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O C E A N O G R A P H Y

Unveiling the link between phytoplankton molecular 
physiology and biogeochemical cycling via 
genome- scale modeling

Antoine Régimbeau1*, Olivier Aumont2, Chris Bowler3,4, Lionel Guidi4,5, George A. Jackson6, 

Eric Karsenti3,4, Laurent Memery7, Alessandro Tagliabue8, Damien Eveillard1,4*

Earth system models (ESMs) highly simplify their representation of biological processes, leading to major uncer-

tainty in the impacts of climate change. Despite a growing understanding of molecular networks from genomic 

data, describing how changing phytoplankton physiology affects biogeochemical processes remains elusive. 

Here, we embed genome- scale models within a state- of- the- art ESM to deliver an integrated understanding of 

how gradients of nutrients modulate the molecular physiology of various plankton. In particular, when applied to 

Prochlorococcus, we find that glycogen and lipid management can be interpreted in terms of acclimation to differ-

ent environments. Generalized to other phytoplankton such as the diatom Thalassiosira, we estimate the produc-

tion of 39 metabolites that constitute hot spots of dissolved organic carbon described by their amount of carbon 

produced and their diversity of associated metabolites in ESMs. This modeling approach shows how genome 

scale–enabled ESMs have the potential to advance our understanding of microbial ecosystem functioning in 

ocean biogeochemical processes.

INTRODUCTION

Earth system models (ESMs) are a powerful tool to study the future 
impact of climate change on the ocean (1). However, because of 
computational limitations (2, 3), they need to simplify biology and 
biological processes, which limits our ability to understand and im-
plement biological feedbacks on climate and biogeochemistry. For 
example, the net growth of an organism is described by a set of ordi-
nary differential equations (4, 5) involving nutrient uptake based on 
a scheme introduced by Monod (6) and later extended by Droop (7) 
through the use of cellular quotas. Following these approaches, more 
recent plankton functional type models (2, 8) rely on extensive efforts 
to estimate a broad set of parameters that affects plankton functional 
diversity and describes traits critical to biogeochemical processes, 
such as the size or temperature of optimal growth. Efforts in model-
ing the macromolecular composition of phytoplankton aim to better 
represent their physiology (9). However, there is a fundamental dis-
connect between the biological underpinnings of today’s ESMs based 
on nutrient limitation or other phenotypical traits and the ever- 
growing gene-  and genome- centered datasets that have emerged 
over recent years (10–12).

Using distinct approaches, two notable modeling studies have ad-
dressed the discrepancy between molecular functions and oceanic 
provinces. In 2017, Coles et al. (10) developed a trait- based model that 
harnessed omics data. This approach characterized omics- derived 

traits and simulated interactions between them, providing a computa-
tionally feasible representation of a community’s molecular functions 
in an oceanic environment. More recently, Casey et al. (13) focused on 
modeling Prochlorococcus communities along an Atlantic transect. 
Their work relies on extensive parameterization and optimization of 
genome- scale models (GSMs) using omics data. However, for it to be 
applied globally to all planktonic organisms, this approach demands 
computational power and out- of- reach data, including, but not limit-
ed to, the in situ molecular activity and concentration of modeled or-
ganisms under various environmental conditions and their response 
to temperature changes.

GSMs, developed primarily for bioengineering (14), offer an ef-
fective way to engage with growing biological datasets, as they use 
gene- protein- reaction associations to more comprehensively repre-
sent the metabolic potential of an organism as defined by its genetic 
material (15). GSMs consider a set of reactions organized into meta-
bolic networks in which products of some reactions become sub-
strates for others. The model’s genome- scale nature requires the 
description of many reactions, ranging from several hundreds for 
prokaryotes to thousands for eukaryotes. If environmental condi-
tions are also incorporated, then GSMs can predict an organism’s 
growth rate, the production of auxiliary metabolites, or the meta-
bolic pathways it uses (16). For example, they can be used to assess 
the diversity and magnitude of metabolite production (17) that con-
tributes to the oceanic dissolved organic carbon (DOC) pool. While 
DOC represents one- quarter of photosynthesis- derived carbon on 
Earth, its prediction is difficult to assess via standard mechanistic 
models, as its metabolites are highly bioavailable and their produc-
tion relies on understanding the entire plankton biocomplexity (18).

Here, we propose a modeling compromise that balances mechanistic 
complexity with computational efficiency. Through the connection 
of ESMs and GSMs, we simulate the growth of various organisms, 
study the acclimation of Prochlorococcus, and assess the organism’s 
potential contribution to the carbon pump through the produc-
tion of dissolved organic compounds. These successful numerical 
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experiments are a first attempt to bridge the gap between ESMs and 
the molecular understanding of organisms and hold great promise 
for advancing our understanding of microbial impact on vast ocean 
biogeochemical processes and improving current biotic predictions 
under different climate change scenarios (19).

RESULTS

Incorporating genome- scale knowledge into 

biogeochemical models

Simulating a GSM within an ESM requires solving several hundred 
equations at each grid point on Earth, which is currently computa-
tionally very demanding. In this work, we combined GSMs with the 
quota version of the Nucleus for European Modeling of the Ocean–
Pelagic Interactions Scheme for Carbon and Ecosystem Studies 
(NEMO- PISCES) global ocean biogeochemical model (20), which 
is a classic example of a coupled ocean physicochemical- biological 
model embedded within an ESM used for climate change studies. 
NEMO- PISCES predicts the spatiotemporal distribution of three 
coarse- grained, cosmopolitan phytoplankton groups: picophyto-
plankton, nanophytoplankton, and diatoms. The ESM considers en-
vironmental conditions such as temperature, light, and a range of 
major macronutrients (Fig. 1A) for each group and uses these con-
ditions to compute the associated group’s growth rate. We used the 
same conditions to calculate offline growth rates using GSMs over 
the annual cycle (Fig. 1, B and C, and see Materials and Methods for 

more details). We used a metabolic niche approach to address the 
computational complexity underlying the use of GSMs (21). This ap-
proach projects a species’ phenotype into a mathematical space driv-
en by the availability of nutrients (see Fig. 1B for illustration and 
Materials and Methods for complete details). This abstraction de-
scribes the dependencies between growth rate and environmental 
conditions and allows us to explore cellular mechanisms originally 
described in the GSM.

Linking the environmental conditions produced by NEMO- 
PISCES with our numerical abstraction, we computed the growth 
rates of phytoplankton and the production of various metabolites by 
the modeled organisms. Our growth rate estimations were qualita-
tively comparable with NEMO- PISCES outputs, which have been 
extensively reviewed and used for biogeochemical predictions (4). 
Prochlorococcus MED4 GSM (22) qualitatively reproduced the pat-
terns of average monthly NEMO- PISCES picophytoplankton growth 
rates both at the surface (Fig. 1D) and at different depths (Fig. 1E) 
over the global ocean (fig. S5). Our predictions also aligned with 
in situ data of the Atlantic Meridional Transect AMT13 (see appendix 
S4.2). To assess the applicability of our approach, we used it with oth-
er GSMs that are currently available for marine phytoplankton [i.e., 
Synechococcus sp. PCC7002 (23), Prochlorococcus pangenome (13), 
Thalassiosira pseudonana (24), and Phaeodactylum tricornutum (25)]. 
Using the conditions computed by NEMO- PISCES for diatoms, we 
found a high correlation R2

> 0.76 between NEMO- PISCES diatom 
growth and the GSM- based growth, indicating that the predictions 
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Fig. 1. Illustration of the modeling combination between a GSM for Prochlorococcus MED4 and the NEMO- PISCES ESM and comparison between growth rates 

estimated from ESM and GSM. (A) ESMs predict global ocean biogeochemistry across space and time. Here, the ESM provides uptake fluxes of nutrients for each grid 
point for each modeled organism. In our framework, these uptake values are used as a set of constraints (1) on the exchange reactions that feeds the GSM. (B) From a 
GSM, we defined a solution space embedding all possible fluxes that go through each network reaction. These fluxes satisfy the quasi–steady state assumption and other 
thermodynamic constraints. This set of constraints (2) is defined as biotic constraints, and they affect inner reactions, as well as exchange reactions responsible for the 
uptake or secretion of nutrients and a biomass reaction simulating the growth of the organism (see appendix S1). (C) Abiotic constraints from the ESM and biotic con-
straints are combined to constrain the exchanged metabolite fluxes at each grid point of the global ocean. As a result, we can estimate the organismal growth rate and all 
feasible fluxes corresponding to a given environment as proposed by the ESM. (D) Description of growth rates at 5 m depth estimated from NEMO- PISCES picophyto-
plankton (top) and Prochlorococcus MED4 GSM (bottom). The dashed line shows the transect described in (E). (E) Distribution of respective growth rates across latitudes 
and depths at longitude of −24°. Gray areas indicate latitudes that do not allow Prochlorococcus MED4 growth because of thermal limits (temperatures < 10°C). The rela-
tionship between growth rates across space (above 500 m depth and in regions with temperatures above 10°C) and time shows a correlation coefficient R2 = 0.77 and a 
slope of 0.45 (see fig. S5).
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were also accurate (fig. S13). Our framework can assess the compari-
son of environmental fitting between several species (see an approxi-
mation of competition between diatoms in fig. S14).

Nevertheless, we observed a quantitative mismatch between 
NEMO- PISCES and GSM growth rates. This was expected, as the 
GSMs only represented one strain of the corresponding NEMO- 
PISCES group [i.e., in situ abundance of the MED4 strain represents 
only about one- third of the total Prochlorococcus abundance (26)]. 
By adding other ecotypes (26, 27) via the simulation of the Prochlorococcus 
pangenome (13) and Synechococcus sp. PCC 7002 (23), we showed 
less cumulative error than each GSM taken individually (see appen-
dix S5.4 for details), which strengthened our predictions. This leads 
us to think that, through a finer resolution of the community, we are 
reducing the inherent error due to the various parameterizations of 
the model.

GSM- based predictions of Prochlorococcus MED4 in the 

global ocean

However, the strength of our approach lies not in reproducing 
NEMO- PISCES estimates but in exploiting organisms’ embedded 
biocomplexity through their GSMs to assess biogeography. For this 
purpose, we followed a similar assumption proposed in seminal 
studies that consider cyanobacterial molecular traits as a proxy for 
assessing ocean biome conditions [see Martiny et al. (28) for re-
view]. Similar to investigating all transcripts of a given organism, 
GSMs can reveal any flux occurring through a metabolic process 
within an organism at the intracellular level—as long as it is defined 
within the metabolic network. Our simulations are thus not limited 
to growth rate estimates. They can be exploited to quantify the pro-
duction of any metabolite represented in the GSM and investigate 
the corresponding pathways’ activity in response to environmental 

gradients. Unlike previous work that focuses on statistical descrip-
tion (29) or proteomic measurements (30) of resource limitation, we 
extended the use of GSMs and introduced the concept of “resource 
constraint.” This concept represents how the nutrient uptake vari-
ability affects the organism’s growth (see Materials and Methods for 
a mathematical definition and appendix S4.3 for a more detailed 
discussion). For a given nutrient, a low resource constraint means 
that a substantial amount of the nutrient can be used for processes 
other than growth, such as secondary metabolite production, with-
out affecting the organism’s growth. Thus, a low resource constraint 
suggests that under varying nutrient bioavailability, growth remains 
relatively stable. In contrast, a high resource constraint indicates 
that only a small amount of the nutrient is available for nongrowth 
processes, making growth more sensitive to fluctuations in nutrient 
bioavailability. At its maximum ( 100% ), the resource constraint in-
dicates that the given nutrient limits the organism’s growth, with all 
the bioavailable nutrients being used for growth.

On the basis of more than 106 environmental conditions provid-
ed by NEMO- PISCES across space and time over an annual cycle in 
the global ocean, we estimated the growth and the resource con-
straints (for phosphorus, nitrogen, and light) of Prochlorococcus 
MED4 for each condition (Fig. 2A). We found that Prochlorococcus 
is not limited by light in the surface ocean but is regulated by nitro-
gen and phosphorus, which showed higher resource constraints. 
Specifically, the growth of Prochlorococcus MED4 is limited by phos-
phorus in the central Atlantic and the Indian oceans (Fig. 2B). This 
aligns with the quota estimation of NEMO- PISCES, which predicts 
a lower P:N ratio in these areas (Fig. 2C). Nitrogen- limited prov-
inces are found in the Pacific, South, and North Atlantic oceans, 
which showed an antagonistic pattern between nitrogen and phos-
phorus resource constraints.
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Along with resource constraints, the GSM estimated metabo-
lite production pooled in quotas (e.g., proteins, amino acids, and 
cell wall) and metabolites involved in carbon storage (e.g., long- 
term storage for lipids and short- term storage for pyruvate and 
glycogen). Among the different types of carbon storage available 
to Prochlorococcus MED4, glycogen and lipid productions showed 
a weak correlation ( R2

= 0.5 ) hinting at the organism’s different 
use of these metabolites. While the production of lipids and glyco-
gen by Prochlorococcus MED4 is similar across the surface ocean, 
except in tropical Atlantic regions and the Bay of Bengal (fig. S10), 
they differ with depth and latitude (Fig. 3A). These findings high-
light the complex response of Prochlorococcus MED4 to multifac-
torial limitations, without extensive model calibration but via the 
knowledge embedded in the metabolic network. These responses 
suggest acclimation strategies that require further investigation.

GSM- based prediction of acclimation strategies of 

Prochlorococcus MED4 in the global ocean

Plankton are complex adaptive systems that could render them par-
tially resilient to global changes (28). Understanding and incorpo-
rating their acclimation are central issues in ESM that GSMs can 
address. By investigating Prochlorococcus MED4 under each condi-
tion, we showed that provinces under high nitrogen constraints ex-
hibit similar lipid and glycogen production patterns. However, when 
limited by phosphorus, Prochlorococcus MED4 showed more carbon 

storage in the form of glycogen than in lipids (Fig.  3A). It is ex-
plained by the fact that the lipid considered in the GSM is a pool of 
macromolecules, including phospholipids (see appendix S6.2 for 
details). Lipids are generally produced under extreme conditions 
for Prochlorococcus (i.e., at depth and latitudes around 40° and 
−40°; see Fig. 3A), far from the organism’s optimal growth condi-
tions. By studying the distribution of Prochlorococcus MED4 lipid- 
to- biomass ratios across all possible environmental conditions, we
found that it can increase threefold in cold waters (relative to <25° 
conditions;  Fig.  3B), which is consistent with molecular evidence 
from other cyanobacteria (31).

When less constrained by light, Prochlorococcus MED4 growth is 
associated with the production of carbon compounds that are meta-
bolically quicker to access, such as glycogen. High glycogen produc-
tion is observed when carbon is stored minimally as lipids. Moreover, 
when both types of stocks are available, the observed difference in 
their production rates is due to the higher energy needed to produce 
lipids compared to glycogen (see appendix S6.2 for details). When 
grouped into categories of increasing light exposure, the mean value 
of glycogen production per category increased (Fig.  3C), linking 
this process to a photosynthetic behavior. In this respect, by investi-
gating the inner machinery of Prochlorococcus MED4, we quantified 
the amount of carbon allocated to biomass or glycogen production. 
We defined the glycogen storage index as the normalized ratio of 
carbon allocated to glycogen production relative to the total amount 
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of carbon fixed (see Materials and Methods for details). This index 
represents the organism’s capacity to store glycogen. A high index 
(i.e., 1) indicates a substantial use of carbon for glycogen storage 
while growing at maximal capacity. In contrast, a lower index (i.e., 
0) suggests minimal glycogen production, with carbon directed pri-
marily toward growth.

We interpret the lack of glycogen production as rerouting the car-
bon fixed, initially supposed to be stored as glycogen, into growth 
(see Materials and Methods for details). Below the mean glycogen 
storage index value (i.e., 0.46), Prochlorococcus MED4 combines 
photosynthesis and glycogen consumption (or lack of production) 
to ensure a higher growth rate, whereas, above this value, it shows 
a growth regime with glycogen storage or secretion. Our indices 
showed a natural tendency for the organism to undergo glycogen- 
deprived growth under low- light conditions (Fig. 3D). Conversely, 
MED4 exhibited both growth and glycogen overproduction in re-
gions where phosphorus constrains growth rate, emphasizing the 
importance of estimating nitrogen and phosphorus constraints to 
assess growth regimes and uncover long- term versus short- term carbon 
storage strategies (i.e., lipids versus glycogen). These results confirm the 
importance of modeling planktonic metabolic flexibility (22) and the 
need to further design GSM for ocean studies, as already advocated 
by Casey et al. (13). This flexibility leads to highly complex and non-
linear relationships between the organism’s growth and its environ-
ment (Fig. 3A; pairwise linear correlation R2

< 0.2 ), requiring deeper 
investigation, either through GSM and their metabolic niche (21) or 
through other modeling work that emphasizes biocomplexity (9). 
Patterns in resource constraints, which embed combinations of mul-
tiple limitations, provide a better explanation for Prochlorococcus 
MED4 growth. Acclimation to these constraints and environmental 
parameters, such as temperature, results in distinct carbon storage 
strategies, either in the form of lipids or as glycogen. Their respective 
production rates can thus reveal MED4’s prevalent acclimation strat-
egy. However, glycogen and lipids are not the only carbon com-
pounds represented in GSMs.

Predicting hot spots of biotic production and 

metabolite diversity

By assessing genome- scale knowledge, the use of GSMs through 
their metabolic niche is emerging as a valuable tool for investigating 
cellular composition (for detailed information and its application in 
designing improved trait models, refer to appendix S6.1) and diverse 
metabolite contents (32, 33). As a case in point, specific metabolites 
play crucial roles in the labile DOC pool, a fundamental component 
of the ocean carbon cycle (18). They play a substantial role in bacte-
rial and plankton growth (34). Unexpectedly, except in a few cases 
(35), current ESMs overlook this diverse range of metabolites when 
modeling DOC and instead represent a generic DOC pool. To ad-
dress this shortcoming, we compiled a comprehensive summary of 
the DOC metabolite compounds listed in (18), specifically focusing 
on those produced by T. pseudonana and Prochlorococcus MED4. 
Our analysis revealed that T. pseudonana and Prochlorococcus MED4 
GSMs produce 19 and 33 metabolites, respectively (see table S1 for 
detailed information). To estimate the contribution of each GSM to 
DOC production, we aggregated all the metabolite flux estimates 
(Fig. 4 and see Materials and Methods for details). In addition, we 
investigated the diversity and abundance of metabolites supporting 
DOC flux production considering seasonal variation across each 
GSM. Upwellings and fronts demonstrated higher DOC production 
and a wider array of secreted metabolites. GSM analysis shows op-
posite patterns in DOC production and metabolite diversity. Despite 
producing more diverse metabolites, Prochlorococcus MED4 shows 
restricted areas of high metabolite diversity within zones of high 
DOC production. On the contrary, T. pseudonana displays higher 
DOC production amidst wider areas of high diversity. By comparing 
both GSMs, T. pseudonana played a dominant role in both the mag-
nitude of DOC production and the diversity of associated metabo-
lites, with more expansive areas of DOC diversity aligning with the 
role of diatoms in shaping the biogeography of bacterial hetero-
trophs (36). Through a broader analysis of provinces, we distin-
guished regions driven predominantly by diatom influences from 
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those more strongly affected by Prochlorococcus, reaffirming earlier 
findings (37). Notably, provinces exhibiting high metabolite diversi-
ty did not necessarily align with high DOC production, highlighting 
the importance of further investigation to understand the support 
for trophic interactions via metabolic cross- feeding between organ-
isms (38) or to improve predictions concerning the relationship be-
tween functional diversity and ecosystem productivity (34, 39).

DISCUSSION

We estimate the growth rates of various organisms and validate those 
results against NEMO- PISCES estimates (pairwise correlations r > 0.8 
between modeled organisms and their corresponding tracers). With-
out added parameterization or modeling assumptions, we also empha-
size the acclimation of Prochlorococcus to high- light exposure through 
glycogen storage and cold environments through lipid storage, sup-
ported by previous in vivo findings on cyanobacteria (31). We lastly 
explore the metabolic diversity accessible through GSMs by looking at 
DOC secretion of Prochlorococcus and Thalassiosira in terms of inten-
sity and metabolite diversity. These DOC estimations result from 
ground- truthed metabolic behaviors such as growth rate (24), bioge-
ography (13), and acclimation strategies (22). They call for further 
in situ validation via metaproteome studies (40) and better calibration 
of GSMs to DOC secretions. However, they already underscore the 
potential of integrating genomic knowledge into ESMs for predicting 
DOC or other biotic factors essential for climate prediction (19).

Our modeling paradigm is one step toward embedding molecular 
biocomplexity into ESM, overcoming some limitations in current 
models while introducing new challenges. Rather than claiming to be 
the only solution, we hope that our work will encourage many more 
attempts at enhancing the representation of biology within ESMs 
(19). Our framework can be further extended to incorporate more 
environmental omic data into ESMs, for instance, using GSMs con-
structed from metagenome- assembled genomes (41) or proteomics- 
based data (40, 42, 43). Moreover, because of seminal links between 
evolutionary theory and metabolic network (44), our approach paves 
the way for future integration of adaptation in climate models (28, 45). 
The remaining challenges for developing a fully integrated genome- 
enabled ESM are clear. First, growth metrics from GSMs must inte-
grate seamlessly into ESM tracers, translating growth rates into 
organismal abundance. Second, GSM uptake metrics should better 
reflect actual substrate use, not just bioavailability. Resolving these 
challenges will enable ESM’s progress, such as adding GSM- driven 
tracers such as DOC metabolites (18) or other micronutrients essen-
tial for trophic interactions (46), and modeling more organisms. Ex-
isting GSMs cover bacteria, diatoms, and nanophytoplankton, but 
there is potential for developing ecotype- specific models (13) or icon-
ic species such as calanoid from different trophic levels.

Last, genome scale–enabled ESMs have the potential to advance 
our understanding of the intricacy of Earth’s microbial ecosystems 
and global ocean biogeochemical processes (47). Consequently, com-
putational modeling could better connect intergovernmental panels’ 
conclusions addressing climate change and biodiversity loss.

MATERIALS AND METHODS

Genome- scale model

A GSM is stated as a set of linear constraints, representing the qua-
si–steady state assumption, and the thermodynamic constraints

The matrix S ∈ ℝ
n,m abstracts the metabolic network of n me-

tabolites and m reactions, the vector v ∈ ℝ
m represents the fluxes 

that go through each network reaction, and lb, ub ∈ ℝ
m are the 

lower and upper bounds of v . To represent the organism’s growth 
rate, metabolic models include a biomass reaction, which specifies 
the metabolic requirements for organismal growth. It is included 
in S and cannot have a negative flux. Given the stated problem in 
Eq. 1, one can calculate and extract the flux for each network reac-
tion, including the biomass reaction. A solution of Eq. 1 is one of 
the feasible physiological states of the system. In this state, one can 
estimate the organism’s growth rate as the flux through the bio-
mass reaction. Further details on the metabolic framework and 
GSM are provided in appendix S1.

Metabolic niche projection

We call solution space  the convex hypervolume composed of v 
satisfying Eq. 1.  is defined in a space where each dimension rep-
resents the flux through a reaction. Investigation of this space is 
subject to numerous techniques in the context of metabolic engi-
neering [see Price et al. (48) for review]. However, using  is not 
well suited in biogeochemical models because of its size and com-
plexity. In most cases, one cannot describe the entire shape of , as 
its complexity grows exponentially with the number of reactions 
of the GSM. In addition, biogeochemical models describe the dis-
tribution of a few nutrients compared to the number of metabo-
lites in a GSM. It means that most of the reactions and underlying 
mechanisms of the metabolic network can be abstracted in favor of 
a numerical tool, linking the exchange reactions relative to nutri-
ents available in biogeochemical models to the biomass reaction 
and enabling the estimation of growth rates. In mathematical 
terms, it implies projecting  onto a smaller space composed of 
the sole reactions of interest (i.e., reactions representing a param-
eter in the biogeochemical model and the biomass reaction). This 
projection, called the metabolic niche, is computed through mul-
tiobjective linear programming (49). Decomposing the flux vector 

v =

(
x

y

)
 , where x is a flux vector composed of the reactions of 

interest (i.e., the exchange reactions concerning the nutrient and 
light absorption) and y is a flux vector composed of all the other 
reactions. The projection of  is equivalent to solving the follow-
ing problem

where 𝙸p is the identity matrix in ℝp×p , 1p is the column vector com-
posed of ones in ℝp , and 1T

p
 is its transposition. The solution of Eq. 2 

without its last component gives a set of vertices describing the con-
vex hypervolume   . Applied to several organisms, the investigation 
of the metabolic niche hypervolume has shown ecological prop-
erties (21).

{
Sv=0

lb≤v≤ub
(1)

⎧⎪⎪⎨⎪⎪⎩
min

(
𝙸p

−1T
p

)
x

subject to

(
x

y

)
∈

(2)
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Description of the biogeochemical model

Our framework is interoperable with the marine biogeochemical 
model PISCES. PISCES is the biogeochemical component of the 
NEMO modeling platform. This study uses the quota version of 
PISCES (20). Three phytoplankton groups are explicitly modeled 
(picophytoplankton, nanophytoplankton, and diatoms) whose growth 
rates are limited by iron, phosphate, nitrate, ammonium, and silicate 
availability. Two zooplankton groups (micro-  and mesozooplankton) 
are represented. PISCES also models dissolved oxygen, particulate 
and dissolved organic matter, and calcite. The uptake of nutrients 
and phytoplankton growth rates are modeled using the quota for-
malism. Metabolic rates increase with temperature according to the 
commonly used Eppley parameterization (50). On the basis of the 
environmental conditions and the biotic interactions between the dif-
ferent plankton groups, NEMO- PISCES estimates the growth rate 
for each plankton group using partial differential equations.

The metabolic niche in NEMO- PISCES

Because of the metabolic niche projection, we can compute the 
growth rate of an organism based on the environmental conditions 
dictated by NEMO- PISCES. Thus, biology will be handled by omic- 
derived knowledge of metabolic models, while NEMO- PISCES will 
compute the nutrient bioavailability. NEMO- PISCES’s simulations 
provide essential nutrients for algal growth, including iron, nitrate, 
ammonium, phosphate, silicate (used only by diatoms), and the 
quantity of carbon fixed by photosynthesis. These nutrient fluxes are 
incorporated into the distinct metabolic niches represented by GSMs 
of these generic phytoplankton. While Prochlorococcus MED4 cannot 
assimilate nitrate, it uses ammonium, iron, and phosphate. NEMO- 
PISCES inputs constrain the exchange reactions of the previous me-
tabolite and the 3- phospho- d- glycerate carboxylase reaction for the 
quantity of carbon fixed. However, our calculations did not incorpo-
rate iron (see appendix S6.3). In the context of generic diatom model-
ing (T. pseudonana and P. tricornutum), iron was not included in their 
GSMs (22, 24). The equivalent reaction for the carbon- fixed quantity 
is the carboxylation of ribulose- 1,5- bisphosphate, called RUBISC_h 
in both models. Adding to these reactions, the biomass reaction, 
which estimates the growth rate, together, they form the reactions of 
interest that will compose each organism’s metabolic niche.

GSMs predict growth rates outside of their thermal range (Fig. 1E, 
gray areas for Prochlorococcus MED4), as the modeling paradigm 
does not incorporate the thermal tolerance of the modeled organ-
isms, indicating that the sole metabolism does not include pro-
cesses involved in the thermal tolerance. This absence of thermal 
effect in the GSM does not change the overall results, as the tem-
perature is modeled in NEMO- PISCES (50) and affects the uptake 
fluxes of nutrients.

Growth rate extraction from the metabolic niche

The metabolic niche describes the ability of an organism to survive 
and grow considering its genome- scale metabolic description under 
particular environmental conditions. Conceptually, the metabolic 
niche algorithm estimates the flux range of a reaction of interest un-
der given constraints on other reactions. Here, the constraints, 
which represent the environment, relate to nutrient uptake as de-
scribed by the ESM. The reaction of interest is the biomass reaction. 
That is, we used the metabolic niche algorithm to determine the 
maximal growth allowed by the GSM under the environmental con-
ditions computed by NEMO- PISCES.

Formally, considering a vector of uptake fluxes given by the biogeo-

chemical model xenvb , we construct x =
(
xenvb

xbio

)
 , where xbio ∈ ℝ

+ is 

the flux through the biomass reaction. Then, we need to look for the 
maximal xbio that satisfies x ∈  for a particular xenvb

where   is the metabolic niche described above. There are two cas-
es of this problem—either a solution exists, and we can solve the 
problem and output the solution, or there is no solution, meaning 
that the environmental condition does not belong to the niche. In 
this case, the organism cannot grow, and the growth rate should be 
fixed to 0. However, instead of regarding xenvb as a fixed nutrient 
uptake, we can view it as the bioavailability of nutrients. In this con-
text, nutrient bioavailability does not represent the actual uptake of 
the organism; rather, it represents the upper limit of nutrient up-
take. That is, the organism cannot take up more nutrients than what 
is available.

Nutrient bioavailability from the NEMO- PISCES 

biogeochemical model

The organism is not necessarily using all the resources of its en-
vironment. The metabolic network should handle the quantity of 
nutrients it consumes. If we denote xenvb as the quantity of bio-
available nutrients, and xenv as the actual nutrient fluxes used by 
the model, then we need to assure that xenv ≤ xenvb . We depict 
this as an additional constraint on the uptake fluxes, which 
changes the formulation of Eq. 3. Thus, we seek the maximum of 

xbio that satisfies xenv ≤ xenvb and 
(
xenv

xbio

)
∈  . The formulation 

is, therefore

where xenv is the actual uptake fluxes used by the GSM and con-
strained by xenvb the uptake fluxes computed by NEMO- PISCES. This 
formulation assures a solution to the problem.

Auxiliary flux computation

Not only can the metabolic niche produce growth rate estimates, 
but it can also estimate fluxes through any reaction in the GSM.  
Using bi- level optimization, one can compute the metabolic 
niche with an additional dimension and analyze flux variability 
along this dimension.

Conceptually, the metabolic niche estimates bounds for an un-
known flux under a set of constraints. The two- step bi- level optimi-
zation process works as follows:

1) Apply the niche algorithm with the biomass reaction as the
unknown and nutrient bioavailability as the constraints. This step 
outputs the maximum flux value for the biomass reaction.

⎧⎪⎨⎪⎩
max xbio

x=

(
xenvb

xbio

)
∈

(3)

⎧⎪⎪⎨⎪⎪⎩
max xbio

xenv≤xenvb

x=

(
xenv

xbio

)
∈

(4)
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2) Fix the biomass reaction flux at its maximum value in the
model. Then, reapply the niche algorithm with the auxiliary reac-
tion as the unknown and nutrient bioavailability as the constraints.

Taking the former formalism for x , we can write x =

⎛⎜⎜⎜⎝
xenv

xbio

xaux

⎞⎟⎟⎟⎠ , 
where xaux ∈ ℝ is the flux through another reaction of the network, 
say, the flux through the exchange reaction of DMSP, or the model-
ing reaction producing the organism pigment. With the previous 
method, we can determine the maximal xbio with respect to xenv , 

which gives us xknown =
(
xenv

xbio

)
 . Applying the same computation 

on x =
(
xknown

xaux

)
 gives us a range of flux under the environmental 

condition defined by PISCES and the assumption that the organism 
is maximizing its growth rate. Rewriting Eq. 4, with xaux and com-
puting not only the maximum value but also its minimum, we have 
the following problem

Once solved, it gives us the flux range of the reaction of interest. 
This method can be applied to internal or exchange reactions.

While the biomass reaction of a GSM has a fixed stoichiometry, 
we can add an exchange reaction for the components of interest to 
enable virtual quantification of their production, with an additional 
constraint: The model is restricted to producing the component, 
not uptaking it (see appendix S1.2 for details). This bi- level optimi-
zation estimates the (over)production of metabolites with respect 
to the organism’s growth without altering the original metabolic 
behavior of the model. Adenosine 5′- triphosphate or the reduced 
form of nicotinamide adenine dinucleotide phosphate costs associ-
ated with the production of those components are not taken into 
account here. However, when these costs become available, the 
model’s flexibility will allow for their incorporation, enabling more 
accurate estimations.

To obtain our results, we compute the auxiliary fluxes sequen-
tially, handling each metabolite independently. Further work is re-
quired to model the simultaneous secretion of multiple metabolites.

Variable biomass composition

While the biomass composition is fixed in GSMs, we can estimate 
variable ratios of metabolites per unit of biomass. Consider me-
tabolite M, whose fixed ratio is determined by the biomass equation 
of the model and denoted a. Thus, M

B
= a , where M and B represent 

the amount of metabolite M and biomass, respectively, in the mod-
eled organism. If an exchange reaction for M exists, then we can 
virtually include the flux through this reaction in the biomass com-
position. We denote xM and xbio as the fluxes through the exchange 
reaction of metabolite M and the biomass reaction, respectively. 
The flux of metabolite M produced by the model is then xM + axbio . 

Dividing this flux by xbio yields the quantity of M per unit of bio-
mass. To enable comparison between different ratios, we transform 
them into carbon equivalents by multiplying by their respective 
carbon stoichiometry coefficient. In the case of Prochlorococcus 
MED4 GSM, for lipids, the carbon- equivalent ratio is calculated as 
rlipid = 33 ×

xlipid + 0.128xbio

xbio
 , as, in the model, the lipid macrometabolite 

has a stoichiometric coefficient of 33 for its carbon content and a 
stoichiometric coefficient of 0.128 in the biomass equation. For gly-
cogen, we have rglyc = 7 ×

xglyc

xbio
 , as the glycogen does not participate 

in the biomass reaction since Ofaim et al. (22) and has a stoichio-
metric coefficient of 7 for its carbon content.

Carbon cycle hot spots

Carbon hot spots were identified using the auxiliary flux computation 
as described above. Metabolites used for the computation are the 
same as those described in (18) and found in the GSM of Thalassiosira 
or Prochlorococcus with an exchange reaction. Each flux was scaled 
with the carbon content of the corresponding metabolites (see 
appendix S1.4 for details), and its unit is thus millimoles of carbon 
per gram of dry weight per hour. To generate the intensity of DOC 
production at each grid point, we multiply the highest flux value by 
the abundance of the organism, giving us a flux in millimoles of 
carbon per hour. The abundance used was the one computed by 
NEMO- PISCES, that is, the entire diatom abundance for Thalassiosira 
and the entire picophytoplankton abundance for Prochlorococcus. 
We included a metabolite in the diversity score if its production was above 
5% of the maximum flux computed among all other metabolites.

Resource constraint estimate

Our results show that when an organism is under the limitation of 
one nutrient, the others are in excess. Briefly, the resource constraint 
represents the quantity of nutrients that can be allocated to other 
metabolic pathways than those linked to biomass production. Our 
resource constraint definition is proportional to the amount of nutri-
ent that is in excess. We can write the resource constraint on the nu-
trient n as RCn ∼ −δn , where δn is the quantity of the nutrient n 
that the organism can use for something other than its growth. 
Hence, a high resource constraint means that the nutrient almost 
limits the production of biomass ( δn ∼ 0 ). In contrast, a low resource 
constraint means more nutrient n can be used for other products 
such as energy storage or other organic compound secretion.

Formally, we first consider the vector d between x =
(
xenv

xbio

)
and xb =

(
xenvb

xbio

)
 , where xbio is the solution of Eq. 4. xenv is the 

quantity of nutrients used by the model to produce xbio of growth, 
whereas xenvb is the bioavailability of nutrients. Each component of 
the computed vector is a quantity of nutrient not used by the model. 
As this vector is defined for each environmental condition (we de-
note env ∈  an environmental condition and  the ensemble of 
environmental condition), we then normalize the distribution of 
each component n corresponding to one nutrient, to get a value be-
tween 0 and  100%

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min∕max xaux

w. r. tmax xbio

w. r. t x=

⎛⎜⎜⎜⎝
xenv

xbio

xaux

⎞⎟⎟⎟⎠∈

(5)

RCn(env) =

dn − min
env∈

(
dn
)

max
env∈

(
dn
)
− min

env∈

(
dn
) (6)
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Glycogen storage index

Our glycogen storage index is based on the production of glyco-
gen and the quantity of carbon fixed by the organism. Formally, 
we write rstor =

glycogen produced

carbon fixed
 as the glycogen storage ratio that we 

normalize to give our index. “Glycogen produced” is the flux of 
glycogen for a given condition and a growth rate. “Carbon fixed” 
is the quantity of carbon fixed, provided by NEMO- PISCES. This 
ratio represents the percentage of carbon fixed used to produce 
glycogen. That is, it looks at the resource allocation of the organism. 
The storage or secretion of glycogen can be used by Prochlorococcus 
MED4 to adapt to different environmental conditions. From the 
mean value of the index, we distinguish two types of growth. Sup-
pose that the ratio is higher than its mean value. In that case, 
the organism is already growing at its full potential considering 
its environment and can store the excess carbon fixed into glyco-
gen. On the other hand, an index below the mean indicates that 
more carbon fixed is used for the biomass, and the lack of glyco-
gen produced can be seen as consumption: The final flux—the 
difference between the mean index and the current index—is 
proportional to the quantity of glycogen needed by the organ-
ism to grow in a particular environment. Formally, it implies 
vglycogen = vglycogen − ṽglycogen , where vglycogen is the actual glycogen 
production, vglycogen is the glycogen production associated with 
the mean value of the glycogen storage index, and ṽglycogen is what 
is consumed by the organism to sustain its growth. This modeling 
artifact does not take into account the energy needed to store or 
consume the artificially created glycogen ( v − ṽ).

Limitations of the model

Our framework, similar to any modeling approach, has certain limi-
tations (see appendix S4.2 for more details). In our model, light is 
represented by the quantity of carbon fixed, which organisms can 
use for growth or other metabolic processes. However, organisms 
cannot choose to forgo the utilization of light; instead, they adapt 
their composition to absorb varying amounts of photons through 
photoadaptation and photoinhibition mechanisms. These mecha-
nisms, however, are not represented in the GSM, which explains the 
observed results related to pigment production (see appendix S6). 
Furthermore, the quantity of carbon fixed relies on a parameter α 
(photosynthetic efficiency), which assumes uniformity across all or-
ganisms, despite experimental evidence indicating variations in 
these parameters (51).

The biomass reaction approximates the growth rate of the 
GSM. However, this reaction is constructed on the basis of labora-
tory experiments that may not fully capture in situ environmental 
conditions. For example, while iron is present in the Prochlorococcus 
MED4 GSM, its utilization is not possible because of stoichiometric 
differences compared to NEMO- PISCES (see appendix S6.3). As the 
internal processes represented in GSM are abstracted by the niche 
algorithm, variations in kinetic parameters that enable organisms to 
acclimate to different environments are only accounted for through 
the variation of input fluxes computed by NEMO- PISCES.

Last, all simulations are conducted offline. Initially, NEMO- 
PISCES is executed, and subsequently, growth is diagnosed using 
the GSMs. Further work is necessary to fully integrate the GSMs 
into NEMO- PISCES.
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