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This study presents a regionally trained version of the “CArbonate system and
Nutrients concentration from hYdrological properties and Oxygen using a Neural
network” (CANYON) method, named CANYON-PU, for estimating primary
macronutrients (phosphates, silicates, and nitrates) in the Peruvian Upwelling
System (PUS). Using a neural network approach, the model was trained using
extensive biogeochemical data spanning between 2003 and 2021, collected by
the Peruvian Institute of Marine Research (IMARPE). Variables representing the
low-frequency variability related to ENSO were introduced in the training and
significantly improved the performance of the algorithm. The performance of
CANYON-PU was validated against independent datasets and demonstrated an
improvement in accuracy over the global CANYON model that struggled to
represent the nutrient distribution in the PUS mainly due to the lack of samples in
its training. Therefore, CANYON-PU successfully captured nutrient variability
across different spatial and temporal scales, showcasing its applicability to diverse
datasets, including high-frequency data such as profiling floats or gliders. This
work highlights the effectiveness of neural networks for representing the nutrient
distribution within highly variable ecosystems like the PUS.
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1 Introduction

The Eastern Boundary Upwelling Systems (EBUS) are regions of
major ecosystem and ocean biogeochemical importance located in the
western margin of the continents characterized by high biological
productivity and are important sources of fish production (Freon et al,,
2009). The Peruvian Upwelling System (PUS) is a subcomponent of
the Humboldt system that spans all along the eastern margin of South
America. The Humboldt system is one of the four major EBUS and it
is characterized by year-round strong alongshore winds which drive
intense coastal upwelling cells (Strub et al., 1998; Yari et al.,, 2023). This
process delivers cold and nutrient-rich subsurface waters to the surface
making it a highly productive and rich ecosystem (Chavez et al., 2008;
Pennington et al., 2006). Several studies have described the spatio-
temporal variability of the principal macronutrients in this ecosystem:
phosphates (PO3"), silicates (Si(OH),) and nitrates (NOj3). These
macronutrients are susceptible to high frequency spatial and temporal
variability, principally as a result of coastal trapped waves (Echevin
et al., 2014; Liidke et al,, 2019) and mesoscale eddies (Pietri et al.,
2013). Research has suggested that coastal trapped waves can have a
variety of effects on macronutrient distributions that are linked with
seasonal dynamics (Ludke et al,, 2019). However, these dynamics are
not well known due to the lack of high frequency observations needed
to resolve this phenomenon. More persistent, interannual variability in
macronutrient availability has been reported as a response to El Nifio
Southern Oscillation (ENSO) and its warmer (El Nifio, associated with
weaker upwelling) and colder (La Nifa, associated with stronger
upwelling) phases (Espinoza-Morriberon et al, 2017; Graco et al,
2017; Hormazabal et al., 2006; Mogollon and Calil, 2017). Therefore,
assessing the variability of the PUS remains challenging due to the lack
of continuous, high-resolution data needed to disentangle the
multiple forcings.

The Peruvian Institute of Marine Research (IMARPE) has
organized ship-based surveys along the Peruvian coast since the
early 1960s, however, sampling did not frequently include
measurements of PO; , Si(OH), and NO;. One approach to
understand nutrient variability relies on the use of regional
models that can represent marine biological productivity and the
principal macronutrients (e.g. Echevin et al., 2014) but they do not
resolve variability from seasonal to higher frequencies well due to
the monthly climatological boundary conditions used for the
biogeochemical tracers. This limitation, particularly the inability
of traditional models to accurately represent these dynamic nutrient
fluctuations, highlights the need for alternative approaches.
Recently, the application of Artificial Neural Networks (ANN) for
estimating the principal macronutrients among other biochemical
parameters has been explored. For example, the ANN denominated
CANYON, trained and tested for the global oceans, stands for
“CArbonate system and Nutrients concentration from hYdrological
properties and Oxygen using a Neural network” (Sauzede et al.,
2017) and has been later refined and published as CANYON-B
(Bittig et al., 2018). Similarly, the Empirical Seawater Property
Estimation Routines (ESPER; Carter et al., 2021) uses a mix
(ESPER-Mix) of locally interpolate regression (ESPER-LIR) and a
feed forward NN (ESPER-NN) by averaging its outputs to estimate
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PO;, Si(OH), and NO5 on a global scale. Although the capability of
CANYON and ESPER to estimate the principal macronutrients
among other biogeochemical variables has been demonstrated, they
lack the ability to predict the nutrient dynamics in marginal or high
variability regions. Even though ESPER has demonstrated to
perform similarly or better under certain circumstances than
CANYON, it struggles when the magnitude of the testing
variables varies considerably from the training set even when they
are close in physical space making ESPER more sensitive to
variations. Additionally, similar to CANYON, ESPER is a globally
trained ANN which weakens its capability of predicting the
characteristics of the principal macronutrients in highly variable
regional environments such as the PUS.

Recently, it has been demonstrated that regionally trained ANNs
methods could reduce the errors in the predictions by incorporating
regional specific data that represents biogeochemical processes not
present in the global methods such as seasonal variability in
constrained areas. CANYON-MED, for example, is the regional
method retrained with local data for the Mediterranean Sea
(Fourrier et al., 2020). Similarly, the GOM-NNph method (Osborne
et al,, 2024), developed for estimating pH in the Gulf of Mexico
emphasizes the usefulness of regionally trained ANN.

In this paper, a regionally trained version of the global
CANYON method is presented for the PUS. Taking advantage of
multiple oceanographic surveys led by IMARPE we trained an ANN
which we called CANYON-PU, with the primary objective of
estimating the principal macronutrients: PO3 ", Si(OH), and NOj.
Additionally, we propose an ensemble model of CANYON-PU by
combining the 10 best-trained ANNSs. This optimized CANYON-
PU is then validated with different independent datasets at different
spatio-temporal scales and compared against CANYON-B and
ESPER-NN. Finally we explore the usage of CANYON-PU in a
higher frequency dataset collected in two glider missions deployed
off the northern Peruvian coast.

2 Materials and methods

2.1 IMARPE biogeochemical dataset

IMARPE has carried out regular ship-based surveys along the
Peruvian coast since the early 1960s. In order to study major
upwelling cells and fishery areas, it has collected a large number
of discrete water column samples of ocean station data (OSD) such
as temperature, salinity, oxygen and the principal macronutrients
and, since the early 1990s, of Conductivity-Temperature-Depth
(CTD) profiles. In this work, we selected sampling stations that in
addition to core variables of temperature, salinity and oxygen, also
includes measurements of the principal macronutrients
concentration: PO}, Si(OH), and NO;. The nutrient samples
were measured following the spectrophotometric method
described in Strickland and Parson (1972) using a Perkin-Elmer
Lambda 40 double-beam UV/Vis spectrophotometer. The standard
deviation (SD) computed for PO}, Si(OH), and NO5 was 0.74 uM,
8.70 uM and 6.92 uM respectively. Furthermore, an additional
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independent validation dataset using IMARPE’s regularly ship-
based measurements that met the same selection criteria located
in fixed stations offshore Paita (5 °S) and Callao (12 °S) was used to
test the performance of CANYON-PU outside the ANN framework
and assess the general applicability of other methods.

2.1.1 Ship-based surveys available dataset

From 2003 to 2021, a total of 76 cruises monitored an area
between 3 °S and 20 °S in cross-shore sections that extended as far
as 400 km off the coast. That represents an initial total of 29729
OSD samples. This dataset was divided into training datasets based
on the availability of each of the macronutrient data types. These
samples were split by nutrient in order to have three unique datasets
for PO}, Si(OH), and NOj. For each of the three unique
macronutrient datasets, associated variables of latitude, longitude,
depth, temperature, salinity and oxygen had to be present for each
measurement. Furthermore, it was made sure that in the three
unique datasets the principal variables such as time, position, depth,
temperature, salinity and oxygen were also available. If that criteria
was not met, the sample at that specific depth was removed.
Additionally, each profile was quality-control following a similar
criteria proposed in Grados et al. (2018) by removing casts with
error in geographical position which made them appear on land or
with a maximum depth greater than the corresponding bathymetry
estimated from GEBCO_2023. Any duplicate sample was also
identified and removed. Finally, outliers of temperature, salinity
and oxygen values were also discarded using the WOD18 acceptable
ranges in the Equatorial and South Pacific (see Appendix 9 in
Garcia et al., 2018). The final data distribution shows a total number
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of data that varied according to the nutrient considered (Figure 1a).
The quality-checked dataset contained 17067 samples for PO3;
17269 for Si(OH), and 17255 for NO; (Figure 1b) where ~70%
corresponded to surface stations and the remaining to profile
samples at standard depth levels with decreasing vertical
resolution as the profile reached the maximum depth of ~800 m
(Figure 1c). In general, observations span the entire PUS domain
with a great coverage. However, a slight bias in sampling across the
data distribution shows more samples in the northern and central
coast due to a relatively higher frequency of monitoring associated
with El Nifo; however, intensely sampled cross-shore sections can
be seen along the coast (Figure la). Although the number of
samples between 2003 and 2019 is relatively similar, the barplot
shows a noticeable decrease from 2020 due the restrictions in the
ocean operations during the COVID-19 pandemic (Figure 1b). The
seasonal distribution evidences a balanced distribution throughout
the year. It is worth noting that most of the data (98%) is contained
within the first 300 m (Figure 1c).

2.1.2 Independent time series in Paita (5 °S) and
Callao (12 °S)

A set of measurements was set aside and not used during the
ANN training phase to serve as an independent validation of
CANYON-PU. Four areas were defined off the shore of Paita (5 °
S) and Callao (12 °S) where regular sampling is performed. This
dataset contains a total of ~722 measurements from surface down to
500 m for each macronutrient and spans from 2003 to 2019 with a
seasonal coverage that includes warm and cold conditions.
Following the same criteria, the eligible data contains the core
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(a) Spatial distribution of NO3 profiles binned in a 30 km grid where the color represents total density of data (#Data/30km) in log scale,
(b) histogram of the total number of data available for PO3~ (blue), Si(OH)4 (orange), NO3 (yellow) binned by year and (c) monthly distribution of the
number of data binned in a 50 m vertical grid. The horizontal purple line in ~4.6 °S shows the path covered by the glider deployments.
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parameters as well as their corresponding nutrients. In order to test
the general applicability of the method and its performance in
coastal waters and in the open ocean, two zones along the cross-
shore sections in front of Paita and Callao were selected. The
available samples inside a 10 km radius at 81.45 °W, 5 °S and
82.5 °W, 5 °S corresponds to the independent dataset off Paita and,
inside a 10 km radius at 77.3 °W, 12.2 °S and 78 °W, 12.5 °S, to
Callao. The total dataset for Paita was 566 sampling points with a
maximum depth of 500 m whereas, for Callao, was 156 points with
profiles at standard levels that also reached 500 m at the most.

2.2 Artificial neural network architecture

Machine learning algorithms, such as ANN, have been widely
used within the marine science community (Rubbens et al., 2023) and
have shown promising results for classification and detection of
plankton (Irisson et al., 2022). In recent years, the applications of
ANN to estimate the nutrient concentration in the ocean have
appeared (Bittig et al., 2018; Carter et al., 2021; Contractor and
Roughan, 2021; Fourrier et al, 2020; Sauzéde et al, 2017; Wang
et al,, 2023). Compared to the core variables such as temperature,
salinity and oxygen and despite some development of ultraviolet
profiling sensors (Daniel et al., 2020) that allows the measurement
of NOj3, macronutrients concentrations are still largely undersampled
which makes it a challenge to characterize their variability at high
spatio-temporal scales. In this work, we propose a similar approach to
CANYON (Sauzede et al., 2017), CANYON-B (Bittig et al., 2018) and
CANYON-MED (Fourrier et al., 2020) by training an ANN with
IMARPE’s biogeochemical dataset for the PUS region in order to
estimate the concentration of PO3", Si(OH), and NO;.

2.2.1 Multilayer perceptron

Following CANYON methodology, we used a Multilayer
Perceptron (MLP) to build the ANN. The MLP is a feed forward
ANN with multiple hidden layers which has been shown capable of
approximating a continuous function by connecting inputs and
outputs (Bishop, 1995). The ANN functions iteratively connecting
input data with values in the adjacent layer by weights that are
readjusted in every iteration in order to minimize the error by
decreasing the error function. Prior to the training phase, it is
usually suggested that the data used is normalized between the
range of -1 and 1 in order to improve the accuracy and efficiency of
the model. The input data was normalized by following the same
criteria as Fourrier et al. (2020) using the equation:
/ % N (x = Xx)

1)

3 o

Where x is the normalized input, x, x and o represent the
input, its mean and the SD respectively. The factor % in Equation 1
allows that at least 80% of the data is restricted in the range [-1,1].
We used the Deep Learning Toolbox included in MATLAB to
develop the MLP. Within the toolbox framework, we chose to
randomly select 80% of the data to be used for the ANN training
and 20% of the data to be used as validation. Validation within the
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training process ensures that there is iterative testing of the model
using data that is not directly used in the training. For efficient
computation, the ANN architecture was limited to two hidden
layers, where the number of neurons in each layer could vary. The
neuron count within each layer was randomized within the range of
1 to 50. Given the three distinct nutrients under investigation, we
trained an independent MLP for each. To balance computational
cost with a reasonable level of confidence in our final results, we
performed 100 training runs for each nutrient, leading to a total of
300 trained ANN. Following the same steps detailed by Fourrier
et al. (2020), we used a Bayesian Regularization Algorithm in order
to appropriately determine the weights and errors during the
training. After 100 training tests for each nutrient, we analyzed
the performance of each ANN. This was done by computing the
statistical metrics which evaluates the accuracy of the ANN on the
validation datasets (20%): the Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and the Coefficient of determination
(R?). These values were computed by comparing the ANN-retrieved
nutrients and the corresponding in situ measurements and
identifying the optimum configuration by choosing the highest R*
and the lowest RMSE and MAE. Multiple single ANN can be
combined to generate an ensemble model in order to improve the
metrics of the estimated parameter (Linares-Rodriguez et al., 2013).
Effectively, the approach applied to the Mediterranean Sea (Fourrier
et al,, 2020) combining the ten best nutrient outputs, based on R?,
showed higher correlation coefficients and lower errors in
comparison with the performance of the best single model. Based
on this evidence, the ensemble (ANN-E) shown in this paper
averages the 10 best single outputs (ANN-1/10, Table 1).

2.2.2 Regionally trained ANN in the Peruvian
upwelling system

Both CANYON and CANYON-B were trained using the Global
Ocean Data Analysis Project version 2 (GLODAPv2) (Olsen et al.,
2016), however, only CANYON-B is used in this study, as it
represents an improved version of the initiall CANYON model.
The inputs CANYON-B uses to estimate the nutrients are latitude,
longitude, date, depth, temperature, salinity and oxygen. The
application of CANYON-B in the PUS showed poor performance
based on the measured IMARPE values (Table 2). We attribute the
poor performance of this model to the lack of observations available
for the PUS and more broadly for the South Eastern Pacific region
within the GLODAPv2 dataset. This motivated our work to train a
regional ANN for the PUS, which we have named CANYON-PU.
Our approach follows the regional adaptation of CANYON to the
Mediterranean Sea by Fourrier et al. (2020). In addition to the
potential temperature, salinity, oxygen, latitude, longitude, depth
and day of the year, we tested the addition of four regionally
relevant input parameters to train CANYON-PU: 1) The distance
to the coast, 2) the bathymetry, 3) the Oceanic Nifio Index (ONTI)
and 4) the Coastal El Nifio Index (ICEN). The distance to the coast
and the bathymetry associated with each sample was added due to
the intense productivity gradient between the coast and the open
ocean (Espinoza-Morriberon et al, 2017) and the influence of
sediments from the continental platform in remineralization
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TABLE 1 10 best performance CANYON-PU in the validation dataset (20%) for estimate PO?, Si(OH), and NO,.

CANYON-PU N1 N2 R2 RMSE (uM) MAE (uM)
POZ’ 38 20 0.671 0.429 0.311
38 42 0.670 0.428 0.313
2 34 0.668 0.426 0.319
2 42 0.666 0.426 0.317
2 20 0.662 0.429 0.316
32 35 0.662 0.428 0.317
31 35 0.661 0.438 0.317
31 16 0.660 0.432 0.318
44 20 0.659 0.442 0.326
32 20 0.659 0.428 0.318
Si(OH), 7 40 0.809 3.828 2.685
43 8 0.808 3.776 2.716
50 37 0.807 3.799 2.686
30 40 0.807 3.851 2.671
43 40 0.806 3.812 2.714
41 40 0.804 3.887 2.775
50 40 0.804 3.879 2.750
5 8 0.803 3.848 2.736
50 48 0.800 3.880 2.740
13 8 0.799 3.953 2.815
NO3 50 34 0.792 3.159 2.340
30 43 0.791 3.198 2.358
50 37 0.789 3.219 2.356
30 40 0.789 3.218 2.392
7 8 0.789 3.204 2.394
24 37 0.788 3.163 2.339
43 37 0.788 3.244 2.425
50 23 0.788 3.208 2.370
50 43 0.786 3.206 2.382
13 48 0.786 3.267 2.387

N1, N2, Number of neurons in the first and second layer respectively.

(Loginova et al., 2020). Also, ocean dynamics impacted by the
presence of the continental slopes are important for the propagation
of coastal trapped waves and potentially nutrient distribution (Pietri
et al, 2014). The distance to the coast was computed using the
minimum distance between the coastline and the sampling point.
The bathymetry used was GEBCO_2023: a global terrain model that
provides elevation data on a 15 arc-second interval grid (Tozer
et al, 2019). Furthermore, the PUS being highly susceptible to
interannual events such as El Nifo Southern Oscillation (ENSO)

Frontiers in Marine Science

(Arntz et al., 2006; Espinoza-Morriberon et al., 2017; Peng et al,,
2024) led us to include two indices developed to characterize it. The
index built to characterize warmer or colder conditions in the
region El Nifio 3.4 (5 °N-5 °S, 120 °W-170 °W) denominated the
ONI index was developed by NOAA. It is defined as a set of 3-
month running averages of sea surface temperature(SST) anomalies
in the region 5 °N-5 °S, 120 °W-170 °W (Huang et al., 2017) and
characterizes warm (El Nifio) or cold (La Nifia) conditions based on
a threshold of +/- 0.5 °C. While the ONT index is a helpful tool for
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TABLE 2 Performance of CANYON-B, ESPER-NN and CANYON-PU in the validation dataset (20%) for estimate PO?, Si(OH), and NO;.

CANYON-B R? RMSE (uM) MAE (uM)
poi’ 0.43 0.66 0.51
Si(OH), 0.65 6.15 4.30
NO; 0.48 8.43 6.48

ESPER-NN R? RMSE (uM) MAE (uM)
POi’ 0.43 0.66 0.50
Si(OH), 0.64 5.81 3.86
NO3 0.49 7.66 5.81

CANYON-PU R2 RMSE (uM) MAE (uM)
PO 0.67 043 0.31
Si(OH), 0.81 3.83 2.69
NO; 0.79 3.16 2.34

identifying typical ENSO events in the Central Pacific (Takahashi
et al., 2011), studies have also shown unusual instances of
significant warming along the Peruvian coast even when the
Central Pacific stayed cooler (Echevin et al, 2018; Peng et al,
2024). Therefore, we included an additional index for the El Nifio
142 region (0 -10 °S, 90 °W-80 °W) denominated ICEN. This index
developed by the Peruvian Commission for the Study of El Nino
(ENEFEN) is a monthly index computed using a 3-month moving
average of SST anomalies from ERSSTv5 (Huang et al,, 2017). It
distinguishes warm or cold conditions based on a threshold of +0.5 °C
and -1.2 °C respectively. Although both ONI and ICEN indices are
useful to characterize canonical ENSO events (Takahashi et al., 2011),
the ICEN has shown a better representation of less frequent and
peculiar events in the PUS such as the coastal El Nifio in 2017 and
2023 (Echevin et al., 2018; Peng et al., 2024).

2.3 Other sources of hydrographic and
biogeochemical data: GLODAPv2.2023,
IMARPE climatology and BGC-Argo

In order to assess the reliability of the model’s estimation aside
from OSD samples, we used three different external data sources: i)
GLODAPv2.2023, ii) IMARPE monthly climatology and iii) BGC-
Argo floats.

Recently the GLODAPv2 (Olsen et al,, 2016) used in the
training of the original CANYON-B has been updated and
distributed as GLODAPv2.2023 (Lauvset et al.,, 2024). The key
feature of this update is the availability of three cruises with samples
at maximum depths of 5500 m in the central and southern margin
of the PUS that were not included in GLODAPv2 (Figure la).
GLODAP employs rigorous quality control procedures, including
crossover analysis and bias adjustments, to achieve a target
consistency of 2% for PO}, Si(OH), and NO5 concentrations
across its global dataset (Lauvset et al., 2024). The resulting
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statistical characteristics (in uM) for these nutrients in the
GLODAPv2.2023 dataset are summarized as follows: PO3~ (mean:
2.3, median: 2.5, SD: 0.59), Si(OH), (mean: 20.95, median: 24.93,
SD: 10.47), and NOj (mean: 20.47, median: 20.87, SD: 8.67).

Additionally, a monthly T-S-O, climatology (1981-2010)
developed by IMARPE (Grados et al., 2018) was used in order to
show the capability to reconstruct the seasonal variability of the
estimated nutrients and it was compared with IMARPE’s nutrient
climatology (Espinoza-Morriberon et al., 2017) displayed in a
gridded field of 0.25° x 0.25° and in 55 vertical levels between
surface and 1000 m the same spatial resolution as the T-S-O,
gridded field. The nutrient climatology provided the following key
metrics (in uM): PO3~ (mean: 2.31, median: 2.42, SD: 0.64), Si(OH),
(mean: 28.76, median: 24.02, SD: 19.55), and NO3 (mean: 22.49,
median: 20.58, SD: 11.47). Another source of biogeochemical data
for further validation of CANYON-PU, available since the end of
2023, is the dataset from three Biogeochemical Argo floats (BGC-
Argo; Claustre et al., 2020; Wong et al., 2020) equipped with NO3
SUNA sensors drifting along the central-southern Peruvian coast.
Following quality control procedures, the estimated error found for
these nitrate measurements is typically £0.5 uM (Claustre et al,
2020). The float World Meteorological Numbers (WMO) 3902556
located in the central Peruvian coast and the floats WMO 2903858
and 1902644 located in the southern Peruvian coast (Figure la)
began their measurements on December of 2023 collecting profiles
at a 10 day frequency through March 2024 when the data was
accessed for this study. The vertical sampling of BGC-Argo profiles
reaches ~2000 m with a resolution of 2m enabling them to estimate
NO;5 at fine scales. The analysis in this work focused on the delayed-
mode quality controlled profiles that were chosen with a flag of 1
(i.e. good data) and at a maximum depth of 500 m. The NO; data
collected by BGC-Argo floats provided the following descriptive
statistics (mean, median, and SD in uM): WMO 3902556 (22.64,
22.16, 12.16), WMO 2903858 (17.28, 16.84, 13.95), and WMO
1902644 (19.66, 12.81, 14.38).
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2.4 Gliders dataset

This work also relies on a test application of CANYON-PU on
glider dataset. Over the past 15 years, several Slocum gliders were
deployed across-shore in the PUS (Pietri et al, 2014, 2013;
Thomsen et al., 2016) recording relatively high-resolution vertical
profiles of the water column down to a maximum depth of 1000 m
(Testor et al., 2018). All the vehicles were equipped with a CTD and
an optode for measuring oxygen, providing a finer spatio-temporal
resolution for the application of CANYON-PU. In this work, we
used data from two missions deployed in the northern Peruvian
coast (~4.6 °S, Figure 1a) during December of 2022 and March of
2023 with a maximum depth of 400 m in order to illustrate possible
application of CANYON-PU to high resolution glider data. Each T-
S-O, profile collected by the glider was analyzed to remove
statistical outliers. These periods represented the conditions
before and during the peak of El Nifio event 2023 (Peng et al., 2024).

3 Results

The capability of CANYON-PU to estimate PO;, Si(OH), and
NOj concentrations in the PUS are tested using a validation dataset
corresponding to the 20% of all the samples available. Additionally,
when comparing the outputs against CANYON-B and ESPER-NN,
it shows a significant overall improvement as indicated by higher R
values, and lower RMSE and MAE metrics (Table 2). The high R?
values represent a good fit between CANYON-PU and the
measurements, while the lower errors give information about the
accurate prediction of our model. Furthermore, CANYON-PU can
represent with better accuracy the nutrients in the upper 25 m due
to the large availability of surface data during its training.

3.1 CANYON-PU overall performance in
the Peruvian upwelling system

In general, CANYON-B and ESPER-NN have provide good
estimations for the principal macronutrients in the global oceans
(Bittig et al., 2018; Carter et al., 2021). For example, the RMSE for
CANYON-B reported by Bittig et al. (2018) is 0.051 uM (PO3), 2.3
uM (Si(OH),) and 0.68 uM (NOj3). Carter et al. (2021) reported a
similar RMSE for ESPER-NN, specifically: 0.043 uM (PO3"), 2.0 uM
(Si(OH),) and 0.56 M (NO3). However, when it was tested in the
PUS, the RMSE increased to 0.66 uM (POY), 6.15 uM (Si(OH),)
and 8.43 uM (NOj3) (Table 2). This could be related to the scarcity of
the data in the region used for the training of CANYON-B and
ESPER-NN. and the large natural variability of nutrient
concentration in the PUS. Effectively, the R? values varies for each
nutrient, with Si(OH), having the highest (0.65), while the values
for PO;” and NO; (0.43 and 0.48 respectively) were lower. In
contrast, the performance of CANYON-PU was better for all the
three nutrients (Table 2) when applied to the same validation
dataset. Moreover, the errors were, in general, 50% lower which
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evidenced the good performance due to the use of the regional
dataset during the training phase of the model. The variations in
performance for each nutrient predicted by the CANYON-PU
model (Table 2), as indicated by different R? values, reflect the
diverse physical and biological processes that govern the variability
of each nutrient in the PUS (Pennington et al., 2006). For example,
PO;~ shows lower R? coefficient (0.67) whereas Si(OH), and NO3
were considerably higher (0.81 and 0.79 respectively). Although the
latter reflects a good performance in the validation dataset above
300 m, in the layer between 400-500 m there was some bias between
the estimated value and the in situ measurements, which reflects the
impact of the scarcity of samples below that level during the
training (Figure 2).

The relative and absolute differences between CANYON-PU and
validation in situ dataset are shown on Figure 3 along vertical profiles.
The relative variation is represented in percentage so that positive
(negative) values represent an overestimation (underestimation) of the
ANN. For all three nutrients it is noticeable that in the upper layers,
above 50 m, concentrations are overestimated which likely reflects the
highly variable nature of the system (Liidke et al, 2019) and
CANYON-PU cannot account for factors such as nutrient
depletion, for example. The vertical differences (Figure 3) averaged
by depth shows slight variations in Si(OH), accordingly with the high
R%, whereas for PO;~ and NOj are noticeably underestimated by
CANYON-PU below 200 m and 100 m respectively. Although the
differences increased with depth, the relative differences showed values
in the range +/- 10% confirming the robustness of CANYON-PU.
That being said, we observed some relative positive outliers probably
appeared due to sample contamination which causes nutrient
consumption especially at higher concentrations (Dore et al., 1996).

3.2 Performance of CANYON-PU with
independent datasets

3.2.1 Sampling stations in Paita and Callao

The independent datasets in Paita and Callao are used as a further
validation of CANYON-PU accuracy (Figure 4). Effectively, the best
performance ANN configuration from CANYON-PU (i.e. ANN-1)
was similar when it was applied to the 20% validation dataset used in
Section 3.1. Table 3 shows the R* for the ANN-1, Si(OH), showed the
highest correlation coefficient (0.79), followed by NO; (0.68) and P
03 (0.58). Although the performance from ANN-1 highlights the
robustness of our method, the ANN-E showed even higher
correlations. In general, the ANN-E improves the correlation
coefficient by 6% and lowered the errors (Table 3). This is
consistent with the results obtained by Fourrier et al. (2020) in a
similar study for the Mediterranean Sea. Additionally, the relative
differences seen in vertical profiles (Figure 5) were less than 10% in
general. For the upper 100 m layer, it was close to 8% for PO and
Si(OH), and 11.9% for NO;. Moreover, the deeper layers showed
even less differences near 3% (PO;~) with NO3 being the highest at
8%. The latter supports our premise that the ANN-E shows an
increased performance and could be used in the other datasets.
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3.2.2 GLODAPv2.2023

The performance achieved by CANYON-PU after applying it
on the GLODAPv2.2023 profiles that were inside the training area
(Figure 6) demonstrates better overall performance relative to the
independent validation dataset of Paita and Callao. Effectively, the
R? coefficient for PO}~ (0.95) and Si(OH), (0.92) are higher,
whereas for NO3 is lower (0.64). The observed difference in R is
likely linked to the differing inherent variability of the validation
datasets. The longer time series from Paita and Callao (2003-2021,
all seasons) likely exhibits greater natural variability than the

Frontiers in Marine Science

GLODAPv2.2023 data (austral spring/summer 2013, 2017). The
comparable RMSE and MAE values (Table 3) confirm the model’s
consistent absolute error magnitude, suggesting the variation in R*
is a consequence of evaluating against datasets with different total
variance. On the other hand, for the three estimated nutrients we
find a linear correlation in the first 100 m that slightly leans towards
an underestimation of 20% between 200-500 m and more evident
in NO; which additionally shows higher errors. A further analysis
demonstrates that considering the GLODAPv2.2023 profiles
outside the training area 400 km offshore is slightly detrimental

frontiersin.org


https://doi.org/10.3389/fmars.2025.1558747
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

10.3389/fmars.2025.1558747

Asto et al.
0 prw - g™ 3 Lar® gy b P AL L !—{ H a5 = =
al 'E ® =® “ﬁ'lilm: ‘g few = :.::' ¢ o iﬂ !I b]
[ i L] ] L] Lo € < {
| » . & e ¢ ® ® e .
100 | w A @ © & ¢ smae ° 4
| © ® - Boce & o » : o w?
»
'E 200 . l b
P
E @
(]
0 300 - L2 ° - 4
400 ’ 1
°
PO4
500 1 1 —l L 1 & 1 1 & 1 i
2004 2006 2008 2010 2012 2014 2016 2018 2020 -0.2 0 0.2
PO4 diff [uM]
— ey .
c] ?ﬁzmmb ?"Iu!ﬁﬂl‘! & WS‘“ﬁ dl
€ o m S @ A @9 or o =@ o
! * {0 '8 TR o £ ] ol L]
100 e ®. @ * o:e . 8 | L
| @
of & o ® [ ]
®
'E 200 ‘ . ° | ]
._E. °
(] a
Q 300 « o wh [ - |
400 - -
SiOH4 f
500 By log oo 1 L 1 | L
2004 2006 2008 2010 2012 2014 2016 2018 2020 -1 0 1
0 z 4 AT o) ¢ T 1
o] T limiainee D naeR T lITY !
e . ¥ R o aad® [ i
f 4 ® e ® @ oo ess mb ¥ » |
100 ir_. < ® e o - = pr 4 ct it | )
| . ® [ L
- L] L ™
E 200 ¢ - ' ° 1
=
- L]
m -
0O 300 - 4 = 5
400 - A
NO3
00—l — =l o ils gé I | L I
2004 2006 2008 2010 2012 2D1 4 201 6 2018 2020 -1 0 1
| e N———— ] NO3 diff [l_]M]
-100% -50% 0% 50% 100%
FIGURE 3

Validation dataset (20%)'s relative difference (%) between the output from CANYON-PU and in situ values for (a) PO3", (c) Si(OH), and (e) NO3.
The corresponding averaged difference (uM) is shown in panels (b), (d, f).

to CANYON-PU in PO;™ and Si(OH), reliability lowering the R* to
0.93 and 0.89 respectively. However, for NO; our analysis
demonstrates better performance highlighted by an R* of 0.83.
This could be related to some processes near the coast that cannot
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be represented by the ANN. Overall, we have noticed that including
profiles below 500 m greatly increases the systematic bias, which
might suggest a limit for applicability of CANYON-PU below this
depth (coherent with sampling distribution of the training data set).
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3.2.3 IMARPE climatology

The capability of CANYON-PU to represent nutrients at a
different time scale was tested using a T-S-O, monthly gridded
climatology as input. Additionally, the outputs were compared
against IMARPE’s PO}, Si(OH), and NOj climatology that is
gridded at the same spatial scale as the inputs. The outputs from
CANYON-PU for PO}~ and Si(OH), show a low bias when it was
compared against the climatology (Figures 7a, b). Effectively, the
previous statement was reflected in a high R* of 0.9 for PO;~ and
0.79 for Si(OH),. Although the correlations showed a good
performance in the deeper layers, the upper 100 m was
overestimated in CANYON-PU through all the months. Moreover,
the performance for NO3 was lower with a R* of 0.64 which was due to
a higher relative difference in the first 200 m. The climatology of NO3
also reveals that from austral spring to summer the underestimation
from CANYON-PU reached the layer over 400 m. In general, PO}~
and Si(OH) were represented with more precision and confirmed the
conservative nature of Si(OH), whereas the processes of consumption
and depletion of nitrogen were difficult to capture by CANYON-PU
impacting on the robustness of NO; estimation.

3.2.4 BGC-Argo floats

The three drifting BGC-Argo floats with NO3 measurements,
located 400 km offshore the central-south Peruvian coast
(Figure la) were used to test CANYON-PU and evaluate its
robustness using a dataset with a different spatio-temporal scale.

The difference between the estimated and measured NO3
(Figure 8) shows a similar pattern in the first 500 m for all the
BGC-Argo floats analyzed. Effectively, floats 3902556, 2903858 and
1902644 measured higher nutrients compared to CANYON-PU in
the first 50 m, this difference increased rapidly until 100 m,
especially for float 1902644. Below 100 m a decrease in the
difference can be noted, reaching its minimum value at 200 m,
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principally for float 3902556. The relatively low error remains until
325 m where an increment is again observed reaching a maximum
of -17 uM at 500 m. In general, CANYON-PU underestimates all
Argo float samples specially for float N° 1902644 which was located
at the southernmost domain of training dataset available. This
shows that, due to the lack of data in that area, CANYON-PU
cannot accurately represent the relatively high values observed
which led to an underestimation. On the other hand, float
3902556, although being outside of the available training domain,
was relatively closer to a dense area of training points that probably
affected positively the performance. Similarly float 29030858 was
located a few degrees west of the available training domain, close to
a sufficient amount of training points. In general, the comparison
showed a high R* of 0.97 and an RMSE and MAE of 8.47 and
7.47 respectively.

3.3 Example application: gliders

A further application of CANYON-PU was tested using two
glider deployments in the northern Peruvian coast (Talara, ~4.6°S).
The periods covered by those missions were November 2022 and
March 2023 corresponding to the onset and progression of an El
Nifio event (Figure 9).

The T-S-O, fields show a noticeably heterogeneous distribution;
for temperature, there was a slight increase by the end of 2022 that
rose considerably by March 2023 and reached its peak of 30 °C in
April. Associated with this, an intrusion of Tropical and Equatorial
Surface Water (S<33.5 and S<34.8 respectively) was observed in the
salinity fields. The upper limit of the OMZ (O<22 pM, Espinoza-
Morriberon et al., 2021) deepened ~100 m while the El Nifio event
was at its peak. Moreover, the upper layers were more oxygenated
than their counterparts in November-December 2022.
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The estimated nutrients from CANYON-PU under these
settings are shown in Figures 9g-I revealing a general depletion of
nutrients, primarily in the upper 200 m, when the El Nifio event was
active. It is also observed that the high stratification is closely related
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to the consumption of PO}” and NOj consistent with previous
studies in other regions (Tozawa et al., 2024), whereas Si(OH) 4, was
depleted in the whole water column. The descriptive statistics
(mean, median, and SD in uM) for the estimated PO;~, Si(OH )4
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TABLE 3 Metrics for independent validation datasets.

Paita and Callao

ANN-1 ANN-E
RMSE (uM) MAE (uM) RMSE (uM) MAE (pM)
PO?,‘ 0.58 0.41 0.31 0.61 0.39 0.30
Si(OH), 0.79 3.53 2.68 0.84 3.10 2.33
NO3 0.68 3.63 2.78 0.70 3.46 2.66
GLODAPv2.2023
ANN-1 ANN-E
RMSE (uM) MAE (uM) R2 RMSE (uM) MAE (uM)
PO}{ 0.94 0.31 0.29 0.95 0.27 0.25
Si(OH), 0.90 4.50 3.90 0.92 4.48 3.80
NO; 0.61 8.58 6.94 0.64 5.48 4.18

IMARPE Climatology

ANN-1 ANN-E
RMSE (uM) MAE (uM) R? RMSE (uM) MAE (uM)
PO?,_ 0.90 0.34 0.27 0.90 0.31 ‘ 0.25
Si(OH), 0.76 11.43 7.25 0.79 10.25 ‘ 6.61
NO; 0.62 9.36 7.10 0.64 8.97 6.57

ANN-1
RMSE (uM)

BGC-Argo 3902556

MAE (uM)

ANN-E

RMSE (uM) MAE (pM)

BGC-Argo 2903858

ANN-1
RMSE (uM)

ANN-1
RMSE (uM)
NO;

0.76 14.66

MAE (uM) R?

BGC-Argo 1902644

MAE (uM)

13.23

ANN-E

RMSE (uM) MAE (pM)

ANN-E

R2 RMSE (uM) MAE (uM)

0.78 12.68 10.47

Paita and Callao, GLODAPv2.2023, IMARPE climatology and BGC-Argo floats. ANN-1: Best performance NN; ANN-E: Ensemble of the 10 best performance NN.

and NOj3 for the two periods were as follows: for 2022, values were
POY (2.43,2.47,0.26), Si(OH), (21.13, 21.5, 4.85), and NOj3 (20.69,
21.46, 2.7); while for 2023, the corresponding values were PO?[
(2.04, 2.16, 0.65), Si(OH), (20.15, 22.25, 8.5), and NO; (22.55,
25.56, 6.81).

This demonstrates the ability of CANYON-PU to estimate and
represent reasonable features of nutrient distribution under
different climate forcings, confirming its potential applicability
to diverse datasets, including high resolution data collected
by gliders.
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4 Discussion

4.1 CANYON-PU performance under
different settings

The process of testing which parameter has the most impact in
the performance of CANYON-PU was achieved by zeroing one by
one each parameter used in the training step. We then applied our
ANN to predict the nutrient concentration under different
scenarios and compared the R* in each case (Figure 10). First,
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under the assumption that a correlation value over 0.4 for PO} is
considered an improvement over CANYON-B, parameters such as
pressure, bathymetry, distance to the coast and salinity had low
impact in the ANN accuracy whereas variables like day of the year,
latitude, longitude, potential temperature, El Nifio 1+2 and El Nifio
3.4 indices had the strongest impact on the R* values, rendering
them as low as 0.1. The day of the year had the greatest impact over
all the 10 best model configurations, with latitude following closely.
These parameters were already included in the training of
CANYON-B and it was expected that the seasonality and the
position played a key role in the nutrient estimation. However,
both El Nifo indices that were incorporated only in CANYON-
PUS, followed as important parameters having significant impact in
lowering the R* to 0.15. The latter confirms our previous
assumptions that led us to include those indices in the training;

the high susceptibility of the region to ENSO events (Arntz et al.,
2006; Espinoza-Morriberon et al.,, 2017; Peng et al., 2024).
Furthermore, the potential temperature generated a highly
variable correlation coefficient in the model which could reveal
that it might be particularly sensitive to thermal changes.

4.2 Capability of nutrient estimation at
different scales

The performance of CANYON-PU over different datasets has
generally shown better results than CANYON-B and could help to
represent the nutrient distribution in a highly variable environment
such as the PUS (Echevin et al,, 2018, 2014; Liidke et al., 2019).
Effectively, when the ensemble of CANYON-PU (ANN-E) was

R AP E clo..;.--'.“’?"-f. 100
100 80

200 60

Depth [m]

g PO4 e SIOH4
a]ilili TERE N R
100 !l : 100
200 200

B
300 300
—. 400 — 400
E E,
g 500 % 500
o] I
2 600 S e00,
700 ?m:
800 800/
900 900:-
1mu s & & s a4 3 2 = & 3 . Tam !_ S S S

FEE P P PRSP P

FIGURE 7

F @ W P PR P

300

400"

5001

?00:

BOD-:

QOD:

600

00—+ 3+ o+ +»—

&

P @@ P PRI

Relative difference (%) obtained from the output of CANYON-PU and nutrient monthly climatology for (a) PO3", (b) Si(OH), and (c) NO3.

Frontiers in

Marine Science

13

=]
[56] soussain anie|ey

frontiersin.org


https://doi.org/10.3389/fmars.2025.1558747
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Asto et al. 10.3389/fmars.2025.1558747
0 : : ' ; ; : -0
a] ~3902556 N0, || bl e BGC-Argo 3902556
50 = . . b == BGC-Argo 2903858 | | 50
FS = e s o e BGC-Argo 1902644 |
B —— — 2903858 NO,, b ;
100 4 - - EstimatedNO,|| | = 1100
~
{50 y — 1002644 NCJ3 L 4150
\‘ - - Estimated NO,
200 \ 200 _
E \ : E
£ 250 3 s 1250 &
§ i 4 §
300 - T r ¥ {300
350 i 350
400 | ‘ : 400
450 - ‘ 450
500 e - S : 500
0 5 10 15 20 25 30 3 40 45 50 -25 20 -15 -0 -5 0 5 10 15 20 25
NO3 [uM] CANYON-PU, . - In Situ .. [uM]
FIGURE 8

(a) Vertical profile of NO3 for cycle 4 (thin lines) in BGC-Argo float 3902556 (yellow), 2903858 (blue) and 1902644 (red) and the corresponding
estimate (dashed lines) from CANYON-PU. (b) Vertical profiles of NO3 difference (uM) between CANYON-PU and BGC-Argo (color dots). The
shadings represent the + 1 SD. The thick colored lines are the averaged difference for the corresponding BGC-Argo float. The grey shading below

350 m represents the layer with low accuracy.

applied to bottle samples mostly at standard depths, it increased the
R? over 45% and lowered the RMSE (MAE) by 0.24 uM (0.2 uM),
2.18 M (1.57 uM) and 5.25 uM (4.17 uM) for PO}, Si(OH), and
NOj respectively. Moreover, these errors showed similar values
which confirms that CANYON-PU estimated nutrients with less
outliers than CANYON-B and also reinforce the premise that the
ensemble model was useful to improve the performance of the ANN
(Linares-Rodriguez et al., 2013) as it was reported in CANYON-
MED (Fourrier et al., 2020). Furthermore, when it was tested on a
different dataset such as NOj collected by BGC-Argo floats with a
vertical resolution of 2 m, the R? achieved its maximum value of
0.97, although the float 2903858 associated with this correlation
value was outside the area of available dataset used in the training.
However, it is important to note that in contrast with near-shore
processes, the NO; in the open ocean is not significantly impacted
by it, resulting in a similar vertical pattern (Figure 8) especially in
the first 300 m (Thomsen et al., 2016). This is also noticed in the
open ocean NOj samples from GLODAPv2.2023 where the R* was
0.83 but decreased considerably to 0.56 with a bias of 15.9 pM when
samples below 500 m were included. Additionally, the outputs with
the climatology emphasizes two different patterns of differences;
first, PO;~ and Si(OH), generally showed a slight overestimation
below 100 m which differs from NOj that mostly exhibit differences
associated with the underestimation of CANYON-PU principally in
the months corresponding to austral summer. On the other hand,
the surface layer was represented with a bias as high as 80% which
shows a larger overestimation in all nutrients. Finally, the potential
applicability of CANYON-PU was tested again in a high resolution
data collected by gliders deployed in Talara (~4.6 °S) during the end
of 2022 and the beginning of 2023 corresponding to the onset and
peak of an intense El Nifio event (Peng et al., 2024). The outputs for
P05, Si(OH), and NO5 (Figure 8) cannot be compared with an in
situ sampling, but showed patterns of similar vertical distribution
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when El Nifio was at its most developed stage (end of March to
beginning of April 2023, Figure 9) as in the peak of El Nifo event in
1997-98 (Graco et al,, 2017). Effectively, during that period, the in
situ nutrient data show that the first 100 m diminished at its lowest
similarly to what CANYON-PU estimated March-April of 2023.
The patterns of variability shown in nutrients reinforce the potential
application of CANYON-PU over a new set of data with a different
spatial and temporal resolution than the original training dataset.

5 Conclusions and perspectives

The previous methods, CANYON, CANYON-B and ESPER-NN
(Bittig et al,, 2018; Carter et al,, 2021; Sauzede et al., 2017), were
developed for global scale and had R* values greater than 0.9 while
their errors were significantly lower than 0.051 for PO;", 2.3 for Si(
OH), and 0.68 for NO3 but when used in the PUS, their performance
decreased by 50% reaching values as low as 0.43 (PO;") and errors
greater than 8.43 (NO3). Under the premise that a regionally focused
method could be developed to improve this performance, as shown in
previous works (e.g. CANYON-MED, Fourrier et al., 2020) we used
IMARPE’s temperature, salinity, oxygen and macronutrients to train
CANYON-PU for the PUS.

The performance of CANYON-PU was tested on multiple sets
of available data which demonstrated its capability to represent the
principal features of macronutrients at different spatio-temporal
scales with R? of 0.84 (Si(OH),) and errors as low as 0.39 (PO3") for
independent datasets in Paita and Callao. For independent BGC-
Argo measures of NO; a good correspondence as high as 0.97 was
observed albeit with errors that can reach 17 uM principally
below 400 m. Although the evidence confirms the improvement
over CANYON-B and ESPER-NN, at least for the PUS it is
important to mention that the additional parameters included in
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the training step were key to reproduce the pattern of the
macronutrients distribution.

The feed forward ANN developed for the PUS, incorporating
regional specificities to estimate the principal macronutrients, has
shown an optimal performance compared to the global methods
CANYON-B and ESPER-NN with an increment between 27%-45%
in the R%. Additionally, whether it was used on bottle samples, BGC-
Argo floats or a regional monthly climatology, our method proved
reliable in representing nutrients. Further analysis showed that El Nifio
indices have been a key training parameter which allowed CANYON-
PU to capture important features of the nutrients distribution. With the
evidence presented, it seems feasible to apply CANYON-PU on other
datasets such as IMARPE’s historical data that span since the early
1960s and might be useful to study the nutrient’s interannual
variability. Moreover, the historical glider deployments carried out by

Frontiers in Marine Science 16

IMARPE in collaboration with other institutions since 2008 provide a
promising opportunity to explore intraseasonal variability, particularly
understanding the role of meso and submesoscale processes such as
fronts and filaments in nutrient transport and biogeochemical cycles.
Finally, CANYON-PU can serve as a robust framework for quality
control in situ measurements, offering a systematic approach to
improve the reliability of oceanographic datasets.
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