greater than 25% have been
excluded, and pixels between 3147 m and 4343 m have been filtered. For
classification, the monthly time period and the creation of monthly
mosaics through the calculation of the mean are considered.

Sentinel-2 Multispectral
NDVI

The calculation of vegetation descriptors (NDVI) and water (NDWI) has
been performed using Sentinel-2 multispectral images. To remove cloud
cover, annual mosaics are created.NDWI

Alos Palsar

SAR Slope The slope calculation has been carried out based on the DEM obtained
from Alos Palsar.

SAR TWI The calculation of the Topographic Index has been carried out based on the
DEM obtained from Alos Palsar.

2.4.2. Soil Moisture Wetlands (WET_SSM)

SAR cannot be directly used to estimate soil moisture (SSM) because the relationship
between backscatter (σ◦) and SSM is inconsistent and influenced by topographic conditions
and vegetation structure [56]. In this study, to preliminarily determine the relationships
between SSM and σ◦ (VH, VV), a Principal Component Analysis (PCA) was conducted.
Subsequently, semi-empirical models were applied to estimate SSM (Water Cloud Model).
Finally, the GEE platform was used to develop SSM maps and delineate wetlands.

Principal Component Analysis (PCA)

An exploratory Principal Component Analysis (PCA) was conducted, which is a
multivariate technique that transforms intercorrelated variables into sets of new linearly
orthogonal variables with maximum variance, called principal components [57]. This
analysis was performed to preliminarily establish potential correlations between SSM
data and VH and VV polarizations. In the PCA graphs, two axes (x, y) are represented,
showing combinations of the original variables that explain the greatest variance in the data
(dimensions). Vectors are plotted along the axes to represent the variables; the longer the
vector, the greater the contribution of that variable to the principal component. The angles
between vectors indicate the correlation between variables; angles less than 90◦ represent
a strong positive correlation, orthogonal angles (90◦) indicate little to no correlation, and
angles of 180◦ represent negative correlations.

Water Cloud Model (WCM)

The construction of the Water Cloud Model (WCM) for SSM estimation is based
on the criteria established by [58]. They replaced the quadratic expression of vegetation
water content (Mv) and soil backscatter (σ◦ soil) in the WCM equations. Additionally,
the term exp(−2B.Mv.secθ) was expanded using the Taylor approximation, enabling the
development of a semi-empirical model for soil moisture estimation, expressed as [58].

SSM = k1 + k2σ◦ + k3VI + k4VI2 + k5VI3 + k6VI4 + k7σ◦secθ + k8σ◦VIsecθ + k9σ◦VI2secθ (4)

where SSM is volumetric soil moisture (cm3/cm3), σ◦ is the backscatter coefficient (VH or
VV) expressed in dB, derived from Sentinel-1 SAR data, VI is the spectral index obtained
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from multispectral imagery, θ is the incidence angle, and k1–k9 are the constants obtained
using a best-fit regression method.

The relationship between soil surface moisture (SSM), vegetation indices, and backscat-
ter is complex, presenting challenges for classical regression methods when calibrating
the Water Cloud Model (WCM). Machine learning techniques address such complexities,
including nonlinearity and data heterogeneity [59]. In this study, the Linear Regression
(LR) method was used, which can be divided into simple and multiple linear regression.
The loss (or cost) function quantifies the difference between the values predicted by the
model and the actual values of the dependent variable (in this case, SSM). The general form
of the multiple linear regression equation is as follows:

y = k1 + k2x1 + k3x2 + . . . + knxn−1 (5)

where yi is the predicted value (in this case, the estimated SSM), x1, x2, . . ., xn−1 are the
independent variables (e.g., VV, VI, VI2, etc.), k1 is the intercept (constant term), and k2, k3,
. . ., kn are the regression coefficients for each variable. The loss function (cost/utility) is
expressed as

MSE =
1
m∑m

i=1(yi − ye)
2 (6)

where yi is the actual soil moisture value, ye is the estimated value from the model, and
m is the total number of observations. The linear regression algorithm seeks to determine
the optimal constants (k1–kn) that minimize the loss function, traditionally using the least
squares method [43]. To ensure robust results, 70% of soil moisture data was used for WCM
training, while the remaining 30% was used for validation.

In the context of machine learning, linear regression functions as a fundamental
supervised learning algorithm that models the relationship between a set of input variables
and a continuous target variable. In this study, multiple linear regression was applied
using variables derived from remote sensing data, such as the VV backscatter coefficient,
vegetation index (VI), and incidence angle (θ), along with nonlinear interactions and
polynomial terms (e.g., VI2, VI3, VV·VI·sec(θ)) as input features. This multivariate model
was implemented using Python’s Scikit-learn library, which automatically adjusts the
regression coefficients by minimizing the residual errors between observed and estimated
SSM values. The resulting model captures the functional behavior of the Water Cloud Model
(WCM) and provides interpretable coefficients for each contributing variable, enabling
reliable estimation of surface soil moisture under varying vegetation and backscatter
conditions from Sentinel-1 polarizations (VH or VV). Additionally, the validation of soil
moisture inversion results was evaluated using the following statistical metrics:

R =
E[(smest − E[smest])(smtrue − E[smtrue])]

σestσtrue
(7)

BIAS = E[smest]− E[smtrue] (8)

MAE = E[(smest − smtrue)] (9)

RMSE =

√
E
[
(smest − smtrue)

2
]

(10)

ubRMSE =

√
E
{
[(smest − E[smest])− (smtrue − E[smtrue])]

2
}

(11)

where smtrue is soil moisture data measured in the field, smest is soil moisture estimated
using data inversion and WCM, and σestσtrue are standard deviations of measured and
estimated soil moisture.
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3. Results
3.1. Precipitation Results

The Ecuadorian Andes experience variable precipitation over relatively short distances
due to their latitude, topography, and the influence of air masses from the Pacific Basin
and the Amazon. The study area has 11 stations that collect precipitation data, with
records consisting of monthly values from 1 January 2017 to 1 May 2024. The results of the
precipitation analysis are shown in Table 4 and Figure 4.

Table 4. Monthly precipitation analysis (January 2017–May 2024) for the 11 meteorological stations of
the study area.

Month
Precipitation (mm)

Average
M5021 M5025 M5026 M5028 M5029 M5031 M5074 M5075 M5124 M5126 M5179

January 158 131 104 152 84 97 105 86 54 48 103 102
February 103 93 132 190 98 92 103 89 83 62 94 104

March 135 133 115 191 123 144 140 136 89 99 134 131
April 134 112 125 158 98 134 110 92 82 94 115 114
May 194 172 87 101 70 106 80 83 67 60 120 104
June 230 208 40 50 48 50 56 75 68 105 137 97
July 274 234 34 36 40 33 50 79 53 70 150 96

August 168 157 37 26 34 25 29 49 42 55 85 64
September 118 104 47 60 47 34 36 47 50 62 73 62
October 98 95 97 133 74 99 88 80 66 74 90 90

November 117 104 131 223 111 136 137 121 87 94 130 127
December 136 121 127 166 81 104 111 95 74 56 104 107

   

(A)  (B) 

Figure 4. Monthly precipitation for the study area. (A) Pacific Basin. (B) Amazon Basin.

The results of the monthly precipitation across the study area indicate that March has
the highest precipitation index, with 131 mm/month, while September records the lowest
precipitation values at 62 mm/month. Additionally, the rainy season begins in November
and extends through May, while the period with the lowest precipitation indices occurs
between June and October.

The monthly analysis has established that two precipitation regimes are observed in
the study area (Figure 4). The first regime, characterized by the seven stations located on
the Pacific Basin (M5031, M5074, M5075, M5028, M5029, M5026, and M5124), registers high
precipitation indices in March and November, while August corresponds to the month
with the lowest precipitation indices. The second precipitation regime corresponds to the
four stations located on the Amazon Basin (M5021, M5179, M5025, M5126). These stations
register high precipitation indices during the June–July period, while precipitation values
decrease in February and October. The analysis at each of the stations in the study area is
shown in Figure 5.
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Figure 5. Monthly precipitation analysis (January 2017–May 2024), x-axis expressed in months and
y-axis expressed in mm. Stations located on the Pacific Basin (M5031, M5074, M5075, M5028, M5029,
M5026, and M5124). Stations located on the Amazon Basin (M5021, M5179, M5025, and M5126).

3.2. Wetlands Multispectral (WET_MLTSP)

The results of wetland mapping using Planet imagery from 2022, conducted by FONAG,
determined that wetlands, defined as Andean Páramo Floodable Grasslands, cover 18,919
hectares. Given that the study area spans 401,531 hectares, this represents an occupancy
percentage of 4.7% within the study area. It is important to note that, as the mapping was
carried out for a single year (2022), a dynamic analysis could not be performed.

3.3. Wetlands Radar (WET_RADAR)

The classification included variables derived from Sentinel-1 (VH, VV, VV/VH ratio,
and incidence angle), Sentinel-2 (NDVI and NDWI), as well as topographic variables such
as slope and the Topographic Wetness Index (TWI). The variable importance analysis
revealed that the polarimetric bands VH and VV had the greatest influence on model
performance, followed by NDWI and NDVI, highlighting the importance of spectral
information related to soil moisture and vegetation in land cover differentiation. The
VV/VH ratio, incidence angle, and topographic variables (slope and TWI) also contributed
significantly, although to a lesser extent. This distribution of importance suggests that the
classification benefited from a combination of radar, multispectral, and topographic data,
particularly emphasizing the ability of radar to discriminate moisture-related classes such
as wetlands and humid grasslands.

To assess classification performance, a confusion matrix was constructed, and standard
accuracy metrics were calculated, including overall accuracy (OA) and the Kappa coefficient.
The classification achieved an overall accuracy of 76.9% and a Kappa coefficient of 0.678,
indicating substantial agreement between predicted and observed classes. The confusion
matrix showed good overall performance in identifying humid grassland and forest classes,
with some misclassification between wetlands and Humid/Ultra-Humid Grassland, which
is expected given their ecological and spectral similarity. The confusion matrix is presented
in Table 5.
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Table 5. Confusion matrix.

Wetlands Páramo
Grassland

Humid/Ultra-Humid
Grassland Forest

Wetlands 30 5 6 0

Páramo Grassland 11 47 5 2

Humid/Ultra-Humid Grassland 0 2 25 0

Forest 4 1 0 18

The validation of the wetland classification was complemented by fieldwork con-
ducted at 87 verification polygons, selected through stratified sampling based on factors
such as accessibility, road availability, terrain slope, and the presence of private proper-
ties. This sampling strategy aimed to maximize spatial coverage within the study area,
ensuring the inclusion of various altitudinal zones, vegetation cover types, and climatic
conditions (Pacific and Amazonian Basin), in order to adequately capture the heterogeneity
of páramo ecosystems.

During the validation campaign, two reference categories were used (“wetland” and
“non-wetland”), defined based on the multispectral cartography produced by FONAG
(2022) and the radar-based classification generated in this study. Validation polygons were
selected independently from the training dataset to avoid bias and ensure the objectivity
of the accuracy assessment process. Although logistical limitations associated with high
mountain terrain imposed access constraints, strategies were implemented to ensure a wide
and balanced geographical distribution of validation sites. As a result, the accuracy metrics
obtained are based on a spatially representative sample, which strengthens the method-
ological robustness and supports the validity of the classification results in a geographically
complex context. The overall results are presented in Table 6.

Table 6. Wetland validation criteria.

Identification Description Number of Points %

Corrected
Refers to polygons initially classified as wetlands but determined

during field visits not to be wetlands. Subsequently, the Random Forest
training points were adjusted to ensure accurate classification.

3 3.4

Discarded_multispectral Refers to polygons identified as wetlands by multispectral imagery but
discarded based on radar imagery and field validations 13 14.9

Not_identified Refers to wetlands identified during field visits but not classified in
radar imagery. 1 1.1

Radar Refers to new wetlands identified using radar imagery 53 60.9

Radar_ multi-spectral Refers to polygons identified as wetlands through a combination of
radar and multispectral imagery 17 19.5

TOTAL 87 100

The validation results have established that the percentage of agreement between the
FONAG multispectral classifications (2022) and those of WET_RADAR is 19.5%, while
newly identified wetlands account for 60.9%. The discarded multispectral information
(DISCARDED_ MULTISPECTRAL) corresponds to 14.9%. It is important to highlight that
when considering the categories RADAR (53 points), Discarded_ multi-spectral (17 points),
CORRECTED (3 points), and DISCARDED_MULTISPECTRAL (13 points), the total per-
centage is 98.8%, indicating that RADAR classifications exhibit a high correlation with
field observations.
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The NOT_IDENTIFIED category (1 point), corresponding to VAL_P55, represents
1.1%, which accounts for a wetland determined during in situ visits to have narrow and
elongated characteristics. The wetland’s width does not exceed 10 m, suggesting that it
may not be identified due to the spatial resolution of Sentinel-1 and Sentinel-2.

The general analysis of wetland mapping using radar information (WET_RADAR)
shows that the month of April, between the years 2019 and 2024, has the largest wetland
coverage, totaling 27,041 ha. Additionally, it has been determined that 7040 ha of wetlands
were identified by both WET_MLTSP and WET_RADAR, while 20,001 ha correspond to
new information exclusively identified by WET_RADAR. On the other hand, 11,879 ha of
wetlands previously identified through multispectral information (WET_MLTSP) have been
discarded. Table 7 and Figure 6 provide details of the analysis, showing the comparison
between the new and discarded information.

Figure 6. Mapping validated. The green polygons represent the wetlands identified by WET_MLTSP,
and the blue areas correspond to the new wetlands identified exclusively by WET_RADAR, while the
red areas correspond to those discarded through radar image mapping. Finally, the field validation
points are also displayed.
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Table 7. Comparison of identified, generated, and discarded areas.

Item Description Area (ha)

WET_RADAR_MULTISPECTRAL Corresponds to wetland areas identified by WET_RADAR and
WET_MLTSP. 7040

WET_RADAR_NEW Corresponds to new wetland areas identified by WET_RADAR 20,001

WET_MULTISPECTRAL_DISCARDED Corresponds to wetland areas identified by WET_MLTSP that
have been discarded through WET_RADAR. 11,879

Dynamic analysis of the wetlands has determined that the month with the largest wet-
land area is April, with 27,041 ha (6.7%), while the month with the smallest area is October,
with 23,906 ha (6.0%). This indicates a difference of 3135 ha, an area considered as tempo-
rary wetlands. Specifically, in April, the largest wetland area is recorded (27,041 ha). Despite
the average precipitation regime decreasing by 17 mm, this phenomenon is presumed to
occur because the months preceding April (October to April) register high precipitation
values. In other words, the wetlands remain saturated, and despite the 17 mm decrease
between March and April, the wetland area increases.

During the May–September period, the smallest wetland areas are recorded. Notably,
in August, there is an increase in wetland area, even though average precipitation indices
decrease. This phenomenon can be explained by the fact that July reports the highest pre-
cipitation in the Amazon basin, with 182 mm. Thus, despite the reduction in precipitation,
the rainfall in the Amazon basin increases the wetland occupancy values. Table 8 and
Figure 7 show the results of dynamic mapping.

Table 8. Results of dynamic mapping of wetlands with WET_RADAR.

Month
(2019–2024)

Average Rainfall
(mm)

Precipitation Pacific Basin
(mm)

Precipitation
Amazon Basin (mm)

Area of Study
(ha)

WET_RADAR

Area (Ha) %

January 102 97 110 401,531 26,246 6.5
February 104 112 88 401,531 25,511 6.4

March 131 134 125 401,531 25,960 6.5
April 114 114 114 401,531 27,041 6.7
May 104 85 136 401,531 25,109 6.3
June 97 55 170 401,531 24,754 6.2
July 96 46 182 401,531 24,817 6.2

August 64 34 116 401,531 25,453 6.3
September 62 46 89 401,531 24,469 6.1

October 90 91 89 401,531 23,906 6.0
November 127 135 111 401,531 24,269 6.0
December 107 108 104 401,531 24,898 6.2

After the validated wetland areas were delineated, their slope distribution was an-
alyzed. The slope histogram is shown in Figure 8. Based on radar-derived data, the
maximum slope within the wetland areas was 19%, while the most frequent value (mode)
corresponded to areas with a 3% slope. Notably, 95% of wetland observations were located
in areas with slopes equal to or less than 9%. When comparing these results with those
obtained from the multispectral-based mapping (Figure 3B), a significant improvement is
evident: the slope threshold covering 95% of observations was reduced from 25% (multi-
spectral) to 9% (radar). This substantial reduction highlights the enhanced precision of the
radar-based wetland delineation, particularly in excluding overestimated areas in steeper
terrain, and represents a meaningful advancement in high-altitude wetland mapping.
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Figure 7. Monthly dynamic analysis of wetlands and precipitation patterns: average values in blue,
mean precipitation pattern for the pacific basin (green triangle), and amazon basin (black dots).

 

Figure 8. Histogram of slopes in wetlands WET_RADAR. The slope that covers 95% of the observa-
tions is 9%.

The wetland mapping has shown that using only multispectral images can underes-
timate the extent and location of wetlands. In this regard, Slagter et al. (2020) identified
that multispectral images have limitations for wetland mapping due to climatic condi-
tions, natural light, and cloud cover, which hinder the detection of information beneath
the vegetation canopy or clouds [23]. However, using only Sentinel-1 radar images may
also result in relatively low classification accuracies, as some wetlands may experience
sub-canopy flooding, presenting surface water (e.g., ponds). This condition alters the
backscatter response, as several studies agree that stagnant water reduces the backscatter
signal by providing a reflective surface [23,56].

In this study, radar and multispectral information were combined. Sentinel-1 data
provided insights beneath the vegetation canopy, while Sentinel-2 data were used to
describe vegetation (via NDVI) and water presence (via NDWI). It has been established
that combining Sentinel-1 and Sentinel-2 leads to more accurate classifications compared to
using these systems independently.
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The Ecuadorian Ministry of the Environment, Water, and Ecological Transition
(MAATE) estimates that wetlands represent approximately 1% of the national territory.
However, recent mapping using multitemporal remote sensing techniques estimates this
value to range between 5% and 18% [5,16]. Mapping conducted by FONAG in 2022 de-
termined a wetland occupation percentage of 4.7%. The results of this study revealed a
minimum occupation percentage of approximately 6% (24,262 ha) in October and Novem-
ber, with the maximum percentage of 6.7% (27,041 ha) occurring in April.

Regarding wetland location (topographic variables), the literature indicates that wet-
lands are typically found in areas where water accumulates, such as near foot slopes and
toe slopes. This is because contiguous convex contours and steep slopes promote the
accumulation of surface runoff, subsurface flow, and groundwater in the lower positions
of slopes [49–51]. On the other hand, Zhou et al. (2022) applied a slope filter of up to 8%
for soil moisture models [36]. According to FONAG’s 2022 multispectral classifications,
wetlands are located in areas with slopes ranging from 0% to 73%, with 95% of observa-
tions falling within a 30% slope. The results of this study established that the slope with
the highest data frequency is 2.56%, while the slope encompassing 95% of observations
is 9.13%.

3.4. Wetlands Surface Soil Moisture (WET_SSM)
3.4.1. Principal Component Analysis (PCA)

The analysis of the relationship between Soil Surface Moisture (SSM) and backscatter
was conducted preliminarily through a Principal Component Analysis (PCA) using the
factorextra library in R Studio Version 2024.04.0+735. This tool enables the examination
of multivariate datasets to identify structure and relationships. The analysis involved
performing a PCA on the variables Surface Soil Moisture (SSM), VH and VV polarizations,
and the incidence angle of Sentinel-1 images. The PCA analysis considers vectors where
angles between vectors less than 90◦ indicate a high positive correlation, orthogonal angles
(90◦) indicate little to no correlation between variables, and angles of 180◦ represent negative
correlations. Due to the data acquisition methodology, the dataset was divided into two
groups first includes SSM measurements from meteorological stations M5028, M5029,
M5031, M5074, and M5075, and the second comprises SSM data collected at eight points
within the Jatunhuayco area, provided by [3,46].

The results show that, in the evaluated meteorological stations, the PCA revealed a
weak correlation between radar variables and SSM (with an average R < 0.52). In con-
trast, the analysis conducted specifically for the Jatunhuayco area exhibited a markedly
different behavior, even without prior normalization (Figure 9). In the Jatunhuayco area,
the VV and VH vectors formed acute angles with the SSM vector, indicating a signifi-
cant positive correlation, particularly with the VV polarization. This relationship was
confirmed statistically by the results reported in Table 9, where the soil moisture estima-
tion for Jatunhuayco reached a correlation coefficient of R = 0.79, with MAE = 1.39 and
RMSE = 1.82—substantially better than the results from the meteorological stations, which
showed errors exceeding 6.5 in MAE and 8.6 in RMSE.

This difference in data behavior can be partially explained by the heterogeneity of the
data sources. Soil moisture data used for the meteorological stations were provided by
FONAG, whereas the data corresponding to the Jatunhuayco area implemented a locally
adapted methodology with higher spatial resolution and field validation. This disparity in
data origin and quality can directly influence the variance explained by the PCA and the
relationships among variables. Therefore, maintaining methodological consistency, specifi-
cally, applying PCA without normalization, for both the stations and the Jatunhuayco area
was considered appropriate. Thus, the low variance explained by first component in the
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stations cannot be attributed solely to the lack of normalization, but rather to differences in
resolution, accuracy, and methodology between both datasets. Consequently, the decision
to forego normalization at this stage is justified, prioritizing direct physical interpretation
and analytical consistency. As a future perspective, the application of controlled normaliza-
tion and complementary testing under homogeneous conditions is proposed to assess its
comparative effect.

 

Figure 9. Principal Component Analysis at meteorological stations and of the Jatunhuayco area. The
results show very poor correlations between the stations and the VH and VV polarizations, while the
data from the Jatunhuayco area show strong positive correlations.

Table 9. SSM estimation results: Jatunhuayco stations and area.

ID
SSM—VH—NDVI SSM—VV—NDVI

R MAE RMSE BIAS ubRMSE R MAE RMSE BIAS ubRMSE

M5074 0.67 3.81 4.68 0.67 4.94 0.61 3.97 5.03 −0.60 5.51
M5075 0.31 2.85 3.77 0.20 1.23 0.48 2.59 3.49 0.31 1.39
M5031 0.72 5.73 7.04 1.17 7.97 0.82 5.00 5.82 0.22 8.92
M5029 0.39 4.37 4.85 0.50 2.49 0.52 3.99 4.50 0.39 2.57
M5028 -- 6.29 7.74 1.50 3.69 0.22 6.08 7.50 1.26 4.28

5 Stations 0.57 6.50 8.33 0.16 5.70 0.52 6.68 8.68 0.07 5.85
Jatunhuayco area 0.78 1.41 1.85 −0.05 2.34 0.79 1.39 1.82 −0.04 2.44

Based on these preliminary results, a study area around the Jatunhuayco area has been
delineated to map wetlands using SSM measurements.

3.4.2. Surface Soil Moisture (SSM) Estimates

As described in the methodological section, the estimation of surface soil moisture
(SSM) considers the correlation between soil moisture (measured in situ) and the backscatter
values (VH, VV) from Sentinel-1 through the application of the Water Cloud Model. The
results obtained are presented in Table 9 and Figure 10.
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Figure 10. SSM Estimation at station. The best correlation between SSM and VH and VV polariza-
tions corresponds to the data from the Jatunhuycu area, with R = 0.79, MAE = 1.29, RMSE = 1.82,
Bias = −0.04.

The estimates of surface soil moisture (SSM) at the stations, when considering indepen-
dent databases (by stations), determined that correlations are stronger when using vertical
polarization (VV), with station M5031 showing the best R value of 0.82. Considering the
mean absolute error (MAE), it was determined that although VV polarization shows lower
average errors, M5075 stands out as the most accurate station, with MAE = 2.85 for VH. The
analysis of the Root Mean Square Error (RMSE) shows that M5075 has the lowest RMSE,
indicating a more stable performance, while stations M5031 and M5028 show greater dis-
persions. Specifically, station M5031 (which showed the best R value) has an RMSE of
7.04 for VH and 5.82 for VV, affecting the reliability established with R = 0.82. The bias
characterized through BIAS shows relatively low coefficients, with station M5028 standing
out for its significant bias in both combinations. On the other hand, when considering the
entire database from the stations, it has been determined that VH polarization shows better
R values, reaching 0.57. However, the MAE and RMSE values are relatively high, with
values >6.5 and >8.3, respectively.

The determination of correlation statistics in the Jatunhyaco area indicates that R = 0.79,
suggesting a strong positive correlation between the estimates and in situ SSM measure-
ments. MAE = 1.39 and RMSE = 1.82 values indicate that the estimates deviate from the
actual value by an average of 1.39 to 1.82 units. Additionally, BIAS = −0.04 implies that
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the estimates are very slightly underestimated (−0.04 units) compared to the actual SSM
values. Finally, the unbiased Root Mean Square Error (ubRMSE) equals 2.44, meaning that,
excluding the bias, the average prediction error could be up to 2.44 units.

When comparing the results from the Jatunhuayco area with those from the mete-
orological stations, it is evident that the SSM estimates in Jatunhuayco exhibit superior
performance. Below, a scatter plot is presented showing Observed SSM versus Estimated
SSM based on the validation dataset of the Water Cloud Model (WCM), which includes
582 data points (Figure 11). It is important to note that, due to data availability, time series
graphs were not generated. This is because the WCM calibration was performed using
a general database that aggregates all SSM observations for the Jatunhuayco catchment.
This approach was adopted after determining that using a unified dataset yielded the most
accurate WCM calibration results.

 

Figure 11. Observed SSM versus Estimated SSM based on the validation dataset of the Water Cloud
Model (WCM).

Considering the results obtained with VV polarizations, the WCM adjustment
constants are K1 = 1314.85, K2 = 2.11 × 10−1, K3 = −8.34 × 103, K4 = 2.10 × 104,
K5 = −2.37 × 104, K6 = 1.01 × 104, K7 = 4.02 × 100, K8 = −1.39 × 101, and K9 = 1.17 × 101.
Based on the results obtained, it has been determined that the data located in the
Jatunuhaycu area show a strong correlation for wetland mapping. Therefore, the following
sections analyze the wetlands located in the Jatunuhaycu area.

3.4.3. WET_SSM

Once the WCM calibration constants were obtained, the surface soil moisture (SSM)
was estimated on the GEE platform, resulting in an SSM map derived from Sentinel-1 VV
polarizations. Figure 12 shows that the SSM values range from 58.39% to 1725%. It is
important to note that concentrations exceeding 100% are considered oversaturated pixels,
which lack a physical representation of moisture content. However, it can be observed that
wetlands are adequately delineated within the SSM range of 78% to 221.79%. This indicates
that wetland mapping is sensitive to SSM and could serve as a valuable delineation tool.
For wetland mapping, pixels with an SSM greater than 78% are extracted.

Upon conducting a visual inspection of the obtained results, it can be observed that the
wetlands determined by SSM are nested within the wetlands identified by HUM_RADAR
(Figure 13).
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Figure 12. Soil surface moisture with WCM. The SSM values range from 58.39% to 1725%. concentra-
tions exceeding 100% are considered oversaturated pixels, which lack a physical representation of
moisture content.

Figure 13. Wetland mapping through SSM. SSM-determined wetlands are located within radar-
determined wetlands, but nevertheless adequately represent the spatial arrangement.

Table 10 presents the area analysis of the wetlands identified by HUM_RADAR and
HUM_SSM. The study area (Jatunhuayco) corresponds to 19,301 ha.
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Table 10. Dynamic analysis of wetlands through HUM_SSM.

Month
(2019–2024)

WET_RADAR WET_SSM

Área (Ha) % Área (Ha) %

January 4275 22.1 3065 15.9
February 4004 20.7 3061 15.9

March 4609 23.9 3059 15.8
April 4487 23.2 3052 15.8
May 3874 20.1 3037 15.7
June 4353 22.6 2990 15.5
July 4318 22.4 3008 15.6

August 4379 22.7 2958 15.3
September 4449 23.1 2978 15.4

October 4235 21.9 2960 15.3
November 4372 22.7 3029 15.7
December 4108 21.3 2959 15.3

On average, the area occupied by HUM_RADAR corresponds to 4289 ha, while
HUM_SSM accounts for 3013 ha. Additionally, it has been established that the monthly
behavior of HUM_SSM is relatively stable, as the difference between the months with the
largest and smallest areas is 107 ha. In contrast, for HUM_RADAR, this value is 735 ha.

The results show that HUM_SSM outcomes are sensitive to the location of wetlands,
as the wetlands identified by HUM_RADAR and HUM_SSM have been visually identi-
fied. However, the extent is underestimated by approximately 1276 ha. This suggests
that the HUM_RADAR classification corresponds to areas with ideal characteristics to be
wetlands (topographic and vegetative), whereas the SSM classification is based on indirect
measurements of soil surface moisture (SSM).

4. Discussion
This study highlights the effectiveness of integrating multitemporal, multispectral,

and radar satellite data for mapping and monitoring high-altitude wetlands in the northern
Ecuadorian Andes. The implementation of a Random Forest classifier combining Sentinel-1,
Sentinel-2, and topographic variables within the GEE platform enabled the identification of
20,001 ha of previously unmapped wetlands and the exclusion of 11,879 ha of misclassified
areas. The use of multitemporal SAR data, with the ability to penetrate vegetation cover, en-
hanced the characterization of soil surface moisture (SSM) dynamics, ultimately improving
wetland mapping accuracy [16]. These characteristics have also been reported in previous
SAR-based studies focused on peatland mapping in flat terrains [16,18,55,60,61] which
emphasize the complementary roles of multispectral data for vegetation characterization
and SAR data for detecting saturated or inundated areas [23,55,62].

The confusion matrix analysis revealed some misclassification between wetlands and
forests—an issue also documented in earlier studies, which attribute this to the limited
ability of Sentinel-1 C-band sensors to distinguish between dense highland forests and
vegetated wetlands [23,55].

The proposed methodology successfully captured temporal variability in wetland
extent, driven by both monthly and annual hydrological fluctuations. While using only
multispectral imagery underestimated wetland coverage (18,919 ha; 4.7% of the study
area), the fusion of radar and multispectral data allowed for a more precise and dynamic
assessment, identifying 2023 as the peak year in terms of wetland extent (28,972 ha; 7.2%),
with April showing the highest monthly coverage (27,041 ha; 6.7%)—a result linked to
cumulative rainfall in the preceding months. Additionally, 3152 ha were identified as
seasonal wetlands that emerged during periods of high precipitation. These findings
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support the hypothesis that wetlands play a significant role in water regulation [6,11,63].
In this regard, studies conducted in southern Peru (Vilcanota-Urubamba) reported that
seasonal wetland variability can reach up to 16.9% [11]; in the present study, this variability
was estimated at 11.65% (3152 ha), highlighting differences in seasonal water storage.
However, further research is needed to better understand the influence of local geology
(e.g., layering of permeable and impermeable strata), glacial melt contributions, and other
surface and subsurface water inputs on wetland dynamics.

Wetlands in this region are typically found in geomorphological settings such as
floodplains, valley bottoms, and flat surfaces [49–51]. The present study confirms that
most wetlands are located in areas with slopes ranging between 2.56% and 9.13%, which
represents a significant improvement over previous reports such as FONAG (2022), which
suggested wetland occurrence on slopes of up to 30%. Importantly, this improvement was
achieved while still identifying 20,001 ha of new wetlands, despite applying a stricter slope
constraint. Prior studies have shown that coastal wetlands often develop in areas with very
low slopes (<1.5%), while high-altitude wetlands tend to occur on slopes below 4% [64].

Soil moisture estimates obtained using the Water Cloud Model (WCM) provided com-
plementary evidence to support the analysis. Wetland extent based on SSM remained rela-
tively stable throughout the year (ranging from 15.3% to 15.9%), which is relevant consider-
ing that the WCM has been traditionally used for estimating SSM and crop biomass [38–45].
Although few studies have directly applied the WCM for wetland mapping, the results
of this research suggest that such an integration can serve as a useful tool. Nevertheless,
significant limitations remain, particularly due to the lack of extensive field data needed
for robust validation of model outputs.

Despite these contributions, several limitations must be acknowledged. First, field
validation was based on 87 polygons, which, while spatially distributed, were constrained
by access, terrain, and land ownership. Second, the absence of field data across all temporal
scenes limited the capacity for validating monthly classifications. Third, the WCM assumes
simplified scattering conditions that may not fully capture complex soil–vegetation interac-
tions typical of high-altitude environments. Finally, reliance on freely available satellite
imagery constrains spatial resolution, particularly in narrow or fragmented wetland areas.

Future research should focus on developing wetland classification schemes based on
dominant vegetation cover. In the northern Andes of Ecuador, wetlands are typically domi-
nated by cushion plants, grasses, or rushes [16], each of which influences key ecological
processes, such as carbon sequestration, ecosystem productivity, nutrient cycling, and water
regulation. Sentinel-1 has also shown promising capabilities for mapping vegetation types
within wetlands [23], highlighting its potential for supporting such classification efforts.

5. Conclusions
This study demonstrates that integrating multitemporal Sentinel-1 and Sentinel-2

satellite imagery with Random Forest classification in Google Earth Engine enables accurate
and dynamic mapping of high-altitude wetlands in the Northern Ecuadorian Andes. The
approach allowed the identification of 20,001 ha of new wetlands and the exclusion of
11,879 ha of misclassified areas. The use of radar data enhanced detection in saturated and
vegetated zones, improving spatial accuracy and seasonal analysis.

The results showed that wetland extent is influenced by cumulative rainfall, with
April being the month of highest coverage (6.7%). Additionally, 3152 ha were identified as
temporary wetlands, confirming seasonal hydrological variability. The Water Cloud Model
(WCM) provided stable SSM estimates throughout the year, supporting the integration of
radar-based soil moisture into wetland monitoring workflows.
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The findings highlight the potential of combining radar, multispectral, and topo-
graphic data for scalable, high-resolution wetland mapping in cloud-prone, mountainous
regions. This methodology contributes valuable tools for wetland conservation planning
and supports better understanding of hydrological regulation in paramo ecosystems.
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HUM_RADAR Wetlands identified using radar information
HUM_SSM Wetlands identified using superficial soil moisture
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Appendix A

Table A1. Appendix A shows bands used in multispectral classification (WET_MLTSP).

Bands Identified Entities Observation

4,2,3 Grasslands, Crops, Infrastructure, Other Lands (Bare Soil) Differentiation of grasslands and shrubs

3,2,1 Evergreen Forest, Evergreen Shrubs Differentiation of forests, height, and shadows that may
generate noise
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Table A1. Cont.

Bands Identified Entities Observation

1,2,4 Snow, Lahars, Sand Fields, Infrastructure, Urban Centers,
Herbaceous Wetlands

Identification of various herbaceous wetland or
ultra-humid páramo types

1,2,4
B: −20%
C: +20%

Shrub Vegetation Delimitation of shrub vegetation in steep areas of the
urban zone

1,2,4
B: −20%
C: +20%

Infrastructure Greenhouses for flowers, Poultry farms

421
B: −32%
C: +48%

Semi-dry Forest and Shrubland Differentiation of dry vegetation and introduced crops

1,3,2
B: −12%
C: +50%

Other Lands Areas in the process of erosion

421
B: −32%
C: +48%

Pastures Differentiation of grazing areas within forests

132
B: −10%
C: +50%

Forest Crops Delimitation of Forest and Sugarcane Crops

421
B: −32%
C: +48%

Forest Plantations Dark brown tones and the geometric form of plantations

Notes: B: Brightness, C: Contrast.

Appendix B

Table A2. Appendix B shows the description of the ecosystems considered for the training points of
the Random Forest in WET RADAR. A total of 58 points are considered in Forests, 102 in Humid
Grassland/Ultra-humid Grass land, 231 in Páramo Grassland, and 156 in Floodable Páramo Grassland
(wetlands).

Ecosystem Description Photographic Record

Forest
(58 points)

Evergreen forests distributed between 3200 and 4100
m.a.s.l., with trees ranging from 5 to 8 m in height,
featuring twisted and branched trunks covered in

bryophytes, lichens, and epiphytes. This ecosystem
forms patches in the páramo, located in areas with low
wind exposure and steep slopes. It consists of a few tree

species from genera such as Polylepis, Buddleja, or
Gynoxys. Shrubs and herbs form compact structures.  

Humid
Grassland/Ultra-humid

Grassland
(102 points)

Grasslands scattered in the highest areas of the Andes,
above 4200 m.a.s.l. Grasses, prostrate plants, cushion
plants, and small, scattered shrubs are common. The
landscape shows areas of bare soil. Bryophytes are

almost absent in this ecosystem
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Table A2. Cont.

Ecosystem Description Photographic Record

Humid
Grassland/Ultra-humid

Grassland
(102 points)

Ultra-humid páramos are located between 4400 and
4900 m.a.s.l. on steep and rugged slopes covered by

glacial deposits and geliturbated soils. These are
characterized by a significant presence of bryophytes

and a high diversity of species with restricted
distributions. The most represented families are

Asteraceae and Poaceae.

 

Páramo Grassland
(231 points)

Dense grasslands dominated by grasses, located
between 3400 and 4300 m.a.s.l., reaching up to 1 m in

height. The dominant genera are Calamagrostis, Agrostis,
Festuca, and Stipa. In areas with human intervention,

such as burning or grazing, grasslands are shorter, and
creeping species are scarce.

 

Floodable Páramo
Grassland

(156 points)

Floodable grasslands with the presence of cushion
plants, associated with water bodies and flood-prone

areas, found between 3300 and 4500 m.a.s.l. Two types
can be distinguished: peat bogs and marshes. Areas

dominated by Sphagnum magellanica are common.
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