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1  |  INTRODUC TION

The ability to achieve accurate parameter estimation has been 
used as a criterion to assess the usefulness of ecological models 
(Bartell,  2003). Given a model, the criterion for the selection of 
the best possible parameter set is the optimisation of an objective 
function with respect to the model parameters (Bolker et al., 2013; 

Walter & Pronzato, 1997). This objective function is scalar and pro-
vides a measure of the error of the model in comparison to the data 
(e.g. residual sum of squares, log-likelihood), integrating all datasets 
and considering uncertainty and possible biases in the observa-
tions. Once the objective function is properly defined, parameter 
estimation is essentially an optimisation problem. Parameter es-
timation, calibration or fitting of ecological models (Jorgensen & 
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Abstract
1. The fitting or parameter estimation of complex ecological models is a challenging

optimisation task, with a notable lack of tools for fitting complex, long runtime or
stochastic models.

2. calibrar is an R package that is dedicated to the fitting of complex models to data.
It is a generic tool that can be used for any type of model, especially those with
non-differentiable objective functions and long runtime, including individual or
agent based models.

3. calibrar supports multiple phases and constrained optimisation, includes 20
optimisation algorithms, including derivative-based and heuristic ones. It supports 
any type of parallelisation, the capability to restart interrupted optimisations for
long runtime models and the combination of different optimisation methods
during the multiple phases of a calibration.

4. User-level expertise in R is necessary to handle calibration experiments
with calibrar, but there is no need to modify the model's code, which can be
programmed in any language. It implements maximum likelihood estimation
methods and automated construction of the objective function from simulated
model outputs. For more experienced users, calibrar allows the implementation
of user-defined objective functions.

5. The package source code is fully accessible and can be installed directly from
CRAN.

K E Y W O R D S
black-box optimisation, calibration, evolutionary algorithms, individual based model, inverse 
problem, parameter estimation, stochastic model
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Bendoricchio, 2001) can be a challenging task for optimisation al-
gorithms when dealing with complex models characterised by non-
linearity and high dimensionality, as well as low quantity and quality 
of observed data (Tashkova et  al.,  2012). To date, there has been 
limited development of optimisation algorithms and calibration 
methodologies for complex ecological models that are sufficiently 
flexible, generic and well-documented for users (Bolker et al., 2013). 
Additionally, complex ecosystem models can be numerically inten-
sive and require long simulation runs, adding an extra layer of diffi-
culty to their fitting process.

There are some dedicated tools for non-linear parameter estima-
tion, AD Model Builder (ADMB; Fournier et al., 2012) being one of 
the most robust and fast (Bolker et al., 2013). Among other advan-
tages, ADMB provides support for parameter estimation in multiple 
phases or “masks”, with some parameters temporarily fixed (Nash 
& Walker-Smith, 1987), which can be of great interest when deal-
ing with complex ecosystem models (Oliveros-Ramos et al., 2017). 
It also provides support for bound or box constraints (independent 
fixed bounds on each parameter), which can be helpful for regular-
ising hard optimisation problems (Bolker et al., 2013). However, the 
model and the objective function itself need to be coded in C++ 
(using a scripting language), which can be an obstacle for fitting 
models which have been already implemented in other languages 
(e.g. Fortran, Java). In addition, it is based in automatic differentia-
tion (AD), which allows to provide accurate estimates of derivatives 
(Griewank & Corliss, 1992), but does not handle the estimation of 
parameters of stochastic models for which derivatives cannot be 
computed.

Parameter estimation methods have been developed for sto-
chastic non-linear models, such as continuous time, finite state 
Markov models and individual-based models (IBMs), for which the 
probability of state transitions or the master equation can be writ-
ten (Ionides et  al.,  2006; Newman et  al.,  2009; Ross et  al.,  2009; 
Walker et al., 2006). However, many stochastic models at the indi-
vidual level can only be simulated numerically and are too complex 
for mathematical analysis and explicit parameter estimation (Black & 
McKane, 2012). In this case, when it is not possible to compute the 
likelihood but the model is easy to simulate, Approximate Bayesian 
Computation (ABC) has been used to estimate parameters of com-
plex models (Csilléry et  al.,  2012; Sunnåker et  al.,  2013), but the 
number of simulations needed is prohibitive for long runtime mod-
els. As a result, more attention has been given to the exploration of 
model behaviour than to a rigorous confrontation with data for com-
plex and computationally intensive models. To solve these issues, 
metaheuristic algorithms (e.g. evolutionary algorithms, see Wong & 
Ming, 2019 and Rajwar et al., 2023) have been used (Cropper Jr. & 
Anderson, 2004; Duboz et al., 2010; Poovathingal & Gunawan, 2010; 
Tashkova et al., 2012; Travers-Trolet et al., 2013), and have in some 
cases shown better performance than derivative-based optimisation 
methods (Tashkova et al., 2012). However, the scientific community 
lacks generic, open and flexible enough tools for the parameter es-
timation of different types of models with different degrees of com-
plexity and computational power requirements.

Here we present a novel R package, calibrar, designed for pa-
rameter estimation for a wide range of ecological models, including 
complex and stochastic models. The package combines various op-
timisation functionalities in a single interface, enabling the imple-
mentation of the latest advancements in complex model calibration. 
The package provides support for multiple sequential phases and 
box constrained optimisation with the possibility of using several 
algorithms available in R. In particular, by using a “black-box” ap-
proach, the package allows the calibration of models implemented 
in any programming language. It provides a generic interface with 
models and allows the construction of the objective function, within 
R, without requiring any changes in the models' code. Parallel sup-
port for computationally intensive models is also provided, and can 
be used with high performance computing systems in a simple man-
ner, including the capability to restart an unfinished optimisation for 
models with a long runtime.

2  |  GENER AL DESCRIPTION OF THE 
PACK AGE

The calibrar package is written in R (R Core Team, 2023), and can be 
installed from CRAN. The purpose of the package is handling the 
frequentist parameter estimation of complex models, for example 
using a maximum likelihood approach. However, it can be used for 
fitting any model, and can also be used with user-defined objective 
functions. The package can be used for the optimisation of “black-
box” scalar functions (Jones et  al.,  1998), where analytical infor-
mation about the function to be optimised and the model source 
code are assumed to be unavailable or impractical to modify (Rios & 
Sahinidis, 2013). Our approach is hence “non-intrusive”, making the 
model interact with the optimiser, that is the calibrar package, in two 
ways: (i) receiving the model's parameters to run the model, and (ii) 
providing the model outputs to be confronted with observed data. 
The package also helps in the construction of the objective function 
to be optimised in order to estimate model's parameters (Figure 1).

The package works in a way that minimal expertise in R is nec-
essary to handle the model fitting and the main functionalities 
are embedded in three functions: calibrate, calibration_data and 
calibration_ObjFn (see Table  1). The user intervention is mainly 
required in the construction of the function to run the model 
and to retrieve the simulation outputs within R (run_model func-
tion, Figure  1). However, given R's flexibility and features for 
data manipulation, it is rather straightforward to develop such a 
function. Some complex ecological models have dedicated pack-
ages oriented to the analysis and simulation of their outputs that 
could be used to link with calibrar, for example, RNetLogo (Thiele 
et al., 2012) for IBMs implemented in netLogo or osmose (www.​
osmos​e-​model.​org) for the OSMOSE ecosystem model (Shin & 
Cury, 2001, 2004). The main function of the package is calibrate, 
which performs minimisation of the objective function and returns 
the optimal parameters. It has a similar syntax as the base R op-
timisation function optim (see Table 2), and is also similar to most 

http://www.osmose-model.org
http://www.osmose-model.org
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optimisation related functions in other R packages. Additionally, 
the calibration_data and calibration_ObjFn are provided to simplify 
the organisation of the observed data and construct the objective 
function for the calibration, respectively.

In order to create the objective function, the users need to 
specify some information about the model outputs used for the 
calibration and how to combine them (Figure 1). More experienced 
users can create the objective function by directly integrating the 
run of the model and its comparison with observed data. The de-
tails for the creation of the objective function are explained in the 
next section.

Additionally, the user needs to specify information on the param-
eters to calibrate. Lower and upper bounds can be provided for each 
parameter for box constrained optimisation, and this often improves 
the parameter estimation (Bolker et al., 2013) but unconstrained op-
timisation is also supported. In case of a multiple phase calibration, 
the user must indicate the phase of the calibration where the es-
timation of a parameter must be included. The implementation of 
multiple phases in the calibration is detailed in the next section.

The calibrar package allows to perform the calibration with 
a total of 20 different optimisation algorithms allowing box 

constraints (Table 3), including the ones available in the package 
stats (R Core Team,  2023) and optimx (Nash & Varadhan,  2011), 
among others (see Table 3 for details, and Nash, 2014 for a com-
prehensive introduction to nonlinear parameter optimisation in R). 
The calibration in multiple phases is available for all the optimisa-
tion methods through a sequential update of the objective func-
tion for each phase, built-in within the calibrar package. Different 
optimisation methods can be used for each estimation phase, al-
lowing the combination of different methods during the course 
of a multi-phase calibration. The default algorithm for determinis-
tic optimisation problems is a version of the L-BFGS-B algorithm 
implemented in the package Rvmmin (Nash, 2021). For stochas-
tic optimisation problems, the default algorithm is the AHR-ES 
(Adaptative Hierarchical Recombination Evolutionary Strategy), 
which designates a novel evolutionary algorithm included in this 
package. Another focus of this package is the handling of compu-
tationally intensive objective functions (e.g. >60 s for evaluation 
time), including the possibility to resume interrupted optimisa-
tion runs from intermediate “restart” files. Long runtime models 
are not necessarily more complex from the optimisation point of 
view, but they are more prone to computational errors during their 

F I G U R E  1  Diagram representing the functioning of the calibrar package. The grey area groups the outputs produced by the package (the 
objective function and the optimal parameters of the model). Rectangles with broken border lines show user inputs which are needed to 
configure the model fitting process. Blue rounded rectangles show main package functions.
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execution (e.g. breakdowns or stoppages of calculation servers), 
so the ability to restart an interrupted optimisation is a very useful 
feature for this type of problems. This feature is provided for the 
two algorithms used by default (L-BFGS-B and AHR-ES) and for 
the Hooke-Jeeves derivative-free minimisation algorithm (HJK), a 
pattern search type algorithm similar to the Nelder–Mead algo-
rithm used by default in optim(). Additionally, parallel computation 
of numerical derivatives has been implemented for all derivative-
based optimisation methods, greatly improving the time needed 
for the optimisation.

3  |  CRE ATING THE OBJEC TIVE FUNC TION

The main purpose of the package is to fit complex models to data. 
In order to solve a calibration problem, we first need to define the 
objective function. While more experienced users can write explicitly 
the objective function for their model fitting, the calibrar package 
provides help functions aimed at simplifying the process of creating the 
objective function. A non-intrusive black-box optimisation approach 
is adopted, which means that the computer code of the model to be 
calibrated does not need modification, but the model can be evaluated 

TA B L E  1  Main functions of the calibrar package.

Function Description Input arguments Returned objects

calibrate Performs a parameter estimation of a 
model using multiple sequential phases

Starting point for the optimisation 
(par) and objective function (fn), see 
Table 2 for more details

An object summarising the 
calibration results, including 
convergency status. See the help 
of the function for more details

calibration_setup A wrapper for read.csv checking 
column names and data types for the 
table with the calibration information

A data.frame with the calibration 
setup (see Figure 2 and the text for 
details) and Supporting Information 
for examples

A data.frame with the necessary 
information to create the 
objective function using 
calibration_objFn. See the help of 
the function for more details

calibration_data Creates a list of the observed data with 
the information provided by its main 
argument

The returned object from 
calibration_setup(), plus an optional 
absolute path to search for the data

A list of the observed values 
(the data). See the help of the 
function for more details

calibration_objFn Creates a new function, to be used as 
the objective function in the calibration

A function suited to run the model 
to be calibrated, plus the outputs 
from calibration_setup() and 
calibration_data().

A function, integrating the run of 
the model and the comparison of 
outputs with observed data. See 
the help of the function for more 
details

coef, summary, predict R S3 methods for visualising the results 
of the calibration

The object returned by the 
calibrate() function

TA B L E  2  Main arguments of the calibrate function.

Argument Description

par A numeric vector or a list containing numeric vectors. The length of the par argument defines the number of parameters to be 
estimated (i.e. the dimension of the problem)

fn The function to be minimised

gr A function specifying the gradient of fn. Some optimisation methods do not need the gradient, so it will be ignored if provided. If 
needed and not provided, numerical gradients will be computed

method The optimisation method to be used, 20 methods are currently available (see Table 3). Different methods are allowed for each 
calibration phase, see ‘phases’ argument

upper Upper bound value(s) for parameters. One value or a vector of the same length as par. If one value is provided, it is used for all 
parameters. NA means Inf. By default, Inf is used (unconstrained)

lower Lower bound value(s) for parameters. One value or a vector of the same length as par. If one value is provided, it is used for all 
parameters. NA means -Inf. By default -Inf is used (unconstrained)

phases An optional vector of the same length as par, indicating the phase at which each parameter becomes active for the optimisation. If 
omitted, default value is 1 for all parameters. Negative integers and NA are accepted for phases, both meaning that the parameter 
will never be active, so it will remain constant throughout the calibration

control Fine control of the optimisation, see function help for details and Table 3

hessian Logical value. Should a numerically differentiated Hessian matrix be returned?

replicates The number of replicates of model run to evaluate the objective function in case of stochastic models. One value or a vector of 
length max(phases), to specify a different number of replicates for each phase. The default value is 1

parallel Logical. Use parallel computation? (e.g. for numerical gradients)
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for a given set of parameters. For this purpose, users need to write 
an R function to (i) write a set of parameters in the format the model 
is able to read, (ii) run the model with this set of parameters and (iii) 
read the model outputs back into R (Figure  2a). The output of this 
run_model function is expected to be a list, each element being one of 
the variables to calibrate. If the model is already implemented in R, the 
construction of this function is very simple. Additionally, R facilities to 
process and analyse data in different formats allow model outputs to 
be handled independently of the language used for coding the model.

After the construction of the run_model function, the second 
step consists in providing information for the construction of the 
objective function. Each variable listed in the output of run_model 

needs to be documented in the objective function (e.g. providing the 
name of ‘variable’ and ‘type’, Figure 2b). This information should be 
provided as a data.frame, and will be used as an argument for the 
functions calibration_data and calibration_ObjFn. The calibration_
data function is expected to read data from the disk, to produce a list 
with the same structure as the outputs of the run_model function. 
The function calibration_ObjFn will combine the observed data and 
the run_model function to create the objective function for the cali-
bration problem (Figure 2b), which in turn will be the fn argument for 
the calibrate function.

To build the objective function, the ‘type’ selected for each vari-
able is the function that will combine the observed and simulated 

TA B L E  3  Optimisation methods available within the calibrar package.

Algorithm Package Reference Method Notes

I. Derivative-based (local) methods

L-BFGS-B 3.0 lbfgsb3c Fidler et al. (2020) ‘lbfgsb3’ Default for deterministic objective functions. R interface 
to L-BFGS-B.3.0 (Morales & Nocedal, 2011) Fortran 
library

Algorithm 21 Rvmmin Nash (2021) ‘Rvmmin’ Variable metric method with box constraints

Algorithm 22 Rcgmin Nash (2022) ‘Rcgmin’ Conjugate gradient method with box constraints

ppg BB Varadhan and 
Gilbert (2009)

‘spg’ Spectral projected gradient method

nlminb Stats R Core Team (2023) ‘nlminb' Quasi-newton method with box constraints, R 
implementation of PORT routines

L-BFGS-B Stats R Core Team (2023) ‘L-BFGS-B’ Original implementation in the stats package

II. Derivative-free (local) methods

nmkb Dfoptim Varadhan et al. (2023) ‘nmkb' Nelder–Mead algorithm with box constraints

hjkb Dfoptim Varadhan et al. (2023) ‘hjkb' Hooke-Jeeves derivative-free minimisation algorithm

mads Dfoptim Varadhan et al. (2023) ‘mads’ Mesh Adaptive Direct Searches (MADS) algorithm for 
derivative-free and black-box optimisation

hjn Optimx Nash and Varadhan (2011) ‘hjn’ Hooke and Jeeves Pattern Search Optimisation

BOBYQA Minqa Bates et al. (2023) ‘bobyqa’ Implementation of the BOBYQA algorithm trusted-region 
method

III. Heuristic (global) methods

AHR-ES Calibrar This paper ‘AHR-ES’ Default for stochastic objective functions. Adaptative 
hierarchical recombination evolutionary strategy

CMA-ES Cmaes Trautmann et al. (2011) ‘CMA-ES’ Covariance matrix adaptation evolutionary strategy 
(Hansen & Ostermeier, 2001)

SANN Stats R Core Team (2023) ‘SANN’ Simulated Annealing implemented in stats::optim 
(method=’SANN’)

genSA GenSA Xiang et al. (2013) ‘genSA’ Generalised Simulated Annealing

DE DEoptim Mullen et al. (2011) ‘DE’ Differential evolution

soma Soma Clayden (2022) ‘soma’ Implementation of the Self-organising Migrating 
Algorithm

genoud Rgenoud Mebane Jr. and 
Sekhon (2011)

‘genoud’ Genetic optimisation using derivatives

pso Psoptim Ciupke (2016) ‘PSO’
‘PSO2007’
‘PSO2011’

Particle swarm optimisation (PSO), it includes 
two algorithms, ‘PSO2007’ and ‘PSO2011’. Using 
method=’PSO’ will use the default ‘PSO2007’ (see 
package help for details) but both can be specified

hybridPSO Psoptim Ciupke (2016) ‘hybridPSO’ The method=’hybridPSO’ will use the hybrid method 
combining PSO and BFGS implemented in the pso 
package
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data to produce a scalar value, measuring the fit between the model 
and the observations. One scalar objective function is produced 
as in a multi-objective optimisation problem there is no guarantee 
that a single solution simultaneously optimises each objective and, 
given the data has observation errors and biases and models can 
be misspecified, most likely each partial objective function will be 
conflicting with each other (Maunder & Piner, 2017). As a result, a 
multi-objective optimisation approach will produce many different 
equivalent solutions, while we should expect that only one set of 
parameters has physical, biological or ecological meaning given our 
model is an appropriate representation of the system under study. 
By combining the likelihood of each data set, and weighting the 
datasets by their assumed uncertainty, we are able to find a solution 
that integrates all the data. Some negative log-likelihood functions 
are already implemented and proposed for common distributions 
(e.g. normal, lognormal, multinomial, Poisson; type?objFn to see the 
available functions). User defined functions can be used, as long as 
they accept two arguments (obs and sim) and return a scalar value, 
including ad-hoc distance measures as used in ABC methods. For 
example, to implement a calibration using the least squares method, 

we can write the following function to calculate the residual sum of 
squares:

RSS = function(obs, sim, …) {   
 value = sum((obs-sim)^2, na.rm=TRUE) 
 return(value) 
 }

The ‘calibrate’ column in the configuration of the objective 
function provides a flag to select the variables to be used for the 
calibration. The ‘use_data’ column indicates whether data are read 
from the disk. If use_data=TRUE, the file specified in the calibration 
settings will be used. If use_data=FALSE, the observed value is set 
to NULL, and the type function is expected to use simulated data 
only. The latter option can be particularly useful to set penalties 
in the model outputs or parameters, where no observed data are 
needed. Finally, the ‘weight’ column provides the relative weights 
to combine the values obtained for each variable. A more detailed 
illustration of this process is provided in the vignettes and demos 
of the package.

F I G U R E  2  (a) Scheme of the link between the model and the calibration. The R function run_model receives a vector or list of parameters 
to test, writes the parameters in a form that is readable for the model (e.g. via txt or csv files), runs the model (possibly via system) then 
captures and processes the model outputs. The result of the function is a ‘list’ object with all the variables to be confronted with observed 
data. (b) Scheme of the calculation of the value of the objective function for a given set of parameters. For each variable, a partial value 
of the objective function is calculated by applying the function specified in the column ‘type’ to observed and simulated values. The final 
value of the objective function is calculated by applying the aggFn to the partial function values and the weights specified in the ‘objective 
function info’ table.
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4  |  RUNNING A C ALIBR ATION

The calibrate function takes a list as a control argument, where 
fine control options are provided, for example for the parallelisa-
tion of the optimisation (based on the foreach package, Revolution 
Analytics & Weston,  2014). Before using the parallel implementa-
tion, a parallel ‘cluster’ should be created, which can be easily done 
using the parallel or snow R packages (see vignettes). This allows full 
control of the configuration of the parallel runs, making the calibra-
tion work in different computer systems, from computers with mul-
ticore processors to high-performance supercomputers. Once the 
cluster is created, the parallel=TRUE argument must be included in 
the call, and the ncores control option should indicate the number of 
cores chosen (see Table 4 for details). Additionally, since each model 
run could require files to be written to the disk (which will be read 
by the run_model function after the simulation), a different folder 
needs to be assigned for each parameter combination that is tested 
by the optimisation algorithm or for the computation of numerical 
gradients. For this purpose, the run control option allows a directory 
to be specified where all the simulations are run (subfolders named 
i0, i1, …, in-1 will be automatically created as needed). By default, no 
folders are created, so a path should be specified if the model needs 
to write files to the disk. All the parameter input files (Figure 2a) will 
be written in temporary folders (e.g. run/i0). The control option mas-
ter allows a folder to be specified, the full content of which will be 
copied to these temporary folders. Since the calibration of numeri-
cally intensive models can run for a long time, a ‘restart’ option is 
also available, allowing an interrupted calibration to be continued.

5  |  THREE APPLIC ATION E X AMPLES

To illustrate the main functionality of the package, we estimated the 
parameters for a predator–prey model using the calibrate function. 
The model was defined by a system of ordinary differential equa-
tions for the abundance of prey N and predator P:

The parameters to estimate were the prey's growth rate r, 
the predator's mortality rate l, the carrying capacity of the prey K 
and α and γ for the predation interaction. To start, we created the 
demonstration data for this model using the function calibrar_demo 
function (see help in the package for details on this function used 
to illustrate the functionality of the package) with T=100 as an addi-
tional argument to specify the time horizon.

LV = calibrar_demo(path=path, model='PredatorPrey', T=100) 
setup = calibration_setup(file = LV$setup)  
observed = calibration_data(setup=setup, path=LV$path)  
run_model = calibrar:::.PredatorPreyModel  
obj = calibration_objFn(model=run_model, setup=setup, ob-
served=observed, T=LV$T,  
 aggregate=TRUE)

To run the calibration, we needed to specify the initial guess for 
the parameter values (par), the objective function to minimise (fn) 
and optionally the lower and upper thresholds for the parameters 
(lower and upper) and the phase number at which each parameter 
needs to be estimated (phases). See the Supporting Information for 
the full description of the objective function and calibration setup.

calibrate(par=LV$guess, fn=obj, lower=LV$lower, upper=LV$upper, 
phases=LV$phase)

The argument method can be used to change the default op-
timisation algorithm. We calibrated the model using five differ-
ent optimisation algorithms with their default parameters: (i) 
derivative-based: Algorithm  21 (L-BFGS-B, default for determin-
istic functions, from package Rvmmin), the conjugate gradient 

dN

dt
= rN

(

1−
N

K

)

−�NP

dP

dt
= − lP+��NP

.

Option Description

maxit Maximum number of iterations of the algorithm

ncores The number of cores available in the parallel cluster for the active 
session. If parallel=TRUE, the default is to get the number of cores of 
the system

run An optional folder path to create all the temporary files needed to 
run the simulations from the objective function for each parameter 
combination tested by the optimisation algorithms

master An optional folder path. All the contents of the master folder will be 
copied to the run folder, one copy in one subfolder per parameter 
combination tested at each iteration

REPORT Number of iterations after saving a new restart object, which contains 
all the information necessary to restart the calibration at that point. The 
default is NULL, and no restart files are created

restart.file Basename for the restart file to be created

TA B L E  4  Some options for the control 
argument of the function calibrate.
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method (CG from the Rcgmin package); (ii) derivative free: Nelder–
Mead (default R optimiser, stats::optim()); (iii) heuristic: AHR-ES 
(default for stochastic functions) and the CMA-ES (from cmaes 
package). As shown by the optimisation results (Figure  3 and 
Table  5), the algorithm Nelder–Mead and CG could not find the 
solution using the default parameters provided in the original op-
timisation functions (while some improvements may be obtained 
after some tuning). The full code can be found in the vignettes of 
the package.

A second example involves the calibration of a Poisson 
Autoregressive Mixed model for the dynamics of a population in dif-
ferent sites:

where μi,t is the size of the population in site i at year t, Xi,t is the value of 
an environmental variable in site i at year t. The parameters to estimate 

were α, β, and γt, the random effects for each year (� t ∼ N
(

0, �2
)

), and
the initial population at each site μi,0. We assumed that the observa-
tions Ni,t follow a Poisson distribution with mean μi,t. We could also cre-
ate the data for this model using the function calibrar_demo, with the 
additional arguments L=5 (five sites) and T=100 (one hundred years):

ARPM = calibrar_demo(path=path, model="PoissonMixedModel", 
L=5, T=100)  
setup = calibration_setup(file=ARPM$setup)  
observed = calibration_data(setup=setup, path=ARPM$path)  
forcing = as.matrix(read.csv(file.path(ARPM$path, "master", "environ-
ment.csv"),  
 row.names=1))

For this example, the run_model function also returns the time 
series of γt that will be used to add a penalty when constructing the 

log
(

�i,t+1

)

= log
(

�i,t

)

+ � + �Xi,t + � t ,

F I G U R E  3  Results of the calibration of the predator–prey model using different optimisation methods. The simulated data (points) and model 
fits (lines) are shown. For the optimisation methods “AHR-ES”, “L-BFGS-B" and “CMA-ES” there are no visual differences and the lines merge.

Method
Objective 
function value

Parameter

R L K α γ

Data 4.96E-07 0.5 0.2 100 0.1 0.1

L-BFGS-B (Rvmmin) 5.61E-07 0.4999 0.2000 99.9960 0.1000 0.1000

CG (Rcgmin) 1.29961642 0.4489 0.2746 67.4768 0.0796 0.1802

Nelder–Mead 1.41516908 0.4500 0.2751 66.2434 0.0788 0.1827

AHR-ES 5.61E-07 0.4999 0.2000 99.9960 0.1000 0.1000

CMA-ES 5.61E-07 0.4999 0.2000 99.9960 0.1000 0.1000

TA B L E  5  Summary of the calibration 
results for the predator–prey model using 
five different optimisation methods with 
default parameters.
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objective function. This function also includes an additional argu-
ment named ‘forcing’ that is used to pass additional forcing data (en-
vironmental conditions at each site and time step in this example) 
that is needed to run the model:

run_model = function(par, forcing) { 
 output = calibrar:::.PoissonMixedModel(par=par, forcing=forcing) 
 output = c(output, list(gammas=par$gamma))  
 return(output)  
} 

obj = calibration_objFn(model=run_model, setup=setup, ob-
served=observed, forcing=forcing, aggregate=TRUE)

The calibration was run as in the previous example calling the 
calibrate function:

calibrate(par=ARPM$guess, fn=obj, lower=ARPM$lower, up-
per=ARPM$upper, phases=ARPM$phase)

Here we calibrated the model using four different optimisation 
algorithms: (i) derivative-based: L-BFGS-B (stats) and L-BFGS-B v3, 
(ii) derivative free: HJKB; (iii) heuristic: AHR-ES and SANN (Figure 4
and Table  6). In this case, the SANN algorithm could not find the
solution despite an increased number of maximum iterations. The
best solution found was using HJKB algorithm, closely followed by
the AHR-ES and L-BFGS-B algorithms (Table 6 and Figure 4). The full 
code can be found in the vignettes of the package.

For a given model, such as the autoregressive Poisson mixed 
model, the calibration can take up to several hours depending on 
the optimisation method used (Table 6). Therefore, the possibility to 
restart an interrupted optimisation can be useful. To do this, the cal-
ibrate function must be called with the additional control argument 
‘restart.file’, which indicates the name of the file storing the informa-
tion needed to restart the optimisation (see Table 4):

calibrate(par=ARPM$guess, fn=obj, lower=ARPM$lower, 
upper=ARPM$upper, phases=ARPM$phase,  
 control=list(restart.file="arpm"))

F I G U R E  4  Results of the calibration of the autoregressive Poisson mixed model using different optimisation methods. (a) The simulated 
data (points) and model fits (lines) are shown. For the optimisation methods “HJKB”, “AHR-ES” and “L-BFGS-B" there are no visual 
differences and the lines merge. (b) Time series of differences between the γt estimated by each algorithm and the real parameter values. For 
each case, the dotted lines represent the 95% limits for the differences.
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If an appropriate restart file is found in the working directory, the 
calibration will be restarted from the last saving point.

A third and more complex application involved the calibration of 
the stochastic individual-based model OSMOSE, a multispecies spa-
tially explicit ecosystem model (Shin & Cury, 2001, 2004). It has been 
applied in the Northern Peru Current Ecosystem (Oliveros-Ramos 
et al., 2017) to model the life history and spatiotemporal dynamics 
of nine interacting species, between 1992 and 2008. The model was 
confronted with time series of abundance indices, fisheries landings 
and catch-at-length composition data (see Hilborn & Mangel, 1997; 
a comprehensive introduction to the subject). The objective func-
tion used a penalised likelihood approach, combining log-normal 
and multinomial likelihoods (see the Supporting Information for the 
full description of the objective function and calibration setup). A 
total of 307 parameters were estimated in four sequential phases. 
The OSMOSE model is implemented in Java, and it was not an op-
tion to recode it in another language for parameter estimation pur-
poses. Each calibration trial lasted 5 days using a High-Performance 
Computing (HPC) cluster under the Portable Batch System (PBS) for 
jobs scheduling, used 64 cores and needed to be relaunched every 
24 h due to system restrictions. The objective function for this model 
is stochastic and was optimised using the AHR-ES algorithm. The cal-
ibration in sequential phases improved the final parameter estimates 
as the calibration in only one phase could not converge to an accept-
able solution (see Oliveros-Ramos et al., 2017 for details on how to set 
the parameters' phases). The calibrar package greatly simplified the 
task of the calibration of a complex model like OSMOSE, which other-
wise can be highly technical, if not impossible, with other optimisation 
packages. The scripts used for this calibration that may be adapted 
for applications of the calibrar package in other HPC systems are 
available in the Supporting Information. For other applications, the 
calibrar package has been used in the model fitting of some complex 
models like in Oliveros-Ramos et al. (2010), Oliveros-Ramos and Peña-
Tercero (2011), Grüss et al. (2015, 2016), Dueri et al. (2016), Halouani 
et al. (2016), Travers-Trolet et al. (2019), Moullec et al. (2019), Bănaru 
et al. (2019), Xing et al. (2020) and Morell et al. (2023). More examples 
can be found in the vignette of the package ‘Parameter estimation for 
ODE systems’, that illustrates how the calibrar package can be used 
for the calibration of models where ABC methods have been used 

previously (e.g. see Minter & Retkute, 2019), but with considerably 
less computational cost.

6  |  COMPARISON WITH OTHER 
SOF T WARE

Implementation of general-purpose optimisers can be found in R 
(see Optimisation and Mathematical Programming Task View at 
CRAN: http://​cran.​r-​proje​ct.​org/​web/​views/​​Optim​isati​on.​html). 
Two very useful features for model calibration are the perfor-
mance of constrained optimisation (limiting the search to a box 
by defining lower and upper boundaries to parameter values) 
and the calibration in multiple phases (to improve the search of 
the global minimum by performing a sequential approximation). 
The former option is implemented in several R packages, includ-
ing the optim function (providing the “L-BFGS-B” method, Byrd 
et  al.,  1995) and several others wrapped in the optimx package 
(Nash & Varadhan,  2011). The latter option is available in some 
other R packages (e.g. Rcgmin and Rvmmin) for a single optimisa-
tion, but a sequential calibration, as described here, would have to 
be performed manually. Additionally, the calibrar package allows 
the choice of different optimisation methods for each calibration 
phase, allowing the combination of heuristic global optimisation 
methods and local optimisation ones to improve the performance 
of a multiple phase calibration.

For the particular purpose of the calibration of stochastic 
models, several meta-heuristic and non-derivative based al-
gorithms are now available in R, from EAs (e.g. genalg, DEoptim 
and cmaes packages) to other nature-inspired algorithms (e.g. 
Simulated Annealing ‘SANN’ method in optim and the Particle 
Swarm Optimisation (PSO) algorithm in the hydroPSO package, 
Zambrano-Bigiarini & Rojas,  2013). However, while all of these 
packages and algorithms provide support for constrained optimis-
ation, none of them provides support for keeping fixed parameters 
during the course of a single optimisation, and a multiple phase 
calibration would have to be performed manually by modifying the 
objective function for each trial. Furthermore, from the implemen-
tation point of view, a very important feature for the calibration of 

TA B L E  6  Summary of the calibration results for the autoregressive Poisson mixed model using five different optimisation methods.

Method
Elapsed time 
(seconds)

Objective function 
value

Parameters

α β

γt

Mean SD Correlation Bias

Data — −186178.145 0.4000 −0.4000 −0.0187 0.1952 1.000 0.0000

L-BFGS-B 186 −186081.484 0.4846 −0.4157 −0.0867 0.1923 0.904 0.0680

L-BFGS-B 3.0 14 −180576.287 0.3700 −0.1389 −0.2528 0.0460 0.311 0.2341

HJKB 222 −186094.819 0.3923 −0.4145 0.0039 0.1869 0.908 −0.0226

AHR-ES 612 −186085.887 0.3967 −0.4143 −0.0009 0.1940 0.862 −0.0178

SANN 43,004 1.5117E+16 0.2000 0.1000 0.0000 0.0000 — −0.0187

http://cran.r-project.org/web/views/Optimisation.html
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complex models is the parallel implementation of the optimisation 
routine. The PSO algorithm in the hydroPSO has its parallel imple-
mentation tied to the core of the function and does not allow its 
use in high-performance clusters, especially under a queue sys-
tem, and only the DEoptim package provides a more flexible ex-
ternally configured parallelisation.

Additionally, in the construction of the objective function, cali-
brar allows an easy transferability of the calibration problem to other 
general-purpose optimisers, which can be useful under certain cir-
cumstances (e.g. see Bolker et  al.,  2013). There is indeed “no free 
lunch” in optimisation, and no optimisation algorithm will perform bet-
ter than all others for every type of optimisation problems (Wolpert 
& Macready,  1997) and testing multiple optimisation algorithms 
is recommended (Bolker et  al.,  2013). Other calibration-oriented 
packages like hydroPSO provide functions to write parameters and 
read outputs, but this approach breaks the ‘objective function’ ap-
proach for the optimisation, by not allowing the transfer of the ob-
jective function to other optimisers, and while the hydromad package 
(Andrews et al., 2011) offers support for the automated construction 
of an objective function in a standard way, it is restricted to some 
particular cases useful in hydrological modelling. In these regards, the 
package calibrar is meant to be generic enough to be used in a variety 
of optimisation problems, including the calibration of complex (i.e. 
non-linear, with a lot of parameters and long runtime) and stochastic 
models. Three features of calibrar render it particularly useful for the 
calibration of computationally intensive stochastic models: the paral-
lelisation of the simulations, the ability to handle replicate simulations 
in the evaluation of the objective function and the ‘restart’ option, 
which allows the calibration of complex models to be handled under 
restricted access to high performance resources (e.g. clusters with 
queue systems and fixed wall time).

7  |  CONCLUSIONS AND PERSPEC TIVES

A successful model calibration implies several computational, the-
oretical and practical challenges. The calibrar package is intended 
to provide a framework to simplify the calibration of models, in 
particular complex and stochastic ones (e.g. individual-based mod-
els), for which there have been fewer developments compared to 
those for deterministic and differentiable models. To our knowl-
edge, the calibrar package is the first one wrapping several global 
search optimisation methods, facilitating their use and testing 
for parameter estimation. We adopted a ‘black-box’ and ‘non-
intrusive’ approach, since most complex models are often compu-
tationally intensive and most likely implemented in fast low-level 
languages and recoding for calibration purposes is not the best 
option. The restart functionality can help in the optimisation of 
computationally intensive problems, since most of the computing 
time is spent evaluating the objective function (Nash, 2014) and 
the ability to restart an interrupted optimisation could save signifi-
cant amounts of time. By using the generic approach of separating 
the optimiser from the objective function, users can benefit from 

the optimisation capabilities of the package while being able to 
write complex objective functions that deal with the uncertain-
ties and biases typically found in ecological datasets. This also fa-
cilitates the good practice of testing several optimisers during the 
parameter estimation process (Bolker et al., 2013) and additional 
state-of-the-art optimisation methods are planned to be added in 
future versions. The use and testing of the calibrar package with 
several real-world optimisation problems for the calibration of 
complex ecological models has directed the developments of the 
package and its current flexibility, while we expect future applica-
tions will help to continue improving the package given its open-
source nature.
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