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1 | INTRODUCTION

Walter & Pronzato, 1997). This objective function is scalar and pro-

vides a measure of the error of the model in comparison to the data

The ability to achieve accurate parameter estimation has been
used as a criterion to assess the usefulness of ecological models
(Bartell, 2003). Given a model, the criterion for the selection of
the best possible parameter set is the optimisation of an objective

function with respect to the model parameters (Bolker et al., 2013;

(e.g. residual sum of squares, log-likelihood), integrating all datasets
and considering uncertainty and possible biases in the observa-
tions. Once the objective function is properly defined, parameter
estimation is essentially an optimisation problem. Parameter es-

timation, calibration or fitting of ecological models (Jorgensen &
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Bendoricchio, 2001) can be a challenging task for optimisation al-
gorithms when dealing with complex models characterised by non-
linearity and high dimensionality, as well as low quantity and quality
of observed data (Tashkova et al., 2012). To date, there has been
limited development of optimisation algorithms and calibration
methodologies for complex ecological models that are sufficiently
flexible, generic and well-documented for users (Bolker et al., 2013).
Additionally, complex ecosystem models can be numerically inten-
sive and require long simulation runs, adding an extra layer of diffi-
culty to their fitting process.

There are some dedicated tools for non-linear parameter estima-
tion, AD Model Builder (ADMB; Fournier et al., 2012) being one of
the most robust and fast (Bolker et al., 2013). Among other advan-
tages, ADMB provides support for parameter estimation in multiple
phases or “masks”, with some parameters temporarily fixed (Nash
& Walker-Smith, 1987), which can be of great interest when deal-
ing with complex ecosystem models (Oliveros-Ramos et al., 2017).
It also provides support for bound or box constraints (independent
fixed bounds on each parameter), which can be helpful for regular-
ising hard optimisation problems (Bolker et al., 2013). However, the
model and the objective function itself need to be coded in C++
(using a scripting language), which can be an obstacle for fitting
models which have been already implemented in other languages
(e.g. Fortran, Java). In addition, it is based in automatic differentia-
tion (AD), which allows to provide accurate estimates of derivatives
(Griewank & Corliss, 1992), but does not handle the estimation of
parameters of stochastic models for which derivatives cannot be
computed.

Parameter estimation methods have been developed for sto-
chastic non-linear models, such as continuous time, finite state
Markov models and individual-based models (IBMs), for which the
probability of state transitions or the master equation can be writ-
ten (lonides et al.,, 2006; Newman et al., 2009; Ross et al., 2009;
Walker et al., 2006). However, many stochastic models at the indi-
vidual level can only be simulated numerically and are too complex
for mathematical analysis and explicit parameter estimation (Black &
McKane, 2012). In this case, when it is not possible to compute the
likelihood but the model is easy to simulate, Approximate Bayesian
Computation (ABC) has been used to estimate parameters of com-
plex models (Csilléry et al., 2012; Sunnaker et al., 2013), but the
number of simulations needed is prohibitive for long runtime mod-
els. As a result, more attention has been given to the exploration of
model behaviour than to a rigorous confrontation with data for com-
plex and computationally intensive models. To solve these issues,
metaheuristic algorithms (e.g. evolutionary algorithms, see Wong &
Ming, 2019 and Rajwar et al., 2023) have been used (Cropper Jr. &
Anderson, 2004; Duboz et al., 2010; Poovathingal & Gunawan, 2010;
Tashkova et al., 2012; Travers-Trolet et al., 2013), and have in some
cases shown better performance than derivative-based optimisation
methods (Tashkova et al., 2012). However, the scientific community
lacks generic, open and flexible enough tools for the parameter es-
timation of different types of models with different degrees of com-
plexity and computational power requirements.

Here we present a novel R package, calibrar, designed for pa-
rameter estimation for a wide range of ecological models, including
complex and stochastic models. The package combines various op-
timisation functionalities in a single interface, enabling the imple-
mentation of the latest advancements in complex model calibration.
The package provides support for multiple sequential phases and
box constrained optimisation with the possibility of using several
algorithms available in R. In particular, by using a “black-box” ap-
proach, the package allows the calibration of models implemented
in any programming language. It provides a generic interface with
models and allows the construction of the objective function, within
R, without requiring any changes in the models' code. Parallel sup-
port for computationally intensive models is also provided, and can
be used with high performance computing systems in a simple man-
ner, including the capability to restart an unfinished optimisation for

models with a long runtime.

2 | GENERAL DESCRIPTION OF THE
PACKAGE

The calibrar package is written in R (R Core Team, 2023), and can be
installed from CRAN. The purpose of the package is handling the
frequentist parameter estimation of complex models, for example
using a maximum likelihood approach. However, it can be used for
fitting any model, and can also be used with user-defined objective
functions. The package can be used for the optimisation of “black-
box” scalar functions (Jones et al., 1998), where analytical infor-
mation about the function to be optimised and the model source
code are assumed to be unavailable or impractical to modify (Rios &
Sahinidis, 2013). Our approach is hence “non-intrusive”, making the
model interact with the optimiser, that is the calibrar package, in two
ways: (i) receiving the model's parameters to run the model, and (ii)
providing the model outputs to be confronted with observed data.
The package also helps in the construction of the objective function
to be optimised in order to estimate model's parameters (Figure 1).
The package works in a way that minimal expertise in R is nec-
essary to handle the model fitting and the main functionalities
are embedded in three functions: calibrate, calibration_data and
calibration_ObjFn (see Table 1). The user intervention is mainly
required in the construction of the function to run the model
and to retrieve the simulation outputs within R (run_model func-
tion, Figure 1). However, given R's flexibility and features for
data manipulation, it is rather straightforward to develop such a
function. Some complex ecological models have dedicated pack-
ages oriented to the analysis and simulation of their outputs that
could be used to link with calibrar, for example, RNetLogo (Thiele
et al., 2012) for IBMs implemented in netLogo or osmose (www.
osmose-model.org) for the OSMOSE ecosystem model (Shin &
Cury, 2001, 2004). The main function of the package is calibrate,
which performs minimisation of the objective function and returns
the optimal parameters. It has a similar syntax as the base R op-
timisation function optim (see Table 2), and is also similar to most
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FIGURE 1 Diagram representing the functioning of the calibrar package. The grey area groups the outputs produced by the package (the
objective function and the optimal parameters of the model). Rectangles with broken border lines show user inputs which are needed to
configure the model fitting process. Blue rounded rectangles show main package functions.

optimisation related functions in other R packages. Additionally,
the calibration_data and calibration_ObjFn are provided to simplify
the organisation of the observed data and construct the objective
function for the calibration, respectively.

In order to create the objective function, the users need to
specify some information about the model outputs used for the
calibration and how to combine them (Figure 1). More experienced
users can create the objective function by directly integrating the
run of the model and its comparison with observed data. The de-
tails for the creation of the objective function are explained in the
next section.

Additionally, the user needs to specify information on the param-
eters to calibrate. Lower and upper bounds can be provided for each
parameter for box constrained optimisation, and this often improves
the parameter estimation (Bolker et al., 2013) but unconstrained op-
timisation is also supported. In case of a multiple phase calibration,
the user must indicate the phase of the calibration where the es-
timation of a parameter must be included. The implementation of
multiple phases in the calibration is detailed in the next section.

The calibrar package allows to perform the calibration with
a total of 20 different optimisation algorithms allowing box

constraints (Table 3), including the ones available in the package
stats (R Core Team, 2023) and optimx (Nash & Varadhan, 2011),
among others (see Table 3 for details, and Nash, 2014 for a com-
prehensive introduction to nonlinear parameter optimisation in R).
The calibration in multiple phases is available for all the optimisa-
tion methods through a sequential update of the objective func-
tion for each phase, built-in within the calibrar package. Different
optimisation methods can be used for each estimation phase, al-
lowing the combination of different methods during the course
of a multi-phase calibration. The default algorithm for determinis-
tic optimisation problems is a version of the L-BFGS-B algorithm
implemented in the package Rvmmin (Nash, 2021). For stochas-
tic optimisation problems, the default algorithm is the AHR-ES
(Adaptative Hierarchical Recombination Evolutionary Strategy),
which designates a novel evolutionary algorithm included in this
package. Another focus of this package is the handling of compu-
tationally intensive objective functions (e.g. >60s for evaluation
time), including the possibility to resume interrupted optimisa-
tion runs from intermediate “restart” files. Long runtime models
are not necessarily more complex from the optimisation point of

view, but they are more prone to computational errors during their



510

Methods in Ecology and Evolution E%Em

OLIVEROS-RAMOS and SHIN

TABLE 1 Main functions of the calibrar package.

Function

calibrate

calibration_setup

calibration_data

calibration_objFn

coef, summary, predict

Description Input arguments Returned objects

Performs a parameter estimation of a
model using multiple sequential phases

Starting point for the optimisation
(par) and objective function (fn), see
Table 2 for more details

An object summarising the
calibration results, including
convergency status. See the help
of the function for more details

A data.frame with the calibration
setup (see Figure 2 and the text for
details) and Supporting Information
for examples

A wrapper for read.csv checking
column names and data types for the
table with the calibration information

A data.frame with the necessary
information to create the
objective function using
calibration_objFn. See the help of
the function for more details

A list of the observed values
(the data). See the help of the
function for more details

Creates a list of the observed data with
the information provided by its main
argument

The returned object from
calibration_setup(), plus an optional
absolute path to search for the data

A function suited to run the model
to be calibrated, plus the outputs
from calibration_setup() and
calibration_data().

Creates a new function, to be used as
the objective function in the calibration

A function, integrating the run of
the model and the comparison of
outputs with observed data. See
the help of the function for more
details

R S3 methods for visualising the results
of the calibration

The object returned by the
calibrate() function

TABLE 2 Main arguments of the calibrate function.

Argument  Description

par A numeric vector or a list containing numeric vectors. The length of the par argument defines the number of parameters to be
estimated (i.e. the dimension of the problem)

fn The function to be minimised

ar A function specifying the gradient of fn. Some optimisation methods do not need the gradient, so it will be ignored if provided. If
needed and not provided, numerical gradients will be computed

method The optimisation method to be used, 20 methods are currently available (see Table 3). Different methods are allowed for each
calibration phase, see ‘phases’ argument

upper Upper bound value(s) for parameters. One value or a vector of the same length as par. If one value is provided, it is used for all
parameters. NA means Inf. By default, Inf is used (unconstrained)

lower Lower bound value(s) for parameters. One value or a vector of the same length as par. If one value is provided, it is used for all
parameters. NA means -Inf. By default -Inf is used (unconstrained)

phases An optional vector of the same length as par, indicating the phase at which each parameter becomes active for the optimisation. If
omitted, default value is 1 for all parameters. Negative integers and NA are accepted for phases, both meaning that the parameter
will never be active, so it will remain constant throughout the calibration

control Fine control of the optimisation, see function help for details and Table 3

hessian Logical value. Should a numerically differentiated Hessian matrix be returned?

replicates The number of replicates of model run to evaluate the objective function in case of stochastic models. One value or a vector of
length max(phases), to specify a different number of replicates for each phase. The default value is 1

parallel Logical. Use parallel computation? (e.g. for numerical gradients)

execution (e.g. breakdowns or stoppages of calculation servers), 3 | CREATING THE OBJECTIVE FUNCTION

so the ability to restart an interrupted optimisation is a very useful
feature for this type of problems. This feature is provided for the
two algorithms used by default (L-BFGS-B and AHR-ES) and for
the Hooke-Jeeves derivative-free minimisation algorithm (HJK), a
pattern search type algorithm similar to the Nelder-Mead algo-
rithm used by default in optim(). Additionally, parallel computation
of numerical derivatives has been implemented for all derivative-
based optimisation methods, greatly improving the time needed
for the optimisation.

The main purpose of the package is to fit complex models to data.
In order to solve a calibration problem, we first need to define the
objective function. While more experienced users can write explicitly
the objective function for their model fitting, the calibrar package
provides help functions aimed at simplifying the process of creating the
objective function. A non-intrusive black-box optimisation approach
is adopted, which means that the computer code of the model to be
calibrated does not need modification, but the model can be evaluated
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Algorithm Package Reference Method Notes

I. Derivative-based (local) methods

L-BFGS-B 3.0 Ibfgsb3c Fidler et al. (2020) ‘Ibfgsb3’ Default for deterministic objective functions. R interface
to L-BFGS-B.3.0 (Morales & Nocedal, 2011) Fortran
library

Algorithm 21 Rvmmin Nash (2021) ‘Rvmmin’ Variable metric method with box constraints

Algorithm 22 Rcgmin Nash (2022) ‘Regmin’ Conjugate gradient method with box constraints

ppg BB Varadhan and ‘spg Spectral projected gradient method

Gilbert (2009)

nlminb Stats R Core Team (2023) ‘nlminb’ Quasi-newton method with box constraints, R
implementation of PORT routines

L-BFGS-B Stats R Core Team (2023) ‘L-BFGS-B’ Original implementation in the stats package

II. Derivative-free (local) methods

nmkb Dfoptim Varadhan et al. (2023) ‘nmkb’ Nelder-Mead algorithm with box constraints

hjkb Dfoptim Varadhan et al. (2023) ‘hjkb' Hooke-Jeeves derivative-free minimisation algorithm

mads Dfoptim Varadhan et al. (2023) ‘mads’ Mesh Adaptive Direct Searches (MADS) algorithm for
derivative-free and black-box optimisation

hjn Optimx Nash and Varadhan (2011) ‘hjn’ Hooke and Jeeves Pattern Search Optimisation

BOBYQA Minga Bates et al. (2023) ‘bobyga’ Implementation of the BOBYQA algorithm trusted-region
method

I1l. Heuristic (global) methods

AHR-ES Calibrar This paper ‘AHR-ES’ Default for stochastic objective functions. Adaptative
hierarchical recombination evolutionary strategy

CMA-ES Cmaes Trautmann et al. (2011) ‘CMA-ES’ Covariance matrix adaptation evolutionary strategy
(Hansen & Ostermeier, 2001)

SANN Stats R Core Team (2023) ‘SANN’ Simulated Annealing implemented in stats::optim
(method="SANN’)

genSA GenSA Xiang et al. (2013) ‘genSA’ Generalised Simulated Annealing

DE DEoptim Mullen et al. (2011) ‘DE’ Differential evolution

soma Soma Clayden (2022) ‘soma’ Implementation of the Self-organising Migrating
Algorithm

genoud Rgenoud Mebane Jr. and ‘genoud’ Genetic optimisation using derivatives

Sekhon (2011)
pso Psoptim Ciupke (2016) ‘PSO’ Particle swarm optimisation (PSO), it includes
‘PSO2007’ two algorithms, ‘PSO2007’ and ‘PSO2011". Using
‘PSO20171’ method="PSQO’ will use the default ‘PSO2007’ (see

package help for details) but both can be specified

hybridPSO Psoptim Ciupke (2016) ‘hybridPSO’ The method="hybridPSO’ will use the hybrid method

for a given set of parameters. For this purpose, users need to write
an R function to (i) write a set of parameters in the format the model
is able to read, (i) run the model with this set of parameters and (jii)
read the model outputs back into R (Figure 2a). The output of this
run_model function is expected to be a list, each element being one of
the variables to calibrate. If the model is already implemented in R, the
construction of this function is very simple. Additionally, R facilities to
process and analyse data in different formats allow model outputs to
be handled independently of the language used for coding the model.

After the construction of the run_model function, the second
step consists in providing information for the construction of the
objective function. Each variable listed in the output of run_model

combining PSO and BFGS implemented in the pso
package

needs to be documented in the objective function (e.g. providing the
name of ‘variable’ and ‘type’, Figure 2b). This information should be
provided as a data.frame, and will be used as an argument for the
functions calibration_data and calibration_ObjFn. The calibration_
data function is expected to read data from the disk, to produce a list
with the same structure as the outputs of the run_model function.
The function calibration_ObjFn will combine the observed data and
the run_model function to create the objective function for the cali-
bration problem (Figure 2b), which in turn will be the fn argument for
the calibrate function.

To build the objective function, the ‘type’ selected for each vari-
able is the function that will combine the observed and simulated
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FIGURE 2 (a) Scheme of the link between the model and the calibration. The R function run_model receives a vector or list of parameters
to test, writes the parameters in a form that is readable for the model (e.g. via txt or csv files), runs the model (possibly via system) then
captures and processes the model outputs. The result of the function is a ‘list’ object with all the variables to be confronted with observed
data. (b) Scheme of the calculation of the value of the objective function for a given set of parameters. For each variable, a partial value

of the objective function is calculated by applying the function specified in the column ‘type’ to observed and simulated values. The final
value of the objective function is calculated by applying the aggFn to the partial function values and the weights specified in the ‘objective

function info’ table.

data to produce a scalar value, measuring the fit between the model
and the observations. One scalar objective function is produced
as in a multi-objective optimisation problem there is no guarantee
that a single solution simultaneously optimises each objective and,
given the data has observation errors and biases and models can
be misspecified, most likely each partial objective function will be
conflicting with each other (Maunder & Piner, 2017). As a result, a
multi-objective optimisation approach will produce many different
equivalent solutions, while we should expect that only one set of
parameters has physical, biological or ecological meaning given our
model is an appropriate representation of the system under study.
By combining the likelihood of each data set, and weighting the
datasets by their assumed uncertainty, we are able to find a solution
that integrates all the data. Some negative log-likelihood functions
are already implemented and proposed for common distributions
(e.g. normal, lognormal, multinomial, Poisson; type?objFn to see the
available functions). User defined functions can be used, as long as
they accept two arguments (obs and sim) and return a scalar value,
including ad-hoc distance measures as used in ABC methods. For

example, to implement a calibration using the least squares method,

we can write the following function to calculate the residual sum of

squares:

RSS = function(obs, sim, ...) {
value = sum((obs-sim)*2, na.rm=TRUE)
return(value)

}

The ‘calibrate’ column in the configuration of the objective
function provides a flag to select the variables to be used for the
calibration. The ‘use_data’ column indicates whether data are read
from the disk. If use_data=TRUE, the file specified in the calibration
settings will be used. If use_data=FALSE, the observed value is set
to NULL, and the type function is expected to use simulated data
only. The latter option can be particularly useful to set penalties
in the model outputs or parameters, where no observed data are
needed. Finally, the ‘weight’ column provides the relative weights
to combine the values obtained for each variable. A more detailed
illustration of this process is provided in the vignettes and demos

of the package.
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4 | RUNNING A CALIBRATION

The calibrate function takes a list as a control argument, where
fine control options are provided, for example for the parallelisa-
tion of the optimisation (based on the foreach package, Revolution
Analytics & Weston, 2014). Before using the parallel implementa-
tion, a parallel ‘cluster’ should be created, which can be easily done
using the parallel or snow R packages (see vignettes). This allows full
control of the configuration of the parallel runs, making the calibra-
tion work in different computer systems, from computers with mul-
ticore processors to high-performance supercomputers. Once the
cluster is created, the parallel=TRUE argument must be included in
the call, and the ncores control option should indicate the number of
cores chosen (see Table 4 for details). Additionally, since each model
run could require files to be written to the disk (which will be read
by the run_model function after the simulation), a different folder
needs to be assigned for each parameter combination that is tested
by the optimisation algorithm or for the computation of numerical
gradients. For this purpose, the run control option allows a directory
to be specified where all the simulations are run (subfolders named
i0, i1, ..., in-1 will be automatically created as needed). By default, no
folders are created, so a path should be specified if the model needs
to write files to the disk. All the parameter input files (Figure 2a) will
be written in temporary folders (e.g. run/i0). The control option mas-
ter allows a folder to be specified, the full content of which will be
copied to these temporary folders. Since the calibration of numeri-
cally intensive models can run for a long time, a ‘restart’ option is

also available, allowing an interrupted calibration to be continued.

5 | THREE APPLICATION EXAMPLES

To illustrate the main functionality of the package, we estimated the
parameters for a predator-prey model using the calibrate function.
The model was defined by a system of ordinary differential equa-
tions for the abundance of prey N and predator P:

TABLE 4 Some options for the control

. . Opti
argument of the function calibrate. AL

maxit

ncores

run

master

REPORT

restart.file

- - RS
Methods in Ecology and Evolution Emru.

dN N

E = rN<1—R>—aNP
dP

E = —IP+}’GNP

The parameters to estimate were the prey's growth rate r,
the predator's mortality rate I, the carrying capacity of the prey K
and a and y for the predation interaction. To start, we created the
demonstration data for this model using the function calibrar_demo
function (see help in the package for details on this function used
to illustrate the functionality of the package) with T=100 as an addi-
tional argument to specify the time horizon.

LV = calibrar_demo(path=path, model='PredatorPrey', T=100)
setup = calibration_setup(file = LV$setup)

observed = calibration_data(setup=setup, path=LV$path)
run_model = calibrar:::.PredatorPreyModel

obj = calibration_objFn(model=run_model, setup=setup, ob-
served=observed, T=LV$T,

aggregate=TRUE)

To run the calibration, we needed to specify the initial guess for
the parameter values (par), the objective function to minimise (fn)
and optionally the lower and upper thresholds for the parameters
(lower and upper) and the phase number at which each parameter
needs to be estimated (phases). See the Supporting Information for

the full description of the objective function and calibration setup.

calibrate(par=LV$guess, fn=obj, lower=LV$lower, upper=LV$upper,
phases=LV$phase)

The argument method can be used to change the default op-
timisation algorithm. We calibrated the model using five differ-
ent optimisation algorithms with their default parameters: (i)
derivative-based: Algorithm 21 (L-BFGS-B, default for determin-
istic functions, from package Rvmmin), the conjugate gradient

Description

Maximum number of iterations of the algorithm

The number of cores available in the parallel cluster for the active
session. If parallel=TRUE, the default is to get the number of cores of
the system

An optional folder path to create all the temporary files needed to
run the simulations from the objective function for each parameter
combination tested by the optimisation algorithms

An optional folder path. All the contents of the master folder will be
copied to the run folder, one copy in one subfolder per parameter
combination tested at each iteration

Number of iterations after saving a new restart object, which contains
all the information necessary to restart the calibration at that point. The
default is NULL, and no restart files are created

Basename for the restart file to be created
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method (CG from the Rcgmin package); (ii) derivative free: Nelder-
Mead (default R optimiser, stats::optim()); (iii) heuristic: AHR-ES
(default for stochastic functions) and the CMA-ES (from cmaes
package). As shown by the optimisation results (Figure 3 and
Table 5), the algorithm Nelder-Mead and CG could not find the
solution using the default parameters provided in the original op-
timisation functions (while some improvements may be obtained
after some tuning). The full code can be found in the vignettes of
the package.

A second example involves the calibration of a Poisson
Autoregressive Mixed model for the dynamics of a population in dif-
ferent sites:

log (1) = log(p;s) + o + BXis + 71,

where Hig is the size of the populationin site i at yeart, Xi,t is the value of

an environmental variable in site i at year t. The parameters to estimate
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were q, §, and y,, the random effects for each year (ye ~ N(O, 02)), and
the initial population at each site Hio- We assumed that the observa-
tions N;, follow a Poisson distribution with mean ;. We could also cre-
ate the data for this model using the function calibrar_demo, with the
additional arguments L=5 (five sites) and T=100 (one hundred years):

ARPM = calibrar_demo(path=path, model="PoissonMixedModel",
L=>5, T=100)

setup = calibration_setup(file=ARPM$setup)

observed = calibration_data(setup=setup, path=ARPM$path)
forcing = as.matrix(read.csv(file.path(ARPM$path, "master", "environ-
ment.csv"),

row.names=1))

For this example, the run_model function also returns the time
series of y, that will be used to add a penalty when constructing the
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FIGURE 3 Results of the calibration of the predator-prey model using different optimisation methods. The simulated data (points) and model
fits (lines) are shown. For the optimisation methods “AHR-ES”, “L-BFGS-B" and “CMA-ES” there are no visual differences and the lines merge.

TABLE 5 Summary of the calibration

Objective Parameter results for the predator-prey model using
Method function value R L K @ y five different optimisation methods with
default parameters.

Data 4.96E-07 0.5 0.2 100 0.1 0.1

L-BFGS-B (Rvmmin) 5.61E-07 0.4999  0.2000 99.9960 0.1000 0.1000

CG (Rcgmin) 1.29961642 0.4489  0.2746 67.4768 0.0796 0.1802

Nelder-Mead 1.41516908 0.4500 0.2751 66.2434 0.0788 0.1827

AHR-ES 5.61E-07 0.4999  0.2000 99.9960 0.1000 0.1000

CMA-ES 5.61E-07 0.4999  0.2000 99.9960 0.1000 0.1000
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objective function. This function also includes an additional argu-
ment named ‘forcing’ that is used to pass additional forcing data (en-
vironmental conditions at each site and time step in this example)

that is needed to run the model:

run_model = function(par, forcing) {

output = calibrar:::.PoissonMixedModel(par=par, forcing=forcing)
output = c(output, list(gammas=par$gamma))

return(output)

}

obj = calibration_objFn(model=run_model, setup=setup, ob-

served=observed, forcing=forcing, aggregate=TRUE)

The calibration was run as in the previous example calling the

calibrate function:

calibrate(par=ARPM$guess, fn=obj, lower=ARPM$lower, up-
per=ARPM$upper, phases=ARPM$phase)
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Here we calibrated the model using four different optimisation
algorithms: (i) derivative-based: L-BFGS-B (stats) and L-BFGS-B v3,
(ii) derivative free: HJKB; (iii) heuristic: AHR-ES and SANN (Figure 4
and Table 6). In this case, the SANN algorithm could not find the
solution despite an increased number of maximum iterations. The
best solution found was using HJKB algorithm, closely followed by
the AHR-ES and L-BFGS-B algorithms (Table 6 and Figure 4). The full
code can be found in the vignettes of the package.

For a given model, such as the autoregressive Poisson mixed
model, the calibration can take up to several hours depending on
the optimisation method used (Table 6). Therefore, the possibility to
restart an interrupted optimisation can be useful. To do this, the cal-
ibrate function must be called with the additional control argument
‘restart.file’, which indicates the name of the file storing the informa-

tion needed to restart the optimisation (see Table 4):

calibrate(par=ARPM$guess, fn=obj, lower=ARPM$lower,
upper=ARPM$upper, phases=ARPM$phase,

control=list(restart.file="arpm"))

(b)
= L-BFGS-B
g 4 alaaa L Ill"”II"'""I'Il'l""ll"l l"|']|'”'||”"||" .[|||.||,_.I_.,|I||||I.
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FIGURE 4 Results of the calibration of the autoregressive Poisson mixed model using different optimisation methods. (a) The simulated
data (points) and model fits (lines) are shown. For the optimisation methods “HJKB”, “AHR-ES” and “L-BFGS-B" there are no visual
differences and the lines merge. (b) Time series of differences between the vy, estimated by each algorithm and the real parameter values. For
each case, the dotted lines represent the 95% limits for the differences.
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TABLE 6 Summary of the calibration results for the autoregressive Poisson mixed model using five different optimisation methods.

Parameters
Elapsed time Objective function &
Method (seconds) value @ B Mean SD Correlation Bias
Data - -186178.145 0.4000 -0.4000 -0.0187 0.1952 1.000 0.0000
L-BFGS-B 186 -186081.484 0.4846 -0.4157 -0.0867 0.1923 0.904 0.0680
L-BFGS-B 3.0 14 -180576.287 0.3700 -0.1389 -0.2528 0.0460 0.311 0.2341
HJKB 222 -186094.819 0.3923 -0.4145 0.0039 0.1869 0.908 -0.0226
AHR-ES 612 -186085.887 0.3967 -0.4143 -0.0009 0.1940 0.862 -0.0178
SANN 43,004 1.5117E+16 0.2000 0.1000 0.0000 0.0000 — -0.0187

If an appropriate restart file is found in the working directory, the
calibration will be restarted from the last saving point.

A third and more complex application involved the calibration of
the stochastic individual-based model OSMOSE, a multispecies spa-
tially explicit ecosystem model (Shin & Cury, 2001, 2004). It has been
applied in the Northern Peru Current Ecosystem (Oliveros-Ramos
et al.,, 2017) to model the life history and spatiotemporal dynamics
of nine interacting species, between 1992 and 2008. The model was
confronted with time series of abundance indices, fisheries landings
and catch-at-length composition data (see Hilborn & Mangel, 1997,
a comprehensive introduction to the subject). The objective func-
tion used a penalised likelihood approach, combining log-normal
and multinomial likelihoods (see the Supporting Information for the
full description of the objective function and calibration setup). A
total of 307 parameters were estimated in four sequential phases.
The OSMOSE model is implemented in Java, and it was not an op-
tion to recode it in another language for parameter estimation pur-
poses. Each calibration trial lasted 5days using a High-Performance
Computing (HPC) cluster under the Portable Batch System (PBS) for
jobs scheduling, used 64 cores and needed to be relaunched every
24 h due to system restrictions. The objective function for this model
is stochastic and was optimised using the AHR-ES algorithm. The cal-
ibration in sequential phases improved the final parameter estimates
as the calibration in only one phase could not converge to an accept-
able solution (see Oliveros-Ramos et al., 2017 for details on how to set
the parameters' phases). The calibrar package greatly simplified the
task of the calibration of a complex model like OSMOSE, which other-
wise can be highly technical, if not impossible, with other optimisation
packages. The scripts used for this calibration that may be adapted
for applications of the calibrar package in other HPC systems are
available in the Supporting Information. For other applications, the
calibrar package has been used in the model fitting of some complex
models like in Oliveros-Ramos et al. (2010), Oliveros-Ramos and Pefa-
Tercero (2011), Griss et al. (2015, 2016), Dueri et al. (2016), Halouani
et al. (2016), Travers-Trolet et al. (2019), Moullec et al. (2019), Banaru
etal. (2019), Xing et al. (2020) and Morell et al. (2023). More examples
can be found in the vignette of the package ‘Parameter estimation for
ODE systems/, that illustrates how the calibrar package can be used
for the calibration of models where ABC methods have been used

previously (e.g. see Minter & Retkute, 2019), but with considerably
less computational cost.

6 | COMPARISON WITH OTHER
SOFTWARE

Implementation of general-purpose optimisers can be found in R
(see Optimisation and Mathematical Programming Task View at
CRAN:

Two very useful features for model calibration are the perfor-

http://cran.r-project.org/web/views/Optimisation.html).

mance of constrained optimisation (limiting the search to a box
by defining lower and upper boundaries to parameter values)
and the calibration in multiple phases (to improve the search of
the global minimum by performing a sequential approximation).
The former option is implemented in several R packages, includ-
ing the optim function (providing the “L-BFGS-B” method, Byrd
et al.,, 1995) and several others wrapped in the optimx package
(Nash & Varadhan, 2011). The latter option is available in some
other R packages (e.g. Rcgmin and Rvmmin) for a single optimisa-
tion, but a sequential calibration, as described here, would have to
be performed manually. Additionally, the calibrar package allows
the choice of different optimisation methods for each calibration
phase, allowing the combination of heuristic global optimisation
methods and local optimisation ones to improve the performance
of a multiple phase calibration.

For the particular purpose of the calibration of stochastic
models, several meta-heuristic and non-derivative based al-
gorithms are now available in R, from EAs (e.g. genalg, DEoptim
and cmaes packages) to other nature-inspired algorithms (e.g.
Simulated Annealing ‘SANN’ method in optim and the Particle
Swarm Optimisation (PSO) algorithm in the hydroPSO package,
Zambrano-Bigiarini & Rojas, 2013). However, while all of these
packages and algorithms provide support for constrained optimis-
ation, none of them provides support for keeping fixed parameters
during the course of a single optimisation, and a multiple phase
calibration would have to be performed manually by modifying the
objective function for each trial. Furthermore, from the implemen-
tation point of view, a very important feature for the calibration of


http://cran.r-project.org/web/views/Optimisation.html

OLIVEROS-RAMOS and SHIN

517

complex models is the parallel implementation of the optimisation
routine. The PSO algorithm in the hydroPSO has its parallel imple-
mentation tied to the core of the function and does not allow its
use in high-performance clusters, especially under a queue sys-
tem, and only the DEoptim package provides a more flexible ex-
ternally configured parallelisation.

Additionally, in the construction of the objective function, cali-
brar allows an easy transferability of the calibration problem to other
general-purpose optimisers, which can be useful under certain cir-
cumstances (e.g. see Bolker et al., 2013). There is indeed “no free
lunch” in optimisation, and no optimisation algorithm will perform bet-
ter than all others for every type of optimisation problems (Wolpert
& Macready, 1997) and testing multiple optimisation algorithms
is recommended (Bolker et al., 2013). Other calibration-oriented
packages like hydroPSO provide functions to write parameters and
read outputs, but this approach breaks the ‘objective function’ ap-
proach for the optimisation, by not allowing the transfer of the ob-
jective function to other optimisers, and while the hydromad package
(Andrews et al., 2011) offers support for the automated construction
of an objective function in a standard way, it is restricted to some
particular cases useful in hydrological modelling. In these regards, the
package calibrar is meant to be generic enough to be used in a variety
of optimisation problems, including the calibration of complex (i.e.
non-linear, with a lot of parameters and long runtime) and stochastic
models. Three features of calibrar render it particularly useful for the
calibration of computationally intensive stochastic models: the paral-
lelisation of the simulations, the ability to handle replicate simulations
in the evaluation of the objective function and the ‘restart’ option,
which allows the calibration of complex models to be handled under
restricted access to high performance resources (e.g. clusters with

queue systems and fixed wall time).

7 | CONCLUSIONS AND PERSPECTIVES

A successful model calibration implies several computational, the-
oretical and practical challenges. The calibrar package is intended
to provide a framework to simplify the calibration of models, in
particular complex and stochastic ones (e.g. individual-based mod-
els), for which there have been fewer developments compared to
those for deterministic and differentiable models. To our knowl-
edge, the calibrar package is the first one wrapping several global
search optimisation methods, facilitating their use and testing
for parameter estimation. We adopted a ‘black-box’ and ‘non-
intrusive’ approach, since most complex models are often compu-
tationally intensive and most likely implemented in fast low-level
languages and recoding for calibration purposes is not the best
option. The restart functionality can help in the optimisation of
computationally intensive problems, since most of the computing
time is spent evaluating the objective function (Nash, 2014) and
the ability to restart an interrupted optimisation could save signifi-
cant amounts of time. By using the generic approach of separating
the optimiser from the objective function, users can benefit from
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the optimisation capabilities of the package while being able to
write complex objective functions that deal with the uncertain-
ties and biases typically found in ecological datasets. This also fa-
cilitates the good practice of testing several optimisers during the
parameter estimation process (Bolker et al., 2013) and additional
state-of-the-art optimisation methods are planned to be added in
future versions. The use and testing of the calibrar package with
several real-world optimisation problems for the calibration of
complex ecological models has directed the developments of the
package and its current flexibility, while we expect future applica-
tions will help to continue improving the package given its open-
source nature.
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