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Abstract
Motivation: Pre-trained Language Models (PLMs) have achieved remarkable performance across various natural language processing tasks. 
However, they encounter challenges in biomedical named entity recognition (NER), such as high computational costs and the need for complex 
fine-tuning. These limitations hinder the efficient recognition of biological entities, especially within specialized corpora. To address these 
issues, we introduce GRU-SCANET (Gated Recurrent Unit-based Sinusoidal Capture Network), a novel architecture that directly models the rela
tionship between input tokens and entity classes. Our approach offers a computationally efficient alternative for extracting biological entities by 
capturing contextual dependencies within biomedical texts.
Results: GRU-SCANET combines positional encoding, bidirectional GRUs (BiGRUs), an attention-based encoder, and a conditional random field 
(CRF) decoder to achieve high precision in entity labeling. This design effectively mitigates the challenges posed by unbalanced data across multiple 
corpora. Our model consistently outperforms leading benchmarks, achieving better performance than BioBERT (8/8 evaluations), PubMedBERT (5/5 
evaluations), and the previous state-of-the-art (SOTA) models (8/8 evaluations), including Bern2 (5/5 evaluations). These results highlight the strength 
of our approach in capturing token-entity relationships more effectively than existing methods, advancing the state of biomedicalNER.
Availability and implementation: https://github.com/ANR-DIG-AI/GRU-SCANET.

1 Introduction
Named entity recognition (NER) is pivotal for many natural 
language processing (NLP) and knowledge acquisition tasks. 
Typically, the task of NER is to identify real-world entities in an 
unstructured text using categories such as person, location, or
ganization, and time. NER is also needed as an initial step in 
processes requiring question–answering (Liu et al. 2022, 
Shrimal et al. 2022), information retrieval (Spositto et al. 2022, 
Zheng et al. 2022), co-reference resolution (Strobl et al. 2022), 
topic modeling (Aguiar et al. 2022, Joshi et al. 2022), domain 
expert assistance (Lo et al. 2022, Zhang et al. 2022b), to name 
a few. Machine learning and deep learning play an important 
role in the biological domains to address various challenges 
(Sapoval et al. 2022). Recent advances in NLP, such as trans
formers (Vaswani et al. 2017), have significantly improved 
NER performance, particularly in biomedical contexts, where 
many entities share similar naming conventions across different 
species and disciplines (Shen et al. 2017, Catelli et al. 2020). 
Models like Long Short-Term Memory (LSTM) (Kratzert et al. 
2021) and conditional random field (CRF) (Lafferty et al. 2001) 
have also greatly improved performance in biomedical NER 

over the last few years (Habibi et al. 2017, Giorgi and Bader 
2018, Yoon et al. 2019, Song et al. 2021).

Additionally, word embeddings, such as Word2Vec (Zhang 
et al. 2022a, Mikolov et al. 2013), play a crucial role in cap
turing token semantics by learning from extensive text cor
pora such as English Wikipedia, PubMed abstracts, and PMC 
enabling better contextual understanding and token similarity 
detection. In addition, these embeddings can automatically de
tect semantic similarities (Kiela et al. 2015). For instance, if a 
model learns the “New York” token in certain contexts and 
relationships, it can also recognize “NY” as a similarly named 
entity. However, pre-trained embeddings based on general 
corpora may reduce the effectiveness of applying NER to 
domain-specific tasks. This can lead to an information over
load for entity recognition within a specific domain, raising 
concerns about the sensitivity to the quality of embeddings 
used in this new domain (G€unther et al. 2020). A recent sur
vey on NER by (Maud Ehrmann et al. 2023) exposes the 
problem of lack or imbalanced resources that can influence 
the capability of the model to perform an accurate prediction.

Therefore, for some architecture, obtaining high-quality 
embeddings often requires the utilization of large text corpora. 
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For example, BioBERT (Lee et al. 2020) has been trained on 
large-scale biomedical corpora comprising approximately 4.5 bil
lion tokens from PubMed abstracts and 13.5 billion tokens from 
PMC full-text articles. While large-scale language models like 
BioBERT achieve notable results, their training requires substan
tial computational resources and fine-tuning, and their perfor
mance gains over general NER models can be modest (Li et al. 
2022). Furthermore, the reliance on fixed training data introdu
ces biases, as model predictions are influenced by the unbalanced 
context distributions within the corpora (Lee et al. 2019).

Although Large Language Models (LLMs) like GPT have rev
olutionized NLP, their performance in predicting the next token 
is not without limits (Lai et al. 2023). Indeed, their token com
pression techniques, such as Byte Pair Encoding (BPE), may 
hide crucial contextual information and introduce bias into the 
prediction (Bostrom and Durrett 2020), particularly in biomedi
cal NER tasks, where precise token-entity relationships are es
sential. These biases could result from an unbalanced 
distribution of contexts in the training data. Additionally, 
LLMs can struggle with capturing the nuanced relationships be
tween input tokens and output tags, which is necessary for 
achieving high accuracy in NER (Li et al. 2024).

This article presents GRU-SCANET (Gated Recurrent 
Unit-based Sinusoidal Capture Network), a novel architec
ture designed to efficiently capture the relationships between 
input tokens and output tags based on the sentence context. 
Unlike existing models that rely heavily on large-scale pre- 
training, GRU-SCANET leverages a lightweight structure uti
lizing positional encoding to capture token positions, a 
Bidirectional GRU (BiGru) (Abdelgwad et al. 2022) for learn
ing contextual representations, an attention-based encoder to 
capture token relations, and a CRF decoder for accurate en
tity labeling. Our architecture was evaluated on eight biologi
cal NER datasets, demonstrating robust performance across 

varied corpora and outperforming state-of-the-art models. 
The results validate the effectiveness of GRU-SCANET in 
addressing challenges related to unbalanced datasets while 
maintaining computational efficiency.

The rest of this article is organized as follows. Section 2 
presents the problem formulation. Section 3 presents the 
GRU-SCANET architecture. Section 4 provides implementa
tion details. Section 5 reports evaluation results and discusses 
performance compared to other models.

2 Methods
2.1 NER problem and formalization
NER models based on Bidirectional Encoder Representations 
from Transformers (BERT) or Generative Pre-trained 
Transformer (GPT) architectures require extremely costly 
pre-training on corpora and significant processing time for 
simple tasks to ensure token memorization within various 
contexts of use (Lee et al. 2019). The performance of these 
models may be degraded if the large corpora on which they 
rely do not provide a wide enough range or an adequate num
ber of contexts for tokens whose vector representations are 
critical (Dai et al. 2019). For models like BERT and GPT, the 
absence of context to enrich token representations could 
make NER processes less effective than expected due to the 
imbalanced meaningful token representations appearing in 
the context to predict the entity type of the next token in the 
sequence. Thus, we believe it would be preferable to learn 
how to handle the NER task by directly capturing the rela
tionships between the entities to be detected and their appear
ances within their contexts to predict them effectively.

Figure 1 represents the four successive steps leading to per
forming the NER process. (i) Tokenization: The input sen
tence is meticulously divided into individual tokens, laying 

Figure 1. General overview of supervised NER process.
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the foundation for further analysis. (ii) Token Embeddings: 
Each token embarks on a journey into a high-dimensional 
vector space, where it is transformed into a unique numerical 
representation, capturing its semantic essence. (iii) Feature 
Extraction: These token vectors are then skillfully combined 
to create comprehensive features, meticulously crafted to rep
resent the context of each token within the sentence. (iv) 
Classification: A sophisticated classification model emerges, 
armed with the extracted features, ready to assign NER tags 
to each token, identifying the named entities that reside 
within the sentence.

Consider an input text, which is a sequence of tokens. Each 
token in this sequence belongs to a token set (T) and is associ
ated with a unique index (embedding or order number). Let 
X be a sequence of tokens represented as X¼ ½t1; t2; t3; . . . ;

ti; . . . ; tn�, where n is the number of tokens in the sequence 
(ti 2 T). Moreover, consider a set of M possible entity classes 
to recognize within X. Let us denote as C1;C2; . . . ;CM the M 
possible classes to detect, where M is the total number of clas
ses. Each entity class, Cj, is associated with three specific tags:

� Bj (Beginning): This tag is used to mark the beginning of a
group of tokens that refer to an entity of class Cj in the se
quence X;

� Ij (Inside): This tag is used to mark a group of tokens in X
that are part of an entity of class Cj, except for the
first token;

� O (Outside): This tag is used to mark a group of tokens in
X that are not part of an entity class Cj.

The NER problem involves the building of a model (from
an architecture) able to associate each token in X with one of 
the three tags (Bj, Ij, O) of each of the M entity classes, to 
identify and annotate entities within X. The Vi of tags (Bj, Ij, 
O) are identical on the training data and different during the
inference phase due to the probability estimations. In the fol
lowing sections, we will provide a detailed explanation of
each component in our model.

2.2 Approach
GRU-SCANET (Figure 2) was trained and evaluated on eight 
different biological datasets that were built from the 
BioCreative benchmarks (https://github.com/dmis-lab/bio 
bert). We give the main stages of treatment and their essential 
points in the following:

1) Inputs: from the datasets (test and train from each
dataset), we produce a padded d-dimensional vector

Figure 2. GRU-SCANET architecture.
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representation of each sentence with their index from 
the set of words as formalized in Section 2 under a 
form of an integer list. To enhance the high ability of 
the model to associate word subgroups with their cor
responding entity classes, each padded input vector is 
combined with a positional encoding vector of the 
same dimension. This addition incorporates the numer
ical identifier of a word and its position within the in
put word sequence, effectively specializing the context 
in which the word is used. This approach significantly 
improves the distribution of conditional probabilities 
within the model architecture. 

2) Model Construction: After forwarding inputs through
BiGRU (Abdelgwad et al. 2022) operations, we applied
transformation layers. These layers associate the input
(word index vector and its positional encoding) with its
corresponding output, which is represented as a vector
of expected numerical delimiter tag in the output for
each entity class (as mentioned in Section 2).

3) Model Training and Testing: The various datasets are
divided into training, development, and test sets. The
training step involved optimizing model parameters to
minimize prediction errors. There is no need to perform
validation steps on development data with GRU- 
SCANET. Model evaluation was performed on the test
set to measure the performance of the model, including
precision (P), recall (R), and F1-score (F).

4) Model Optimization: By adjusting hyper-parameters
such as network size, learning rate, dropout and epochs
(Abdelgwad et al. 2022), and weights during processing,
we improve the model.

First, the training data were created by matching sequences 
of words with sequences of tags, using pairs of input words 
and their corresponding output tags. Next, the model was ini
tialized with an encoder (N¼ 1), which captured the contex
tual information of the input words. The input sequences 
were encoded using the N encoder (which refers to the trans
formation layer), and then, the CRF decoding layer was ini
tialized with the expected tags. The training process was 
repeated over multiple epochs, with adjustment of weights 
with a backpropagation algorithm, until the model achieved 
satisfactory performance on the test data. In the following 
section, we go in-depth into the concepts used by GRU-SCANET.

2.3 Input embedding and positional encoding
Combining sequence embedding with positional encoding 
aims to consider the relevance of the tokens in their relative 
position in the sequence X, thereby enhancing the model’s 
ability to capture contextual and spatial information.

� Input Embedding: Consider T� being the set of all the sen
tences. Each sequence of tokens X (X2 T�) is represented
by matrix denoted EðXÞ 2 Rd×m (d;m 2 N�Þ in the em
bedding space. The matrix of X is built using the indices
of tokens in T combined with the function Ei. The token
embedding function defined as Ei : T ! Rm. Each token
ti is associated with a m-dimensional real-valued vector.
EðXÞ of the input sequences may not always be the same
size as d. In such cases, padding is necessary. Padding
involves adding a special token with a zero m-dimensional
vector representation. This ensures that all sequences
have a uniform length for further processing. For

example, considering that X¼ ½t1; . . .; t8� and d¼ 8 
according to Fig. 1, EðXÞ ¼ ½E1ðt1Þ; . . .;E8ðt8Þ� and if 
d¼ 10, EðXÞ ¼ ½E1ðt1Þ; . . .;E8ðt8Þ;E�ð0Þ;E�ð0Þ�. 
Generally, d is defined from the size of the longest se
quence of input tokens in the annotated training data and 
m is fixed to an integer constant (e.g. m¼ 256). 

� Positional Encoding: It is typically added to sequence em
bedding to introduce a notion of position. It uses trigono
metric functions to assign specific values to each position
in the sequence. A commonly used formula for positional
encoding is defined below: Let tð2 NÞ be the desired posi
tion in an input token sentence of size d. d represents the
max length of input token sequences previously seen. Pt

!
2

Rd×m be the corresponding positional encoding of token
in position t in X (Vaswani et al. 2017). t belongs to
f0; . . .;d − 1g, ið2 NÞ belongs to f0; . . .;m −1g, and k 2 N.

Pt
!ðiÞ

¼
sinðwk:tÞ; if i¼ 2k
cosðwk:tÞ; if i¼ 2kþ1

( )

with wk ¼
t

10000
i
d
. 

2.4 Encoder stack
2.4.1 Forward and backward GRU models
Note: the input of this block is the addition member to mem
ber of positional encoding and the embedding of 
X (ðP
!
þEðXÞÞ 2 Rd×m).

The Forward and Backward GRU (Gated Recurrent Unit) 
models are variations of a type of RNN called BiGRU 
(Abdelgwad et al. 2022). These models process sequence 
data, such as sentences or temporal sequences. The Forward 
GRU model is designed to process sequences chronologically, 
from left to right. It considers the past information to predict 
future states. At each time step, the Forward GRU receives 
the current input and the previous hidden state to generate a 
new output and update its hidden state. On the other hand, 
the Backward GRU model processes sequences in reverse or
der, from right to left. It uses future information to predict 
past states. At each time step, the Backward GRU receives the 
current input and the next hidden state to generate new out
put and update its hidden state. Simultaneously using both 
the Forward and Backward GRU models enables capturing 
contextual information from the past and future of a se
quence. This allows associating the sequence with its corre
sponding output class, which is then processed by the 
subsequent layer to ensure chronological attention.

Note: the output of this block is BiGruðEðXÞÞ 2 Rd.

2.4.2 Multi-head attention
Note: the output of the BiGRU layer is assigned 
to Q¼ K¼ V ¼ BiGruðEðXÞÞ.

In the NER context, the multi-head attention mechanism 
(Figure 3) helps to capture relationships and dependencies be
tween tokens in a sequence to represent named entities. The 
main parameters of the Multi-Head Attention (MHA) process 
in transformers architectures include the attention heads (de
fault: h¼ 4) having the respective dimensions dq;dk;dv 2

Nðdq ¼ dk ¼ dv ¼ d=h¼ 256=4¼ 64; according to Section 4.1, 
d¼ 256Þ for learnable matrices Wq

i 2 R
dq×d, Wk

i 2 R
dk×d,

Wv
i 2 R

dv×d. This allows each head to attend to different parts
of the input token sequence (from the previous layer) and focus 
on the non-similar relationships. For each head, the attention 
scores are calculated by computing the dot product between the 
query and key representations. The attention scores are then 
scaled and passed through a softmax function to obtain 
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attention weights. The attention weights compute a weighted 
sum of the token value representations. This emphasizes the im
portance of different positions in the input token sequence 
based on their relevance to the query. The weighted sum is then 
concatenated across all the heads and projected back to the 
original dimension using a weight matrix (Wo 2 Rh×d).

Finally, the output of the MHA process is obtained by ap
plying layer normalization and residual connections to the 
concatenated and projected representation. This helps stabi
lize the learning process and allows the model to capture the 
dependencies and relationships within the input sequence. 

MHAðQ;K;VÞ ¼ ½head1; head2; . . .; headh�×Wo 

with headi ¼ AttentionðQ×WQ
i ;K×WK

i ;V×WV
i Þ

In practical implementation, the attention function is com
puted on a set of queries packed together into a matrix Q 
(Vaswani et al. 2017). The keys and values are also packed 
together into matrices K and V. The output matrix is then 
computed by applying the attention mechanism: 

AttentionðQ;K;VÞ ¼ Softmax
QKT
ffiffiffi
d
p

!

×V:

2.4.3 Feedforward network layer and last linear 
transformation
The feedforward sub-block, a crucial component of the 
Transformer architecture, comprises four sequential linear 
transformation operations. It processes the output from the 
BiGRU layer and generates a d-dimensional vector for the fi
nal linear layer of the architecture. The first linear layer 
within this block employs the ReLU (Agarap 2018) activation 

function. The hidden dimension for all layers within the feed
forward sub-block is set to dff¼ 512. The feedforward sub- 
block consists of four linear transformation operations, each 
represented by a matrix multiplication and a bias addition. 

x ¼MHAðQ;K;VÞðor BiGruðEðXÞÞ ðafter frozen MHAÞ
h1ðxÞ ¼ maxð0; x×W1þb1Þ;

h2ðxÞ ¼W2 × h1ðxÞþb2;

~h2ðxÞ ¼ dropoutðh2ðxÞ; dropout rateÞ;

FFNðxÞ ¼ LayerNormð ~h2ðxÞþxÞ:

Where h1;h2 represents the successive linear layers in the sub- 
block. W1 and W22 Rh×d. The dropout operation aims to
prevent overfitting in neural networks by “dropping out” a 
certain proportion (dropout rate) of neurons (and their con
nections) from the network.

Following the feedforward sub-block, a final linearization 
step is performed using the operation: 

y ¼ h3ðFFNðxÞÞ

Here, h3 represents the final linear layer, FFN(x) denotes 
the output of the feedforward sub-block, and x represents the 
input to the sub-block.

2.5 Decoder stack: CRF
The CRF decoder’s (Al-Smadi et al. 2019) objective is to se
lect the most probable index tag for all the input tokens, con
sidering the input feature scores and index tag transitions. It 
considers the potential scores of tag sequences generated by 
the model and the transitions between consecutive index tags. 

Figure 3. Graphical representation of Multi-Head Attention (Vaswani et al. 2017).
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It computes the probability of each index tag sequence using 
the Viterbi decoding algorithm (Forney 1973).

� Output Embedding: Let Tg ¼ fBj; Ij;O;1≤ j≤Mg be the
ordered set of all the taggers of tokens for the M classes to
detect. Each token ti in the sequence X is associated with
a numeric-valued tag oiðoi 2 TgÞ and generates a d-dimen
sional vector OX, which will be utilized by the decoder.
OX has same dimension d than EðXÞ.

� CRF Mask: The CRF mask is applied by multiplying the
output vector sequence OX with the binary mask. The
masked elements are ignored during the loss calculation
and do not contribute to the final predictions. This
ensures that only the valid tokens of the sequence are con
sidered during training and prediction, thereby improving
the performance and efficiency of the model.

The model is trained in a supervised way by maximizing 
the probability of correct output tags. This involves jointly 
optimizing the model weights from the output y and the 
CRF decoder.

The CRF decoder in the architecture allows for the consid
eration of dependencies between tags, which can improve the 
coherence of predictions and the overall quality of the model.

3 Results
In this section, we aim to demonstrate GRU-SCANET’s abil
ity to maintain its effectiveness with consistent performance 
when scaled up in the NER recognition process. In Section 
5.1, we describe the preprocessing of the datasets. Then, in 
Section 5.2, we describe the execution environment. In 
Section 5.3, we present our observations on the performance 
of GRU-SCANET. In Section 5.4, we present an evaluation 
of the architecture performance scalability in relation to data 
size and, consequently, model size. Finally, in Section 5.5, we 
discuss the key differentiations from existing approaches.

3.1 Datasets
We applied a preprocessing step to ensure that the input–out
put pairs follow the standard problem formulation (see 
Fig. 1) commonly used in state-of-the-art approaches. This 
alignment facilitates the model’s learning and prediction dur
ing both the training and testing phases and ensures a fair 
comparison with existing methods. This technique involves 
formatting the datasets as pairs of text and labels correspond
ing to individual words or subword sequences.

The datasets used include NCBI Disease (Do�gan et al. 
2014), BC5CDR Disease and Drug/Chem (Li et al. 2016), 
BC4CHEMD (Krallinger et al. 2015), BC2GM (Smith et al. 
2008), JNLPBA (Collier et al. 2004), LINNAEUS (Gerner 
et al. 2010), and Species-800 (Pafilis et al. 2013). Unlike 
state-of-the-art models like BioBERT (Lee et al. 2019), which 
rely on bidirectional encoding, or GPT (Lai et al. 2023), 
which uses an auto-regressive process, our architecture does 
not perform pre-training on diverse corpora to capture token 
semantics. Instead, it directly maps tokens to the appropriate 
classes without relying on such extensive pre-training.

Our objective is not to predict masked tokens optimally or 
adapt them to sequences, but rather to capture the relation
ships between input and output sequences focused on NER 
datasets. With GRU-SCANET, there is no need to fine-tune 
the context for each token with new data, preventing the 

inclusion of irrelevant information that might affect perfor
mance. Our model remains flexible when gradually updated 
with new data, minimizing disruptions compared to models 
based on token embeddings, which can be sensitive to statisti
cally underrepresented tokens. During the preprocessing 
stage, we reorganized the datasets into tokenized sentences 
paired with their corresponding NER tags, simplifying the 
subsequent training process.

Moreover, we merged all eight data sources into a single 
dataset to create a Large Language Model (LLM). 
Subsequently, each of the eight individual datasets was evalu
ated by using the generated LLMs. This approach ensures 
that the models are trained and tested globally on the pro
vided high-quality data without focusing on the specified 
tasks. More details will be described in Section 5.4.

3.2 Experimental setup
The experimental setup for the NER process is based on an ar
chitecture comprising one encoder and one decoder. The model 
is trained using a supervised approach, optimizing the parame
ters with the Adam optimizer to minimize the loss between the 
predicted and the ground-truth tags. The environment contains 
a GPU partition with 468 GB of RAM and eight high- 
performance GPUs (Nvidia v100). Each compute node is 
equipped with 64 CPU cores, accompanied by dedicated mem
ory of 7.3 GB per core. To achieve optimal convergence, our 
training process requires only two iterations. The entire train
ing process is completed in less than a day. The learning rate is 
set to 1e-3, and the dropout rate (0.2) is applied to prevent 
overfitting. The performance of the model is evaluated using 
appropriate evaluation metrics such as precision (P), recall (R), 
and F1-score (F). This experimental setup aims to leverage the 
power of the architecture and the CRF decoder to achieve accu
rate and robust NER across various biomedical datasets.

Precision (P): 

P ¼
TP

TPþ FP 

Recall (R): 

R ¼
TP

TPþ FN 

F1-Score (F1): 

F1 ¼
2 � P � R
PþR 

Where: 

TP − True Positives ðcorrectly predicted positive instancesÞ
FP − False Positives ðnegative instances incorrectly predictedÞ
FN − False Negatives ðpositive instances incorrectly predictedÞ

3.3 Overview of results
The GRU-SCANET architecture outperformed the other 
approaches of the evaluated datasets (Table 1). With a model 
size of 16 million parameters, GRU-SCANET achieved metrics 
ranging from 83.52% to 98.64% (Table 3), consistently sur
passing state-of-the-art models in various NER tasks. Notably, 
our architecture outperformed BioBERT in all eight evaluations 
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and surpassed Bern2 in five out of five evaluations (Tables 3– 
5). Our analysis shows a robust balance between precision, re
call, and F1-score, reflecting the model’s ability to accurately la
bel entities in biomedical texts. For example, GRU-SCANET 
achieved an F1-score of 91.64% on the NCBI Disease dataset 
and 94.37% on the BC5CDR-chem dataset. These results indi
cate that GRU-SCANET effectively handles diverse biomedical 
NER tasks, ensuring high accuracy and minimal error rates. 
On the JNLPBA dataset, GRU-SCANET achieves a slightly 
lower precision (83.52%) than CRF (83.76%), which itself 
outperforms the other models evaluated in (Song et al. 2021; 
GRAM-CNN, Layered-BiLSTM-CRF, and MTM-CW). In 
terms of F1-score, GRU-SCANET surpasses all five models pre
sented in (Song et al. 2021).

A key observation is the equal number of false positives 
and false negatives across various test instances, leading to 
similar metrics for precision and recall. This balance high
lights the model’s consistency and reliability in tagging enti
ties. For example, if the model is expected to correctly tag 10 
entities but makes one incorrect prediction, there will be 1 
false positive (FP). Similarly, the number of false negatives 
(FN) will also be 1, indicating an incorrectly tagged position. 
When FN equals FP, precision (P) and recall (R) are equal. 
We calculate the average precision and recall over the entire 
test dataset, which leads to consistent metrics across different 
test instances (Lee et al. 2019).

Furthermore, the ablation study, which involved removing 
the Multi-Head Attention (MHA) layer, confirmed its crucial 
role in the model’s performance. The significant drop in F1- 
score to 57.90% without the MHA layer underscores its im
portance in capturing complex relationships between tokens. 

Table 1. Statistics of the biomedical NER datasets.a

Dataset Entity Type N-o-A

NCBI Disease (Do�gan et al. 2014) Disease 6881
BC5CDR (Li et al. 2016) Disease 12 694
BC5CDR (Li et al. 2016) Drug/Chem. 15 411
BC4CHEMD (Krallinger et al. 2015) Drug/Chem. 79 842
BC2GM (Smith et al. 2008) Drug/Chem. 20 703
JNLPBA (Collier et al. 2004) Gene/Protein 35 460
LINNAEUS (Gerner et al. 2010) Gene/Protein 4077
Species-800 (Pafilis et al. 2013) Species 3708

a The provided information includes the number of annotations from 
Habibi et al. (2017) and Zhu et al. (2018). N-o-A: number of annotations.

Table 2. Performance metrics (F1: micro) achieved on benchmark 
datasets after progressive merging.a

Datasets Precision Recall F1-score Model’s size

D1 90.21 90.21 90.21 5659818 (6M)
D2 92.31 92.31 92.31 12133320 (12M)
D3 92.18 92.18 92.18 12566382 (13M)
D4 92.88 92.88 92.88 12566940 (13M)
D5 91.86 91.86 91.86 13039314 (13M)
D6 92.10 92.10 92.10 14189328 (14M)
D7 92.68 92.68 92.68 14458198 (14M)
D8 92.67 92.67 92.67 15079716 (15M)
D8 (no MHA) 57.90 57.90 57.90 10422436 (10M)

a Summary table of architecture performance after a progressive increase 
in data size. We also evaluated GRU-SCANET without the MHA layer that 
refers to D8 (no MHA). The highest performing scores are highlighted in 
bold, while the second-best scores are underlined.

Table 3. Results obtained from the evaluation of the biomedical named entity recognition system.a

BERT BioBert v1.0 BioBERT v1.1 GRU-SCANET

Type Datasets Metrics SOTA (Wiki þ Books) (þ PubMed) (þ PMC) (þ PubMed þ PMC) (þ PubMed)

Disease NCBI disease P 88.30 84.12 86.76 86.16 89.04 88.22 91.64
R 89.00 87.19 88.02 89.48 89.69 91.25 91.64
F 88.60 85.63 87.38 87.79 89.36 89.71 91.64

BC5CDR P 89.61 81.97 85.80 84.67 85.86 86.47 94.25
R 83.09 82.48 86.60 85.87 87.27 87.84 94.25
F 86.23 82.41 86.20 85.27 86.56 87.15 94.25

Drug/Chem BC5CDR P 94.26 90.94 92.52 92.46 93.27 93.68 94.37
R 92.38 91.38 92.76 92.63 93.61 93.26 94.37
F 93.31 91.16 92.64 92.54 93.44 93.47 94.37

BC4CHEMD P 92.29 91.19 91.77 91.65 92.23 92.80 92.83
R 90.01 88.92 90.77 90.30 90.61 91.92 92.83
F 91.14 90.04 91.26 90.97 91.41 92.36 92.83

Gene/Protein BC2GM P 81.81 81.17 81.72 82.86 85.16 84.32 89.47
R 81.57 82.42 83.38 84.21 83.65 85.12 89.47
F 81.69 81.79 82.54 83.53 84.40 84.72 89.47

JNLPBA P 74.43 69.57 71.11 71.17 72.68 72.24 83.52
R 83.22 81.20 83.11 82.76 83.21 83.56 83.52
F 78.58 74.94 76.65 76.53 77.59 77.49 83.52

Species LINNAEUS P 92.80 91.17 91.83 91.62 93.84 90.77 98.64
R 94.29 84.30 84.72 85.48 86.11 85.83 98.64
F 93.54 87.60 88.13 88.45 89.81 88.24 98.64

SPECIES-800 P 74.34 69.35 70.60 71.54 72.84 72.80 95.72
R 75.96 74.05 75.75 74.71 77.97 75.36 95.72
F 74.98 71.63 73.08 73.09 75.31 74.06 95.72

a Following the convention proposed by Lee et al. (2019) with their results, we adopt a similar approach to present our summary of results. For each 
dataset, we provide the Precision (P), Recall (R), and F1-score (F) scores but we use the average micro-metric to evaluate GRU-SCANET. The highest 
performing scores are highlighted in bold, while the second-best scores are underlined.
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Overall, GRU-SCANET’s stable and high performance across 
different datasets and experimental setups showcases its ca
pability to address the challenges of biomedical NER. This 
architecture sets a new benchmark for NER tasks in the bio
medical domain, combining efficiency with accuracy to de
liver state-of-the-art results.

3.4 Scalability and performance
Recall that we conducted evaluations on the following 
BioCreative datasets (8): BC2GM, BC4CHEMD, BC5CDR- 
chem, BC5CDR-disease, Corpora, JNLPBA, Linnaeus, NCBI 
Disease, and s800. Using these initial datasets, we created 
mergers of sets to construct datasets from D1 to D8. For in
stance, D3 comes from merging the first three datasets listed 
above. The results are recapitulated in Table 2. In Figs 4 and 
5, after evaluating each model derived from these merged 
datasets with the architecture, we observe a stable and 
slightly increasing model size and stable performances from 
this architecture. Significant performance fluctuations across 
the different dataset combinations strongly indicate an imbal
ance in token distributions between the datasets. 
Nevertheless, the average value of all metrics is 92.11%. We 
also performed an ablation study of GRU-SCANET by re
moving the MHA layer and reevaluating the merged version 
of the entire dataset (D8). As shown in Table 2 (D8 without 
MHA), we observe a drastic drop in performance and re
duced model size, confirming that the MHA layer is crucial 
and justifying our performance. Figure 6 highlights that 
GRU-SCANET globally outperforms other models in terms 
of F1-score on all datasets. This graph facilitates an intuitive 
and quick comparison of overall performance.

4 Discussion
Some studies have shown that it is highly beneficial for auto- 
regressive models to leverage external corpora tailored to spe
cific domains to optimize token representations to increase 

the effectiveness in some tasks such as NER (Lee et al. 2019). 
This has been demonstrated by all models, whether they are 
of biological origin or not, that have adopted the BERT ar
chitecture [RoBERTa, BioBERT (cased, v1.0, v1.1), 
SciBERT, ClinicalBERT, BlueBERT, PubMedBERT, and 
Bern2]. However, in specialized, less-explored domains with 
a limited training corpus, stabilizing models that aim to opti
mize token vector representations across multiple contexts 
can be challenging due to the constraints of the dataset 
(Mikolov et al. 2013). Our approach GRU-SCANET can 
maintain high performance without extensive fine-tuning on 
domain-specific data. This is achieved using BiGRU for con
textual learning, multi-head attention for capturing token 
relationships, and a CRF decoder for precise entity labeling. 
The ablation study further highlights the crucial role of the 
multi-head attention mechanism in achieving high accuracy, 
as evidenced by the significant drop in performance to 

Table 4. Evaluations of the biomedical named entity recognition system (F1: micro).a

BERT RoBERTa BioBERT SciBERT ClinicalBERT BlueBERT PubMedBERT GRU-SCANET

Datasets Uncased Cased Cased Cased Uncased Cased Cased Cased Uncased

BC5-Chem 89.25 89.99 89.43 92.85 92.49 92.51 90.80 91.19 93.33 94.37
BC5-Disease 81.44 79.92 80.65 84.70 84.54 84.70 83.04 83.69 85.62 94.25
NCBI Disease 85.67 85.87 86.62 89.13 88.10 88.25 86.32 88.04 87.82 91.64
BC2GM 80.90 81.23 80.90 83.82 83.36 83.36 81.71 81.87 84.52 89.47
JNLPBA 77.69 77.51 77.86 78.55 78.68 78.51 78.07 77.71 79.10 83.52

a Comparison of GRU-SCANET’s results with those obtained by Gu et al. (2020) based on F1-score. The highest performing scores are highlighted in 
bold, while the second-best scores are underlined.

Table 5. Performance metrics (F1: micro) achieved on benchmark 
datasets for biomedical named entity recognition.a

Datasets Type PTC Hunflair Bern Bern2 GSC

BC2GM Gene/protein 78.8 77.9 83.4 83.7 89.47
NCBI Disease Disease 81.5 85.4 88.3 88.6 91.64
BC4CHEMD Drug/chemical 86.7 88.9 91.2 92.8 92.83
Linnaeus Species 85.6 93.2 88.0 92.7 98.64
JNLPBA DNA N/A N/A N/A 77.8 83.52

a We incorporate our results into the existing version developed by Sung 
et al. (2022) for comparison and further analysis. GSC: GRU-SCANET. 
The highest performing scores are highlighted in bold, while the second-best 
scores are underlined.

Figure 4. Performance comparison of models of different sizes obtained 
from the architecture.

Figure 5. Parameter sizes for different models on datasets 
progressively merged.
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57.90% when this component is removed. The scalability of 
GRU-SCANET is another notable advantage. Our evalua
tions across progressively larger datasets demonstrate that 
the model’s performance remains stable and even improves 
slightly with increased data size. This indicates that GRU- 
SCANET can effectively handle the growing volume of bio
medical literature, making it a robust tool for real-world 
applications. New approaches have emerged recently to high
light the ability of NER based on LLM prompt contexts with 
zero-shot or few-shot examples (Ko�sprdi�c et al. 2023, Bian 
et al. 2023), which have so far provided almost no better 
results despite their varied performance.

5 Conclusion
In conclusion, this article introduces an architecture for bio
logical NER that combines positional encoding, BiGRU, an 
attention-based encoder, and a CRF decoder. The experimen
tal results validate the effectiveness of this approach in 
accurately identifying biological entities. Compared to 
existing models such as Bern, BERT, RoBERTa, BioBERT 
(cased, v1.0, v1.1), SciBERT, ClinicalBERT, BlueBERT, 
PubMedBERT, and Bern2, GRU-SCANET offers enhanced 
accuracy and efficiency in extracting named entities from bio
medical texts. Evaluation results on benchmark datasets dem
onstrate the effectiveness of GRU-SCANET in recognizing 
various types of entities, including genes/proteins, diseases, 
drugs/chemicals, and species. Local installation options make 
GRU-SCANET easily accessible for integration into other sys
tems. GRU-SCANET provides researchers and practitioners a 
reliable tool for improving biomedical text-mining tasks. 
Overall, GRU-SCANET holds great potential in advancing re
search and applications in biomedicine. Future perspectives for 
this approach include exploring larger and more diverse bio
medical datasets, as well as incorporating domain-specific 
knowledge to improve performance in capturing specific bio
medical entity types and relationships.
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