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Abstract 

Integrating multiple lines of evidence that support molecular taxonomy analysis has 

proven to be a robust method for species delimitation in scleractinian corals. How-

ever, morphology often conflicts with genetic approaches due to high phenotypic 

plasticity and convergence. Understanding morphological variation among species 

is crucial to studying coral distribution, life history, ecology, and evolution. Here, 

we present an application of Random Forest models for coral species identification 

based on morphological annotation of the corallum and corallites. We show that 

the integration of molecular and morphological trait analysis can be improved using 

machine learning. Morphological traits were documented for Porites and Pocillopora 

coral species that were collected and genotyped through genome-wide, genetical 

hierarchical clustering, and coalescence analyses for the Tara Pacific Expedition. 
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While Porites only included three tentative species, most Pocillopora species were 

accounted by included specimens from the western Indian Ocean, tropical South-

western Pacific, and southeast Polynesia. Two Random Forest models per genus 

were trained on the morphological annotations using the genetic lineage labels. One 

model was developed for in-situ image identification and used corallum traits mea-

sured from in-situ photographs. Another model for integrative species identification 

combined corallum and corallite data measured on scanning electron micrographs. 

Random Forest models outperformed traditional dimension reduction methods like 

PCA and FAMD followed by k-means and hierarchical clustering by classifying the 

correct genetic lineage despite morphological clusters overlapping. This machine 

learning approach is reproducible, cost-effective, and accessible, reducing the need 

for taxonomic expertise. It can complement molecular and phylogenetic studies and 

support image identification, highlighting its potential to advance a coral integrative 

taxonomy workflow.

Introduction

Molecular taxonomy studies have contributed to a better understanding of scler-
actinian coral systematics, while challenging conventional morphology-based 
taxonomy [1,2]. Integrative taxonomy combines multiple lines of evidence—such 
as genetics, reproduction, symbiont association, ecology, and morphology [3–6] 
— and is considered a robust approach for species delimitation [7,8]. Among the 
different lines of evidence, morphology is essential for understanding the physi-
cal and behavioral interactions, life history, adaptation, and evolution of different 
species. However, the phenotypic plasticity observed in many hermatypic coral 
genera makes the alignment of morphological traits with other lines of evidence 
challenging [9]. To provide more resolutive systematic approaches, the investiga-
tion of morphological traits using alternative and reproducible methods should be 
considered.

Congruencies between morphology and genetic data are often investigated 
using multivariate dimension reduction analyses, such as principal component 
analysis (PCA) or factor analysis of mixed data (FAMD), followed by clustering 
methods — k-means, hierarchical clustering, and discriminant analysis of prin-
cipal components. Machine-learning algorithms have been used for classifica-
tion, prediction, and modeling operations [10,11]. Among the many algorithms 
available, the Random Forest (RF) [12] classifies based on the majority of votes 
generated from multiple decision trees with a random bootstrap of sampling and 
predictors [13]. RF has been applied for classification across different fields, 
including remote sensing [14], genetics [15], marine ecology [16,17], and others 
(see Fawagreh et al. [18] for review). RF has also been found to surpass other 
linear, decision-tree, and classification methods when strong interactions among 
variables are found [11,13]. It can be used for highly multivariate dimensional 
data that combine both quantitative and qualitative variables, is less prone to 
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overfitting owing to its bagging and randomness features, and does not require data normalization [12,18]. To the 
best of our knowledge, RF and morphological annotation have not yet been used to classify hermatypic corals. The 
features and usefulness of such algorithms could be tested as alternative methods for the morphological analysis of 
scleractinian corals.

Hermatypic coral morphology is traditionally assessed through phenotypic variations observed in the macro or 
colony (corallum) and micro (corallite) skeletal morphologies [19]. A reliable approach for the analysis of these 
morphological traits would allow for the identification of corals in the field, avoid sampling errors and inaccurate 
biodiversity assessments, and further reveal their interactions with the environment [20]. At the corallum level, 
corals exhibit multiple morphotypes across and within species. Several studies have quantified corallum mor-
phology using in-situ and ex-situ 3D modeling techniques [21,22], geometric morphometrics [23], and linear 2D 
measurements of colonies or fragments [24,25]. These methods often require the sampling of large fragments and 
entire colonies, long diving periods, and large amounts of processing power, making these unsuitable for nonin-
vasive and large ecological surveys. Promising results have been obtained for the identification of coral species 
without damaging ecosystems using recent deep-learning image analysis software [26,27]. Computer vision and 
deep-learning image analysis rely on the color and texture of images and do not provide information on morpholog-
ical traits, thereby limiting the investigation of phylogeny and coral evolution. Corallite morphology often aligns with 
genetics in many genera compared to corallum morphology [28]. Linear and geometric morphometrics have linked 
genomics with micromorphology across families, genera, and species [4,23,29,30]. The widely studied Pocillopora 
genus has shown incongruence between corallum morphology and genetic lineage identification [24,31,32], while 
micromorphological characters and genotypes down to the species level seems to be more congruent [6,33,34]. 
Micromorphology analysis often relies on the qualitative assessment of traits, and the complexity or lack of measur-
able parameters makes their description open to interpretation and difficult to reproduce. Thus, combining a large 
number of quantitative parameters and alternative classification methods could allow the detection of the underlying 
variation in skeletal traits at the species level.

The corals used here were collected at 11 islands across the Pacific Ocean during the Tara Pacific Expedition 
described by Voolstra et al. [5], and complemented by Pocillopora corals included and described by Oury et al. [6], 
sampled from the western Indian Ocean, tropical southwestern Pacific, and southeast Polynesia. All the samples were 
assigned to species using genome-wide genetic variation data, genetical hierarchical clustering, and coalescence anal-
yses [5,6]. The Porites samples were assigned to three genetic lineages: P. evermanni, hereafter referred to as SSH1_
pever, and two new cryptic lineages within Porites lobata species, not described in Hellberg et al. [35], referred to as 
SSH2_plob and SSH3_plob [5]. Pocillopora samples were found to belong to thirteen genetic lineages – sensu Oury et al. 
[6]. The lineages are: GSH09c (P. grandis [34]), GSH01 (P. cf. effusa [34]), GSH09b (P. meandrina [34]), GSH13c (P. ver-
rucosa [34]), GSH05 (P. acuta [34]), GSH10 (P. cf. brevicornis [34]), and GSH04 (P. damicornis [34]), GSH14 (P. tuahin-
iensis [36]), GSH13b (P. villosa nomen nudum [37]). According to Oury et al. [6] GSH09a correspond to a distinct species 
from P. meandrina referred to here as P. aff. meandrina. GHS13a is a species undescribed or incorrectly synonymized 
with P. verrucosa, here referred to as P. aff. verrucosa. GSH12 is a hybrid between GSH13c and GSH13a here referred 
to as P. verrucosa x P. aff. verrucosa. GSH15 is a hybrid between GSH13c and GSH14 referred to as P. verrucosa x P. 
tuahiniensis.

Linear morphometrics were applied to the corallum and corallite morphologies of two widespread coral genera 
(Porites and Pocillopora) to generate (1) a model for in-situ image identification of coral species using corallum mor-
phology and (2) a model for species identification using both corallite and corallum morphological traits. We also dis-
cuss the usefulness of the proposed approach in comparison with commonly used analyses to investigate coral species 
delimitation using morphology. The RF models were used to classify and predict coral species based on their acquired 
morphological traits.



PLOS One | https://doi.org/10.1371/journal.pone.0326095 June 18, 2025 4 / 20

Materials and methods

Sampling

The corals used here were collected during the first year of the Tara Pacific Expedition (July 2016 to February 2017). 
Sampling includes three sites on 11 islands – Islas de las Perlas, Coiba, Malpelo, Rapa Nui, Ducie, Gambier, Moorea, 
Aitutaki, Niue, Upolu, and Guam – across an 18,000 km East-West transect. Two target species, Porites lobata and Pocil-
lopora meandrina, were sampled based on colony morphology [5]. Coral colony in-situ photographs and coral fragments 
from a minimum of three colonies per site were used for morphological measurements. Genotyping information for the 
Tara Pacific samples was obtained from Voolstra et al. [5]. To include the majority of known Pocillopora species, another 
214 Pocillopora colonies with in-situ colony images, colony fragment photographs, scanning electron microscopy (SEM) of 
the corallite structure, and genotyping information were obtained from Oury et al. [6].

Ethics statement

The coral colonies of Pocillopora spp. and Porites spp. collected during the Tara Pacific Expedition between July 2016 and 
February 2017 were sampled in accordance with UNCLOS and CITES permits (see S1 Note). Detailed information con-
cerning the sampling localities, handling, metadata, and sampling protocols can be found in Lombard et al. [38]. Additional 
samples used were obtained from the publication of Oury et al. [6].

Morphological measurements

After sampling, the coral fragments were placed in a 3–4% bleach solution on board the Tara schooner for a minimum of 
two days, rinsed with tap water, and kept dry in falcon tubes. Additional washing steps using a 10% bleach solution for 
12 h were conducted prior to morphological analysis for further tissue removal. The samples were rinsed with freshwater, 
oven-dried for a minimum of 8 h, and then placed in a vacuum chamber for a minimum of 3 h to remove excess moisture 
or air trapped in the interior of the fragments before SEM imaging for micro (corallite) morphological annotations. Scan-
ning electron microscopy was conducted using a JCM-5000 NeoScope™ Tabletop SEM (Japan) without the need of 
coating. Macro (corallum) morphology measurements were conducted using in-situ colony photographs, as described by 
Voolstra et al. [5]. Verruca measurements of Pocillopora colony fragments were included in the corallum morphological 
analysis. These were conducted on fragment photographs taken with an Olympus TG5 camera with a 0.2 mm-diameter 
fishing line for scaling.

Porites morphometric measurements were done following Forsman et al. [23]. Linear measurements of Pocillopora 
spp. were conducted based on previous studies [6,25,34]. Additional parameters were included for both genera. The 
names, landmarks and full descriptions of all morphological parameters are described in Table 1 and 2, and an illustration 
of the measurements are found in Fig 1 and 2. Manual annotations of coral morphology on the Porites and Pocillopora 
corallum and corallite structures were performed using ImageJ v1.50e [39], and the image annotation plugin objectj v1.05j 
[40]. Corallum measurements, were conducted on one whole colony image per sample [5], and one branch fragment 
image per sample in the case for Pocillopora fragments. The corallite measurements were performed using a minimal 
number of three SEM images, and three corallites per sample.

Random forest models

RF classification and associated statistical analyses were conducted using R programming language [41] and the follow-
ing packages: randomForest [42], vegan [43], and tidyverse [44]. RF is a decision-tree machine-learning-based method 
for classification and regression analysis [12]. Unsupervised RF has been used to identify morphotypes in accordance 
with genetic lineages [5]. Here, the RF model was trained with genetic lineage labels for supervised classification. The 
algorithm builds multiple decision trees (ntree) generated from two bootstrap subsets of observations that are randomly 
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Table 1. Morphological measurements of Porites spp. See Fig 1 for an illustration of parameters.

Parameters Landmarks Description

Corallum morphology

COLPS (B) 2 Projected surface of the colony (mm2).

COLDIAM (B) white segmented lines Average of four diameters crossing the centroid of the projected surface of the colony 
(mm).

LD (B) - Density of lobes computed on the number of lobes in a 20 × 20 cm quadrat drawn on the 
colony photo using the ImageJ rectangle tool, divided by the quadrat area (count/mm2).

PR* (A) 1 Presence or absence of ridges on the surface of the corallum.

GF* (A) - Type of growth form (columnar, massive, or encrusting).

Corallite morphology

CAS (C) 61–62, 61–63, 61–64, 61–65 Calice spacing between the center of a randomly selected columella and the center of up 
to eight columellae from adjacent calices (mm).

CAW (C) 1–13, 3–15, 5–17, 7–19, 
9–21, 11–23

Calice width calculated as the distance means between six pairs of opposite landmarks 
representing the base of each septum (mm).

CAA (C) 1-3-5-7-9-11-13-15-17-19-
21-23-1

Calice area determined by a polygon formed by landmarks at the base of each septum 
(mm2).

THET (C) 1–49, 3–50, 5–51, 7–52, 
9–53, 11–54, 13–55, 15–56, 
17–57, 19–58, 21–59, 23–60

Theca thickness calculated as the distance averages between 12 landmark pairs. A pair 
is composed of a point at the base of one septum, and its closest point at the inner part of 
the theca of an adjacent calice (mm).

SEPL (C) 1–2, 3–4, 5–6, 7–8, 9–10, 
11–12, 13–14, 15–16, 17–18, 
19–20, 21–22, 23–24

Septum length calculated as the average of the lengths of all septa (mm).

SEPW (C) 25–26, 27–28, 29–30, 31–32, 
33–34, 35–36, 37–38, 39–40, 
41–42, 43–44, 45–46,
47-48

Septum width calculated as the average of the widths of all septa (mm).

SEPS (C) 1−3, 3−5, 5−7, 7−9, 9−11, 
11−13, 13−15, 15−17, 17−19, 
19−21, 21−23, 23−1

Septa spacing calculated as the distance averages between landmarks at the base of 
each adjacent septum (mm).

SEP-
SVENA

(C) 13−11 Space between the base of the ventral directive septum and the base of the clockwise 
antecessor septum (mm).

SEP-
SVENS

(C) 13–15 Space between the base of the ventral directive septum and the base of the clockwise 
successor septum (mm).

DORL (C) 1–2 Length of the dorsal directive septum (mm).

VENL (C) 13–14 Length of the ventral directive septum (mm).

FA (C) 2-4-6-8-10-12-14-16-18-20-
22-24-2

Area of fossa determined by a polygon formed by landmarks represented by the tip end of 
each septum (mm2).

FW (C) 2–14, 4–16, 6–18, 8–20, 
10–22, 12–24

Fossa width calculated as the average of distances between six pairs of opposite land-
marks representing the tip end of each septum (mm).

PN (D) a Number of pali per calice (count/n).

DDPW (D) 1–2 Dorsal directive pali width (mm).

VDPW (D) 3–4 Ventral directive pali width (mm).

LPW (D) 5–6 Lateral pali width calculated as the average of the four lateral pali widths (mm).

RN (D) b. Number of radi per calice (count/n).

COPS (D) yellow line Projected surface of the columella (mm2).

* Qualitative parameters

https://doi.org/10.1371/journal.pone.0326095.t001

https://doi.org/10.1371/journal.pone.0326095.t001
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selected from the original data, training dataset, and out-of-bag testing dataset. At each node, a different set of variables 
(mtry) was used for the best binary split. Training dataset trees were used to predict the out-of-bag observations. The 
final class prediction accuracy and model out-of-bag error rate (OOB) were calculated by averaging all observations from 
each out-of-bag sample. The OOB is an unbiased internal estimate of the model’s generalization error, classification 
strength and dependence [12]. This algorithm was applied for the species classification of the two coral genera—Porites 
and Pocillopora—based on the manual morphological annotations described in Table 1 and 2. The genetic lineage labels 

Table 2. Morphological measurements of Pocillopora spp. See Fig 2 for an illustration of parameters.

Parameters Points Description

Corallum morphology

COLPS (A) 8 Projected surface of the colony (mm2).

COLDIAM (A) white segmented 
lines

Average of four diameters crossing the centroid of the projected colony
surface (mm).

TD (A) - Branch tip density calculated from the division of the number of tips on the COLPS and its area (count/mm2).

BS (A) 1–2 Branch spacing between a randomly selected center branch and minimum of three adjacent branches (mm).

TLL (A) 5–6 Tip length line: a straight line connecting the two extremities of the branch
top (mm).

TLP (A) 7 Tip length polyline: a line connecting the two extremities of the branch top following the tip curvature (mm).

TLR (A) - Ratio between the TLP and TLL to detect the meander shape degree of the
branch tip.

TW (A) 3–4 Width of the tip (mm).

COLR (A) - Colony roundness calculated from the difference between the maximum and minimum diameter divided by two.

VA (B) 5-6-7 Verruca angle in relation to the branch axis (degrees).

VS (B) 3–4 Verrucae spacing between a randomly selected center verruca and adjacent verrucae (mm).

VL (B) 5–6 Verruca length (mm).

VW (B) 1–2. Verruca width (mm).

VD (B) - Verruca density calculated from the number of verrucae on the projected surface of one fragment and then divided 
(count/mm2).

Corallite morphology

CAS (E) 1–2, 1–3, 1–4, 
1–5, 1–6

Calice spacing between the center of a randomly selected columella and up to five columellae from adjacent
calices (mm).

CADIAM1 (C) 5–6 Calice diameter measured from the base of the dorsal directive to the base of the ventral directive septa (mm).

CADIAM2 (C) 7–8 Calice diameter measured as perpendicular to CADIAM1

SEPL (C) 1–2 Length of four lateral septa (mm).

SEPW (C) 3–4 Width of four lateral septa (mm).

SEPN (C) - Number of septa per calice (count/n).

CODIAM (C) white segmented 
lines.

Average of four diameters crossing the centroid of the projected columella surface (mm).

CODIAMF (C) - Feret’s diameter of the projected columella surface (mm).

COPS (C) red segmented 
line

Projected columella surface (mm2).

COR (C) - Columella roundness calculated from the difference between the COADIAMF and minimum diameter divided by 
two.

STN (D) S Number of stylae per calice (count/n).

SPIS (C) 11–12 Spinule spacing measured from the top center of spinules on the surface of the corallum. Spinules present on the 
verruca were not considered (mm).

SPIW (C) 9–10 Width of spinules (mm).

https://doi.org/10.1371/journal.pone.0326095.t002

https://doi.org/10.1371/journal.pone.0326095.t002
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for each sample used during training are correspondent to Voolstra et al. [5] for Porites (P. evermanni, here referred to 
SSH1_pever, SSH2_plob, and SSH3_plob), and to Oury et al. [6] for Pocillopora (GSH09c, GSH14, GSH01, GSH09b, 
GSH09a, GSH13c, GSH13a, GSH12, GSH15, GSH13b, GSH05, GSH10, and GSH04). Two models were developed for 
each genus. The first used corallum morphological measurements and the second combined corallum and corallite mor-
phologies. RF tuning (randomForest::tuneRF) was performed to evaluate the optimal number of variables used at each 
splitting node of each decision tree.

Determining an ideal mtry can increase model performance, resulting in a lower OOB error and increased model 
prediction [12,45]. RF tuning iterated multiple RF models with different numbers of mtry. Finally, the model (ntree = 500) 
with the least number of OOB errors was generated. A confusion matrix of the species classification and OOB error was 
obtained to assess the model performance. Principal coordinate analysis ordination (PCoA; stats::cmdscale; R Core 
Team, [41]) generated from the RF proximity matrix was used to visualize the performance of the model and morphologi-
cal variance in compliance with genetic lineages. The prediction confidence for each sample was investigated by extract-
ing the number of votes given to the correct genetic lineage during the decision-tree building process—standardized 
across samples using the function vegan::decostand. Samples were also labelled into two groups: correctly classified 
(CC) and wrongly classified (WC) corals, depending on whether the lineage with the highest vote corresponded to the 
genetic lineage determined. A pairwise PERMANOVA (metaMisc::adonis_pairwise; Mikryukov, [46]; 999 permutations; 
P-adjusted Hochberg) was applied on the RF proximity matrix to test for the significance of morphological variances 

Fig 1. Example of Porites spp. morphological measurements.  In-situ corallum (A-B) and SEM corallite (C-D) measurements. See Table 1 for 
parameters and landmark descriptions. A and B scale bars are 10 cm. C and D scale bars are 0.5 mm.

https://doi.org/10.1371/journal.pone.0326095.g001

https://doi.org/10.1371/journal.pone.0326095.g001
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between species. The mean decrease accuracy (MDA) and mean decrease Gini (MDG) scores extracted from the differ-
ent models were used to evaluate the predictive power of morphological variables and node homogeneity.

Dimension reduction and clustering analysis

To further investigate the performance of the RF algorithm compared to traditional statistical analysis, two widely used 
dimension reduction and clustering analysis were conducted on raw morphological annotation datasets. Each method was 
selected based on the type of data produced. As Porites annotations had both quantitative and qualitative measurements, 
factor analysis of mixed data (FactoMineR::FAMD; Lê et al. [47]) and hierarchical clustering (stats::hclust; R Core Team 
[41]) were performed. Porites hierarchical clustering was conducted on the morphological annotations distance matrices 
produced using the Gower method (kmed::distmix; Budiaji, [48]) where the number of clusters were set as the number of 
genetic lineages present in the data set (k = 3). Pocillopora annotations were all quantitative, therefore a PCA (stats::pr-
comp; R Core Team, [41]) and k-means clustering (stats::kmeans; R Core Team, [41]) using the algorithm of Hartigan 
and Wong [49] were conducted. K-means clustering was performed on the matrices of the raw morphological annotations 
where the number of clusters were set as the number of genetic lineages present in the data set (k = 13). The morpholog-
ical spaces described by these analyses were visualized by highlighting CC and WC coral samples by the RF models. To 
test the significance of morphological variances among species obtained by FAMD and PCA, a pairwise PERMANOVA 
with 999 permutations and Hochberg P-adjusted were applied to the distance matrices of the morphological annotations. 
The Porites and Pocillopora distance matrices were calculated using the Gower method for mixed data and Euclidean 
distances (vegan::vegdist; Oksanen et al. [43]), respectively.

Fig 2. Example of Pocillopora spp. morphological measurements.  In-situ (A) and branch fragment (B) corallum images. SEM (C-E) corallite 
images. See Table 2 for parameters and landmarks descriptions. Scale bars are 10 cm (A), 10 mm (B), 0.5 mm (C-D), and 2 mm (E).

https://doi.org/10.1371/journal.pone.0326095.g002

https://doi.org/10.1371/journal.pone.0326095.g002
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The resources used here including images, morphological annotations, code and statistical analysis are available in a 
Zenodo repository [50,51]. The in-situ images of the coral colonies taken during the Tara Pacific expedition can be found 
at https://store.pangaea.de/Projects/TARA-PACIFIC/Images/.

Results

Porites spp. models

The Porites corallum RF model showed an out-of-bag error of 35.08%, resulting in classification accuracies of 73.5% 
for SSH2_plob, 71.4% for SSH3_plob, and 16.7% for SSH1_pever (Fig 3A). The pairwise PERMANOVA of the Porites 
corallum proximity matrix obtained by the RF model was significant among all comparisons (p ≤ 0.024, S1 Table). Princi-
pal coordinate analysis (PCoA) of the proximity matrix revealed at least two distinct clusters containing corals of all three 
genetic lineages. Independent of the overlap, the model correctly classified SSH2_plob and SSH3_plob corals (S1A 
Fig). Of the five parameters included, the three most relevant according to their MDA and MDG scores were the growth 
form (GF), presence of ridges (PR), and average of four colony diameters (COLDIAM) (S1C Fig). In comparison, FAMD 
on the same annotation data showed one major cluster containing all three genetic lineages and another consisting of a 
few SSH3_plob corals, determined by their columnar growth form (S1B-D Fig). The distribution of correctly and wrongly 
classified specimens according to the RF model seemed to be independent of clustering by the FAMD morphospace (S1B 
Fig). Similarly to FAMD, the PCoA on the Gower distance grouped by hierarchical clustering showed three clusters that 
included individuals from all three lineages, and one that was homogeneous to SSH3_plob (S2A Fig). The pairwise PER-
MANOVA computed for the Gower distance using the same annotation data was significant only between SSH2_plob and 
SSH3_plob (F

1,67
 = 6.56, p = 0.006; S1 Table).

Porites corallum and corallite models achieved a 12.16% out-of-bag error with classification accuracies of 94.1% for 
SSH3_plob, 83.9% for SSH2_plob, and 77.8% for SSH1_pever (Fig 3B). The PERMANOVA of Porites corallum and cor-
allite proximity matrix was significant among all comparisons (p = 0.001, S2 Table). Principal coordinate analysis (PCoA) of 
the proximity matrix showed three distinct clusters for each lineage, with minor overlapping. Corals were correctly clas-
sified (CC) despite clustering with specimens of different genetic lineages (Fig 4A). Among the 24 parameters included, 
theca thickness (THET), septa width (SEPW), lateral pali width (LPW) and space between septa (SEPS) were the most 
important variables, with the highest scores for MDA and MDG (Fig 4C and 5). For comparison, three clusters for each 

Fig 3. Porites spp. confusion matrices of the Random Forest models.  (A) Corallum model – 35.08% out-of-bag error. (B) Corallum and corallite 
model – 12.16% out-of-bag error. Rows represent the genetic lineages used for training, and columns represent the predicted genetic lineages. The 
black outlined diagonal tiles indicate the correct classification scores. Class.error column indicates the classification error for each lineage. Numbers of 
individuals used for training each lineage are shown the column in grey.

https://doi.org/10.1371/journal.pone.0326095.g003

https://store.pangaea.de/Projects/TARA-PACIFIC/Images/
https://doi.org/10.1371/journal.pone.0326095.g003
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lineage were observed in the FAMD of Porites corallum and corallite morphology. The contribution of parameter loadings 
for the first two dimensions of the FAMD (Fig 4D) was consistent with the ones highlighted in the RF model. The distri-
bution of CC and WC specimens according to the RF model seemed to be independent of the clustering defined by the 
FAMD morphospace (Fig 4B). A similar pattern was also observed in the PCoA on the Gower distances where CC and 
WC distribution was independent of the hierarchical clustering (S2B Fig). The pairwise PERMANOVA of the Gower dis-
tance matrix was significant between all comparisons (p = 0.001; S2 Table). Morphological variations in the corallum and 
corallites between genetic lineages are shown for colonies that received classification scores above 0.9 (Fig 4E).

Pocillopora spp. models

The Pocillopora corallum model yielded an out-of-bag error of 59.68%. The highest accuracy scores were achieved for 
GSH09a at 73.1%, GSH09c at 61.5%, GSH13c at 50% (Fig 6A). The pairwise PERMANOVA on the Pocillopora corallum 
proximity matrix obtained by the RF model was significant among 47 out of the 78 comparisons (p ≤ 0.032; S4 Table). 
Four major clusters were observed in the PCoA based on the RF proximity matrix, in which GSH13c and GSH09b were 

Fig 4. Porites spp. corallum and corallite Random Forest model and Factor Analysis of Mixed Data.  (A) Principal coordinate analysis of Porites 
corallum and corallite model proximity matrix. (B) Principal coordinate analysis of factor analysis of mixed data (FAMD) on corallum and corallite morpho-
logical annotations. Colors indicate the different lineages (see below), and the shapes indicate whether RF correctly or incorrectly classified the sample 
(circle: CC, triangle: WC). Confidence of prediction is represented in A as an alpha gradient (0–1). (C) Porites corallum and corallite model variables of 
importance; mean decrease accuracy and mean decrease Gini are shown as black and white squares, respectively. (D) FAMD loadings of quantitative 
and qualitative parameters. (E) Corallite and corallum images of corals above 0.9 confidence of prediction by the RF model. SSH1_pever is represented 
in blue, SSH2_plob in green, SSH3_plob in red. Corallum and corallite image scale bars: 5 cm and 0.5 mm, respectively.

https://doi.org/10.1371/journal.pone.0326095.g004

https://doi.org/10.1371/journal.pone.0326095.g004
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divided into two clusters: (1) GSH13c, GSH09b, GSH014; (2) GSH13c, GSH09b, GSH13b; (3) GSH13a, GSH05, GSH15, 
GSH04; and (4) GSH09c, GSH01, GSH09a. Corals were correctly classified (CC) despite clustering with specimens of 
different genetic lineages (S4A Fig). Of the 14 parameters included, the five most relevant according to the MDA and MDG 
scores were branch spacing (BS), tip density (TD), verruca width (VW), verruca density (VD), and verruca length (VL) 
(S4C Fig). The principal component analysis and k-means clustering of corallum morphology showed multiple clusters 
overlapping and several lineages present in each cluster. The RF correctly classified (CC) specimens’ distribution was 
independent of the k-means clustering (S4B Fig). No significance was found in the pairwise PERMANOVA applied on the 
Pocillopora euclidean distance matrix based on the corallum morphology (S4 Table).

Pocillopora corallum and corallite models achieved a 39.29% out-of-bag error, with the highest classification accuracies 
of 85.7% for GSH09c, 80% for GSH01, and 76% for GSH09a (Fig 6B). The pairwise PERMANOVA on the proximity matrix 
was significant between 56 out of the 78 comparisons (p ≤ 0.046, S5 Table). The PCoA of the proximity matrix revealed 
three major clusters in the first two dimensions of the PCoA: (1) GSH09c, GSH01, and GSH15; (2) GSH09a, GSH12, 
GSH13b; (3) GSH09b, GSH13c, GSH13a, GSH05, GSH04, GSH10. Corals were correctly classified (CC) despite cluster-
ing with specimens of different genetic lineages (Fig 7A). Of the 27 parameters included, the four most relevant according 
to their MDA and MDG scores were the number of branch spacing (BS), septum width (SEPW), stylae number (STN), and 
mean of the four columella diameters (CODIAM) (Fig 7C and 8). Similar to the PCoA based on the RF proximity matrix, 
GSH09c, GSH01, and GSH15 were mostly separated from the other genetic lineages in the PCA of Pocillopora corallum 
and corallite morphology based on euclidean distance. The parameter loadings of STN, spinule width and spacing (SPIW, 
SPIS) and septa length (SEPL) contribute to GSH09c, GSH01, and GSH15 clustering on the first two dimensions of the 
PCA. The distribution of CC and WC specimens according to the RF model seemed to be independent of clustering in the 
PCA morphospace (Fig 7B). The k-means clustering observed in the PCA of corallum and corallite morphology showed 
multiple clusters overlapping and several lineages present in each cluster. The RF correctly classified (CC) specimens’ 

Fig 5. The top four parameters derived from Porites spp. corallum and corallite model.  (A) Theca thickness (THET), (B) septum width (SEPW), 
(C) lateral pali width (LPW), and (D) septum spacing (SEPS). These parameters achieved the highest scores in mean decrease accuracy and mean 
decrease Gini.

https://doi.org/10.1371/journal.pone.0326095.g005

https://doi.org/10.1371/journal.pone.0326095.g005
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distribution was independent of the k-means clustering (Fig 7B). No significance was found in the pairwise PERMANOVA 
applied on the Pocillopora euclidean distance matrix based on the corallum and corallite morphology (S5 Table). Morpho-
logical variation between species can be observed on selected colony and corallite images that received classification 
scores above 0.9 (Fig 7E).

Fig 6. Pocillopora spp. confusion matrices of the Random Forest models.  (A) Corallum model – 59.68% out-of-bag error. (B) Corallum and cor-
allite model – 39.29% out-of-bag error. Rows represent the genetic lineage used for training, and columns represent the predicted genetic lineage. The 
black outlined diagonal tiles indicate the correct classification scores. Class.error column indicates the classification error for each lineage. Numbers of 
individuals used for training each lineage are shown the column in grey.

https://doi.org/10.1371/journal.pone.0326095.g006

https://doi.org/10.1371/journal.pone.0326095.g006
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Discussion

Applying multiple lines of evidence to taxonomy arguably defines a robust species delimitation hypothesis [52,53]. Inte-
grating genomics, morphology, the microbiome, and reproductive traits into coral systematics can help in resolving the 
species conundrum in corals [34,54,55]. To the best of our knowledge, this is the first study to classify and predict coral 
species using manual annotations of corallum and corallite morphology, assisted by a machine-learning-based algorithm. 
This was achieved in two widespread coral genera [56] collected from a vast geographical range across the Pacific and 
Indo-Pacific oceans.

Porites species identification based on both gross- and fine-scale morphologies is challenging. Colony growth can vary 
among encrusting, massive, columnar, plating, and branching forms, with some species presenting more than one [57,58]. 
Despite the ‘simplistic’ massive and encrusting shapes, which offer a limited number of measurable morphological param-
eters, RF-based analysis proved to be more efficient in resolving species limits compared to the traditionally used FAMD 
and Gower distances followed by hierarchical clustering. The parameter growth form (GF) proved to be the most important 
for the classification of the three species considered here. The distinguishing columnar shape of SSH3_plob likely contrib-
uted to the highly accurate predictions of SSH2_plob and SSH3_plob, whereas nearly 60% of SSH1_pever corals were 
incorrectly assigned as SSH2_plob possibly because of their overlapping growth forms (encrusting, massive) – see S3U 
Fig. When combining the corallum and corallite morphologies, both the RF proximity matrix and Gower distance could 

Fig 7. Pocillopora spp. corallum and corallite Random Forest model and Principal component analysis.  (A) Principal coordinate analysis of 
Pocillopora corallum and corallite model proximity matrix. (B) Principal component analysis (PCA) on corallum and corallite morphological annotations. 
Colors indicate the different lineages (see below) and the shapes indicate whether the RF model correctly or incorrectly classified the samples (circle: 
CC, triangle: WC). Polygons in (B) show k-means clusters (k = 13). Confidence of prediction is represented in A as alpha gradient (0–1). (C) Pocillo-
pora corallum and corallite model’s variables of importance; mean decrease accuracy and mean decrease Gini are shown as black and white squares, 
respectively. (D) PCA parameter loadings. (E) Corallite and corallum images of corals above 0.9 confidence of prediction by the RF model. GSH09c 
represented in orange, GSH14 in blue, GSH01 in purple, GSH09b in green, GSH09a in black, GSH13c in red, GSH13a in dark blue, GSH12 in light 
green, GSH13b in yellow, GSH15 in cyan, GSH05 in grey, GSH10 in brown, GSH04 in pink. Corallum and corallite image scale bars: 5 cm and 0.5 mm, 
respectively.

https://doi.org/10.1371/journal.pone.0326095.g007

https://doi.org/10.1371/journal.pone.0326095.g007
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distinguish the three Porites species. Porites lobata, here a species complex including both SSH2_plob and SSH3_plob, 
and SSH1_pever were previously distinguished by combining molecular tools and morphometric measurements of the 
corallite in Forsman et al. [23]. Similarly, the RF model also highlighted the importance of corallite morphology (calice 
width (CAW), septa length (SEPL), and septa spacing (SEPS) that significantly contributed to the accuracy of the model. 
Porites corals were sampled based on the massive P. lobata morphotype. The presence of a taxonomy expert underwa-
ter at the time of sampling was not always possible. As a result, only three morphologically similar genetic lineages were 
included in the Porites data set. The addition of more species and morphotypes, from a wider range of geographical loca-
tions and environmental conditions should be considered to ascertain robustness of the derived findings. Nonetheless, 
the models showed promising results to resolve two cryptic P. lobata genetic lineages (SSH2_plob and SSH3_plob) within 
P. lobata species, which were also found in sympatry [5], since they were successfully classified to their corresponding 
genetic lineages by the RF models. Our results support the morphological discrimination between these three species and 
highlight the effectiveness of species prediction based only on morphology using RF models.

Despite extensive studies on the phenotypic plasticity of Pocillopora [24,33,59], the morphological distinction between 
several species in the field remains challenging [6,31,32]. The complex shape of the branching Pocillopora genus allowed for 
the measurements of multiple traits, similar to previous studies [25,34]. The RF model proximities successfully resolved three 
out of the thirteen genetic lineages based on corallum morphological traits, and most of the lineages (nine out of the thirteen) 
when corallite morphology was added. In comparison, the traditional euclidean distances and k-means clustering approaches 
failed to distinguish genetic lineages when using either the corallum and corallite morphological traits. Machine-learning 
models can decrease in accuracy if the condition of the “large p, small n” paradigm is met in high dimensional data [60]. This 

Fig 8. The top four parameters derived from Pocillopora spp. corallum and corallite model.  (A) Branching spacing (BS), (B) septum width 
(SEPW), (C) stylae number (STN), and (D) columella diameter (CODIAM). These parameters achieved the highest scores in mean decrease accuracy 
and mean decrease Gini.

https://doi.org/10.1371/journal.pone.0326095.g008

https://doi.org/10.1371/journal.pone.0326095.g008
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paradigm is exacerbated in the corallum model which also suffer from the low number of parameters measured as exempli-
fied by the low accuracies for the classification of GSH12, GSH15, GSH10, and GSH04 – lineages with only a few individual 
replicates. Therefore, model accuracies could be improved by increasing the number of replicates per species. The columella 
diameter and the number of stylae on the columella were among the most important classification parameters. This agrees 
with previous studies that identified the columella type qualitatively as a distinctive trait of Pocillopora species [34], and quanti-
tatively [6] the styliform columella, a distinctive feature for GSH09c lineage currently described as P. grandis, which also shows 
to be a prominent characteristic for GSH01 lineage, described as P. cf. effusa (Fig 8). Overall, these results suggest that mor-
phological identification of Pocillopora and Porites species is achievable through a machine-learning algorithm and by using 
reproducible quantitative measurements at the corallum and corallite skeletal levels.

Dimension reduction analysis, such as PCA and FAMD, are unsupervised clustering methods that can be used to 
investigate clustering patterns in multivariate data sets while retaining most of the variation [47,61]. In a taxonomic con-
text, these analyses are commonly applied to identify possible morphological groupings based on variations in multiple 
traits that can be visualized in a biplot. Hierarchical and K-means clustering are also widely used algorithms in taxonomy 
[62]. These are also unsupervised methods where a predefined number of clusters should be defined prior to analysis. RF 
models can also be used in the same manner, with the advantages of handling mixed and missing data and being insen-
sitive to linear scaling and outliers [63]. In a previous study, unsupervised RF modelling followed by hierarchical clustering 
was used to identify corallum morphotypes associated with different genetic lineages of Pocillopora and Porites corals 
[5]. Here, supervised RF models were further able to predict the correct genetic lineages based on morphology, even 
for cryptic species (e.g., SSH2_plob and SSH3_plob; GSH014 now described as P. tuahiniensis) that shared the same 
morphological clusters in the PCoA generated from the proximity matrix of the RF models, and in the dimension reduction 
and clustering analyses. Furthermore, the RF models performed better than the Euclidean- and Gower-based distance 
approaches in morphologically delimiting the species in the two genera tested. These findings highlight that in modern 
taxonomy studies where genome-wide sequencing strategies are resolutive approaches for genetic lineages delimitations 
[64], morphology trait analysis can be improved to assist integrative taxonomy. Moreover, RF models have been shown to 
successfully solve classification problems in other scientific fields [11,17,65] and could be used as an alternative classi-
fication method for corals, where it not only allows prediction, but also identifies the morphological traits of importance, 
similar to the conventional methods used in coral systematics.

Advances in deep-learning approaches have shown promising results for species-level identification based on in-situ 
images [26, 66] which can be applied to large-scale non-destructive ecological surveys. Computer vision combined with 
neural networks were able to effectively emulate a specialist discernment to classify coral species based on micro mor-
phology [67]. These algorithms require a large number of images and rely on the color, texture, and contour shape of 
the targeted organism for training and prediction. However, the measurements of morphological traits – which may be 
important delimiting factors – are not normally considered. This greatly limits further investigation of the phylogeny of coral 
species. The workflow proposed here, which combines manual morphological annotations with machine learning anal-
ysis, allows access to the importance of measured traits for the predictability of the model – MDA and MDG. These are 
considered similar to the contribution of parameter loadings in PCA or FAMD [63]. Therefore, in addition to their use in the 
classification of coral species using manual morphological annotations of field images, RF models also provide relevant 
morphological information that can be later assessed for further ecological and phylogenetic studies. Another feature of 
the RF model that is of interest to taxonomists and ecologists is the number of votes that a sample is given to each class 
label (e.g., genetic lineage) during prediction. This allows us to estimate the confidence level with which the model classi-
fied the sample. Even when a low accuracy is obtained, labels that receive the majority of votes can be used as identifiers 
of the closest genetic lineage in a given sample. Therefore, RF models can be used for primary species hypotheses in the 
absence of a specialist, using corallum morphology alone or in combination with corallite analysis for both field imaging 
and laboratory identification.
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Conclusion

Physiological and morphological plasticity, hybridization, convergence, and geographical isolation are among the factors 
that contribute to morphological variation in hermatypic corals. These variables and unpredictable changes can hinder the 
congruency between genomic and morphological analyses. In the era of comparative genomics, morphology is some-
times overlooked [68]. Morphological studies are key to determining the physical interactions between an organism, the 
environment, and other organisms. Our results demonstrate the capability of a machine-learning algorithm to classify and 
predict coral species using the manual annotation of coral skeletons. Four models were applied to two genera known to 
present overlapping morphological traits among species. Despite the high predictive accuracies achieved by the models, 
this study could not determine whether the observed variation is genetically or environmentally driven, due to sampling 
constraints, and the topic should be further explored in future studies. Notably, the measurements conducted are repro-
ducible without the explicit need for taxonomic expertise and can be achieved with a diving camera and computer, making 
it a cost-effective and accessible method even for citizen scientists. The potential of using machine learning to delineate 
coral species based on morphology could be applied in phylogenetic and systematic studies, in the absence of genetic 
material, such as paleo ecological studies relying on fossils. In conclusion, the method presented here should be consid-
ered in an integrative taxonomy workflow.
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