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ABSTRACT:  
 
To predict the spatial distribution of anopheles in the Dielmo village (located in the southeastern part of Senegal), we 
used residual fauna collected from 104 different rooms during four separate trips conducted in 1994 and 1995. Thanks 
Generalized Estimating Equations, we were able to identify factors influencing the distribution of Anopheles in the 
village. Several variables, such as the number of persons sleeping in the room, population density around the hut, 
construction materials, presence of mosquito nets, were found to be significant, while many spatial variables relevant to 
the scale of a region (vegetation index, distance to larval sites…) were not found to be significant on the village level. 
As a result, it became clear that it is difficult to correctly predict the anopheline density for each house even with 
precise spatial data created with Satellite imagery and Geographical Information Systems (GIS). This work highlights 
the complexity of the geographical study of anopheline density and its limits on a small space. 
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1. INTRODUCTION 

Satellite imagery and Geographical Information 
Systems (GIS) analysis techniques have been used to 
identify areas at risk of vector-borne diseases, such as 
malaria, but, most of the time, they were carried out at a 
regional scale (Beck, 1994; Salem, 1994; Roberts, 
1996; Thomson, 1996; Beck, 1997; Connor, 1997; 
Manguin, 1999; Beck, 2000; Thomas, 2000) 
A longitudinal epidemiological and entomological 
follow-up began in 1990 to evaluate malaria infections 
and the mechanisms of protective immunity in a 
population living in Dielmo, a village in Senegal. Every 
month, an average entomological inoculation rate is 
calculated for the entire village and analyses are based 
on the assumption that the person’s level of exposure to 
infected bites is identical (Rogier, 1993; Trape, 1994.; 
Rogier, 1996; Rogier, 1999; Sokhna, 2000)  
However, variations in anopheles densities may be 
important within a same village (Smith, 1995; 
Minakawa, 2002). In Dielmo, we demonstrated with 
analysis of variance that anopheline densities collected 
by hut are significantly different (Vallee, personnal 
communication). To predict anopheline densities in the 
differents huts in Dielmo village, we used spatial data. 
Our aim was to test the relevance of spatial data (issued 
from Satellite imagery and Geographical Information 
Systems techniques) applied to a small area. 
 
 

2. MATERIALS AND METHODS 

2.1 Study Area 

Dielmo (13°45’N, 16°25’W), a village of about 300 
inhabitants, is situated 280 km on the southeast of 
Dakar in the Sahelo-Soudanian region of Senegal (Map 
1).  

 

 
Map 1: Location of Dielmo in Senegal 
 
The Nema, a small and permanent river, borders the 
village and its marshy banks provide breeding sites to 
anopheles throughout the year. Malaria is holo-endemic 

(parasite prevalence > 75% among infants) and 
transmission is high and perennial, reaching its peak 
during the rainy season (approximately 200 infected 
bites/person/year). 
In Dielmo, the major vectors transmitting malaria are An. 
funestus, and An. gambiae that account respectively for 
63% and 36% of anopheles captured on humans (Konate, 
1994; Fontenille, 1997). 
We used a GPS (Global Positioning System) to localize 
every house and produce an accurate map of the village. 
To remedy to the GPS inaccuracy which is within the 
scope of 10 meters, we choose to combine the use of GPS 
with a Quickbird satellite image that has a very fine 
spatial resolution (61 cm in panchromatic and 2.44 meters 
in multispectral).  
 

Data 2.2 

We collected morning residual fauna of An. funestus and 
An. gambiae in 104 different rooms of Dielmo village by 
pyrethrum indoor spray collection. Anopheles were 
gathered once during each mission in December 1994, 
March 1995, June 1995 and September 1995. Data 
consisted in 273 observations: only 33 rooms were 
surveyed 4 times. 
For every room, the following data have been collected: 
number of people sleeping in the room, roofing materials, 
wall materials, presence of space between the wall and 
roof, presence of at least a hole of 25 cm2 in the wall, the 
use of fumigations and mosquito nets.  
Thanks to the Quickbird satellite image (captured on 
March 9, 2004) that has a very fine spatial resolution, we 
calculated the vegetation index (NDVI for Normalized 
Difference Vegetation Index). To take into consideration 
the environment surrounding each habitation, we 
calculated the average vegetation density within the 
radiuses of 50 meters and 100 meters around each 
habitation (Map 2) and within a 25 meters thick polygon 
linking each house to the nearest point of the Nema River. 
We calculated the average number of persons sleeping in 
each room and we produced a map of the population’s 
distribution in Dielmo in 1995. To take into consideration 
the population density around each habitation, the 
number of persons sleeping within the radiuses of 50 
meters and 100 meters around each hut, as well as the 
number of persons between the studied hut and the main 
mosquito breeding place (Nema river) were calculated.  
We localized cattle existing in 1995 and we separated two 
categories of cattle to distinguish them with many 
animals. Following the same way than person density, we 
estimated the presence of livestock within the radiuses of 
50 meters and 100 meters around each hut, as well as 
between the studied hut and the Nema River. 
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Map 2: Calculated average vegetation densities around 
a habitation* based on the NDVI index. 
* For this habitation, the average vegetation density is 
0,194 within a radius of 50 meters around the hut and 
0,284 within 100 meters, indicating a low vegetation 
density close to the hut. 
 
 
2.3 

3.1 

Statistical analysis to predict anopheline 
densities 

We used the Generalized Estimating Equations (GEE) 
to test the predictor variables’ pertinence for the whole 
of the 273 available entomological observations which 
are repeated data, meaning that we had several 
observations (between 1 and 4) of a same variable 
(number of anopheles) for each room. (Liang, 1986; 
Zeger, 1986) 
The variable to be explained was on one hand, the 
number of An. funestus, and on the other hand, the 
number of An. gambiae caught in a room. We replaced 
these variables with their square roots to correspond 
with a distribution model of Poisson.  
To evaluate the prediction’s quality, we established 
groups of anopheline densities based on square roots. 
We compared, for each observation (among the 273), 
the predicted number of anopheles with the 
corresponding observed number of anopheles. The 
prediction is said correct if the predicted number is 
affected in the same group than the observed number. 
Then we calculated the number of predictions that are 
correctly affected.  
 
 

3. RESULTS  

Variables influencing the anopheline densities  

We obtained two GEE models, one for each species of 
anopheles, containing only the variables significantly 
associated to the number of anopheles (tables 1 and 2).  
 

Variables Coef. Std. Err. z P>z IRR IRR²
mission 1 Ref.      
mission 2 1.056 0.11357 9.3 < 0.001 2.87 8.26 
mission 3 0.771 0.12059 6.3 < 0.001 2.16 4.67 
mission 4 0.975 0.11500 8.4 < 0.001 2.65 7.03 
Persons 
/room 0.087 0.0193 4.5 < 0.001 1.09 1.19 

Pop. 50m 
radius 0.005 0.0019 3 0.003 1.00 1.01 

Space 0.378 0.09314 4 < 0.001 1.46 2.13 
Mosquito 

net -0.289 0.10036 -2.8 0.004 0.74 0.56 

Table 1: Model obtained for square root of An. gambiae 
 
Variables Coef. Std. Err. z P>z IRR IRR²
mission 1 Ref.      
mission 2   -0.21 0.0908    -2    0.019 0.80 0.65 
mission 3 -0.560 0.1048    -5 < 0.001 0.57 0.32 
mission 4 -0.637 0.1022    -6 < 0.001 0.52 0.27 
Persons 
/room  0.076 0.0247  3.1    0.002 1.07 1.16 

Pop. 50m 
radius  0.005 0.0024  2.1    0.034 1.00 1.01 

Hay  0.369 0.1072  3.4    0.001 1.44 2.09 
Mosquito 

net -0.334 0.1300    -3  0.01 0.71 0.51 

Table 2: Model obtained the square root of An. funestus 
 
The Incidence Rate Ratio (IRR) measures the relative risk 
for the transformed variable (square root of mosquitoes). 
The IRR2 gives the value of risk relating to the variable 
of interest (number of mosquitoes). 
There is an important “mission” effect. With regards to 
mission 1 (December 1994), missions 2 (March 1995), 3 
(June 1995) and 4 (September 1995) multiplied the 
number of An. gambiae by 8.3, 4.7 and 7and divide the 
number of An. funestus by 1.4, 3.3 and 2.5. The 
“person/room” effect is also significant. An additional 
person sleeping in a room multiplied the total number of 
vectors, whether An. gambiae or An. funestus, by 1.2. An 
additional person within a radius of 50 meters multiplied 
by 1.012 the number of An. gambiae and by 1.01 the 
number of An. funestus. This multiplying coefficient is 
very low, but should be compared with the number of 
persons within 50 meters from the hut (varying between 4 
and 96), which gives therefore weight to this variable, or 
up to 2.6 times more vectors because of this variable 
alone. The presence of a space between the wall and roof 
(the architectural variable retained for An. gambiae) 
multiplied the number of Anopheles by 2.1. For An. 
funestus, the roofing material is more pertinent as a roof 
made of hay multiplied the number of Anopheles by 2.1. 
The use of mosquito nets (in good condition) divided the 
number of An. gambiae by 1.8 and the number of An. 
funestus by 2. However, use of fumigation is not a 
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variable significantly associated to the number of 
mosquitoes.  
We tested the relevance of other spatial variables but 
without significant results. Distance to the Nema, 
vegetation density within 50 and 100 meters from 
houses, as well as vegetation density between the Nema 
and habitations, the number of persons between 
habitations and the Nema and the presence if livestock 
within 50 and 100 meters from habitations and between 
the Nema and habitations are not significantly 
associated with the number of collected Anopheles.  
 

Quality of prediction of anopheline densities 3.2 

Based on coefficients affected to each significant 
variable, we have attempted to predict the number of 
Anopheles collected in a specific hut during a given 
mission. The percentage of correctly affected 
observations at 41% is low (table 3). It was therefore 
not possible, based on the selected variables, to project 
the Anopheles densities in a relevant manner. 

 
Difference in 

affectation An. gambiae An. funestus 

0 112 (41%) 110 (41%) 
|1| 136 (50%) 138 (50%) 
|2| 24 (9%) 24 (9%) 
|3| 1 (0%) 1(0%) 

Total 273 (100%) 273 (100%) 
Table 3: Percentage of observations correctly affected 
to the groups of densities 
 
 
 

4. DISCUSSION AND CONCLUSION 

The coefficient of common correlation helps to 
appreciate the hut’s proper effect. The value of 
correlation is 0.1886 for the model performed on the 
square roots of An. gambiae and 0.2814 for the one 
performed on the square roots of An. funestus, which 
means that the hut’s residual effect explains the 3.5% 
(0.18862) and 7.9% (0.28142) of the variability of the 
number of collected Anopheles. If the variables explain 
all the data’s variability, the proper effect of the hut 
should be null. This means that some variables 
describing the hut are missing in our model, particularly 
for An. funestus. 
To predict the anopheline distribution at the regional 
scale, it is usual to take into consideration the distance 
between breeding sites and habitations in urban areas 
(Trape, 1992; Salem, 1994) as well as in rural areas 
(Beck, 1994, Fontenille, 1997; Thomas, 2000; Hii, 
1997) 
At village scale, in Kenya (Minakawa, 2002) and in 
Uganda (Staedke, 2003) distance from a house to its 
nearest larval habitats showed a significant correlation 
with anopheline densities. Our study did not 

demonstrate the relevance of this variable, maybe because 
Dielmo is a very limited space; every hut is < 300 m from 
the stream. A study in Sri Lanka using small distance 
categories (<250m/>500m) from stream can’t reach 
statistical significance (Van der Hoeck, 1998). 
Landscape description with remotely sensed data may 
allow locating habitats (un)favorable to Anopheles and 
predicting anopheline densities (Beck, 1997, Wekesa, 
1996; Grillet, 2000; Eisele, 2003). In our study, we 
calculated Normalized Difference Vegetation Index 
(NDVI) from satellite imagery with high spatial 
resolution, but could not prove its relevance to the 
Anopheles density over a limited space such as Dielmo 
village. As shown by an article synthesizing the potential 
of remote sensing for human health (Herbreteau, 2005), 
many studies used the NDVI index (a quantitative 
variable that is quite commonly used to describe the type 
of landscape and vegetation density) at a scale that is 
inappropriate to qualify the environment of a vector.  
 
Even if some variables proved to be significant, it is not 
possible to estimate the distribution of Anopheles based 
on these variables only. This study raises the more 
theoretical question on the limitations of a health 
geography analysis: Is the geography of anopheline 
densities relevant over such a limited space as Dielmo? 
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