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 A B S T R A C T

Unprovoked shark bites are increasing globally. Regional hotspots like Nouméa show rising incidents involving 
bull sharks (Carcharhinus leucas) and tiger sharks (Galeocerdo cuvier), leading to the culling of these protected 
species. Identifying high-risk areas and times is key to balancing human safety and shark conservation. Here, 
we collected five years of acoustic telemetry data for both shark species in the lagoon of Nouméa. The data 
were categorized by species, divided into 24 hourly subsets, and modeled as bipartite graphs. The Fast-Greedy 
algorithm was applied to identify distinct communities of sharks and stations. Normalized mutual information 
was used to cluster communities and detect spatiotemporal patterns. The study revealed up to 9 hourly 
communities for bull sharks and 21 for tiger sharks, each grouping into 3 clusters. Several high-risk areas 
and times were identified. Bull sharks formed schools, and a cluster was observed in the harbor between 
6:00 and 13:00, increasing bite risk on nearby beaches in the morning. Tiger sharks were more solitary and 
were present day and night at most stations except those in relatively turbid areas. Both species showed 
fission–fusion dynamics, with communities merging at dusk, indicating increased movement and a higher risk 
during this low-light period. A key innovation of our modeling framework was its ability to handle temporal 
variability in community detection algorithms applied to bipartite networks. The model identified key overlap 
periods of shark–human activity, highlighting the need for real-time monitoring, safety measures, and public 
awareness to reduce bite risk and promote coexistence.
 

 

 
 

1. Introduction

Understanding the complex balance between conservation efforts 
and public safety in the context of large marine predators is a critical 
and complex task in marine ecology. This is especially true for large 
shark species such as the bull shark (Carcharhinus lucas) and the tiger 
shark (Galeocerdo cuvier), which are not only essential to the health of 
marine ecosystems but also pose significant risks in human-dominated 
areas (Henderson et al., 2024; Huveneers et al., 2023). Often regarded 
as apex predators, these sharks face growing threats from human 
activities, including culling and other harmful risk management mea-
sures implemented in response to accidental interactions with humans. 
Current statistics from the International Shark Bite Profile reveal that 
in 2022, there were 57 unexplained shark bites worldwide, which 
highlights the potential danger these animals can pose in populated 
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areas (Huveneers et al., 2023). In the South Pacific, the capital and
largest city of New Caledonia, Nouméa, a region well known for its 
rich marine biodiversity, has experienced a rise in the number of shark 
bites in recent years. From 1958 to 2020, 67 shark bites were recorded 
in New Caledonia, of which 13 were fatal. Tiger sharks were responsible 
for 20 bites, 8 of which were fatal. Bull sharks were responsible for 14
bites, including two fatalities (Maillaud et al., 2022). 

Bull sharks are known for their ability to grow in both freshwa-
ter and marine environments, including coral reefs, tropical lagoons, 
and rivers. They are recognized as one of the most dangerous shark 
species (West, 2011). Tiger sharks are mostly found in tropical and
warm waters and often feed on a variety of marine life (Riley et al.,
2022). Their frequent visits to shallow reefs increase their interactions 
with humans, making them second only to great white sharks in 
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Ecological Informatics 90 (2025) 103263 
terms of the number of shark bites (Whitenack et al., 2022). Like bull
sharks, tiger sharks are also near threatened due to human activities
and are listed on the IUCN Red List, making it illegal to hunt them 
globally (Whitenack et al., 2022). In response to increased shark ac-
tivity and subsequent public safety concerns, New Caledonian local
authorities have implemented several conservation and safety mea-
sures (Gauthier et al., 2020). These include patrolling and monitoring 
Nouméa bays, banning shark feeding, temporary closures of swimming 
areas following shark reports, shark culling following shark bites, and
tracking shark movements using acoustic telemetry (Huveneers et al.,
2023).

The technique of acoustic telemetry is key for studying aquatic 
species movements and habitat preferences using a network of receivers 
and transmitters (Cooke et al., 2004; Hedger et al., 2009; Alós et al., 
2011; Lyu et al., 2020). Transmitters placed on the animals emit signals 
that provide location and environmental information, which are picked
up by an array of underwater receivers (Brownscombe et al., 2019).
Acoustic telemetry has been usefully employed to inform spatial man-
agement (Carrier et al., 2018), in particular, in assisting the designation 
and evaluation of marine protected areas (MPAs) (Carlisle et al., 2019;
Espinoza et al., 2015; Knip et al., 2012). Network analysis is a pow-
erful way to visualize and interpret complex multidimensional data.
It involves the creation of networks of nodes (entities) connected by
edges (relationships), allowing for the analysis of how entities interact 
within the network. An important application of network analysis to
animal behavior is its ability to identify and measure specific features 
of relationships that are not captured by more common measures of 
behavior (Wey et al., 2008).

The combination of telemetry data and network analysis signifi-
cantly enhances the study of animal behavior, especially in the aquatic 
environment (Lea et al., 2016; Bastille-Rousseau et al., 2018; Lilly et al.,
2020; Carrier et al., 2018; Whoriskey et al., 2019; Haulsee et al., 2016;
Feyer et al., 2024; Lédée et al., 2015; Aspillaga et al., 2021; Kraft 
et al., 2024; Martínez-López et al., 2009). Typically, these analyses have 
employed unipartite graphs, representing either individuals or receivers 
as nodes, to model the data. For instance, studies like Lilly et al.
(2020) and Lédée et al. (2015) have used unipartite graphs to examine
individual movement patterns and habitat preferences by representing 
tagged animals as nodes within a single network. In contrast, other 
research has employed bipartite graphs, where nodes represent both 
individuals and receivers, to explore the interactions between these two 
entities. For example, Whoriskey et al. (2019) and Kraft et al. (2024)
have demonstrated the value of bipartite graph models in identifying 
spatial and temporal movement patterns by mapping the connections 
between tagged animals and receiver stations.

Despite these advancements, a common limitation has been the 
static representation of these networks, which often aggregate teleme-
try data into a single unipartite or bipartite graph (Carrier et al.,
2018; Haulsee et al., 2016; Martínez-López et al., 2009). This approach
can obscure temporal variations in animal behavior, as the resulting 
networks often reflect average or cumulative movement patterns rather 
than dynamic changes over time. However, a persistent methodological 
challenge lies in accounting for the temporal dynamics of animal asso-
ciations. Network structures derived from telemetry data are sensitive 
to the temporal resolution of analysis, with the choice of time win-
dow greatly influencing observed co-occurrence patterns and modular
structures (Yin and Rudolf, 2023; Jacoby and Freeman, 2016; Jacoby
et al., 2012; Baker et al., 2023; Pasquaretta et al., 2020; Papastamatiou 
et al., 2020; Finn et al., 2014; Garcia et al., 2015; Bruneel et al.,
2020). To address these challenges, several techniques from dynamic
network analysis have emerged, including snapshot-based community 
detection, modularity tracking across time, and tensor decomposition 
methods (He et al., 2017; Caravelli et al., 2013; Aviyente, 2021; Al-
Sharoa et al., 2017). These techniques allow researchers to monitor 
evolving group structures, but they are rarely adapted to ecological 
2 
telemetry settings—particularly when it comes to preserving the full
structure of interactions between individuals and spatial locations.

In movement ecology, most studies reduce telemetry data to unipar-
tite projections—e.g., co-occurrence networks that link animals based
on shared space use or location–location graphs based on shared vis-
its (Whoriskey et al., 2019; Aspillaga et al., 2021; Mourier et al., 
2011). These unipartite approaches oversimplify the underlying rela-
tional structure by collapsing bipartite information (e.g., which animals 
visited which locations at what times) into single-mode networks. As 
a result, the rich, two-mode structure of telemetry data is lost. To 
our knowledge, no published study has used dynamic bipartite graphs 
to represent both individuals and locations across time slices while 
analyzing temporal community stability in animal movement data. This 
represents a major gap in the field, particularly for systems—such as 
marine environments— and issues—such as the risk of shark bites— 
where temporal variation in spatial structure is crucial information for 
both the conservation of threatened species and the design of public 
safety measures.

Our study addresses this gap by developing a novel framework 
that constructs hourly bipartite networks linking individual sharks to 
acoustic receivers (locations), preserves the full two-mode structure of 
the data, and analyzes how these structures evolve across time. Addi-
tionally, this research aims to enhance our understanding of how bull 
and tiger sharks move around the lagoon of Nouméa, paying particular 
attention to the time they spend in areas of high human activity, such 
as harbors, beaches, coral islets, and bays. This information is key to 
identify areas and times of enhanced risk of bite.

To achieve these objectives, we collected data on the movement 
patterns of 30 sharks and the duration of their stay in specific locations 
using 44 hydrophones deployed from November 2018 to November 
2023. We divided the large dataset of 753,621 detections by species 
and hourly time slots to track animal movement throughout the day.
We then modeled the resulting datasets using bipartite graphs linking 
sharks to the stations they visited, with weighted edges representing the 
number of visits per hour. Next, we applied the Fast-Greedy community 
detection algorithm to each hourly bipartite graph (Finn et al., 2014;
Haulsee et al., 2016) and then used Normalized Mutual Information 
(NMI) to evaluate the similarity of resulting community structures 
across the diel cycle (Zhong et al., 2024; Amelio and Pizzuti, 2015;
Chen et al., 2015; Jerdee et al., 2023). Hours with similar community 
configurations were clustered, and communities from aggregated clus-
ters were reassessed to identify temporally stable communities. This 
framework – through the integration of dynamic bipartite network 
construction, modularity-based community detection, and community 
similarity clustering via Normalized Mutual Information (NMI) – of-
fers a significant alternative to existing models. Applied to acoustic 
telemetry data in Nouméa, it revealed periods of increased connectivity 
between sharks and specific locations, providing valuable insights into 
temporal variations in shark space use and the risk of shark bites. 
This knowledge can further contribute to the development of informed 
public safety measures.

2. Materials and methods

2.1. Study area and tagged sharks

Our study site Nouméa, the capital of New Caledonia, is character-
ized by an extensive lagoon of about 20 km wide, including inshore 
bays and beaches, lagoon patch reefs and islets, and a large barrier 
reef. Situated in Grande Terre’s densely populated southern province, 
Nouméa is home to about two-thirds of the island’s human popula-
tion, contrasting sharply with the more sparsely populated northern 
province (D’agata et al., 2016; Juhel et al., 2019). This concentration of 
human activity in highly favorable habitats for sharks poses important 
challenges for conservation and public safety issues. In order to study 
shark movements, 44 VR2 W acoustic receivers (Vemco Ltd., Halifax,
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Fig. 1. Geographical distribution of acoustic receivers deployed in diverse areas of Nouméa, New Caledonia. Each dot on the map represents the location of a receiver, and its 
color corresponds to areas indicated in the map’s color bar.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

Canada) were deployed in the lagoon of Nouméa. Four receivers were 
installed in November 2018 in the Grand Harbor area, including at the 
industrial fishing wharf (station H1). In January 2019, an additional 20
receivers were deployed at various strategic locations: one at the exit of 
Dumbéa Bay, one in Small Harbor, four across different islets (Canard,
Maître, Larégnère, and Signal), one at Senez Reef, six along Wide Beach 
(three in Citrons Bay and three in Anse Vata Bay), four in St. Marie’s 
Bay, one at the St. Marie’s Nautical Center, and two in Magenta Bay.
In July 2019, another 20 receivers were deployed, five within Small
Harbor marinas, two on Canard Islet, and several receivers along beach 
areas, including four in Citrons Bay, seven in Anse Vata Bay, and two in 
the Sainte-Marie’s Bay Nautical Center (SM6 and SM7), where children 
learn sailing (Fig.  1).

A total of 31 sharks were internally fitted with V16 acoustic coded
transmitters (68 × 16 mm; frequency: 69 kHz; high power output; 
VEMCO Ltd., Halifax, Canada), with transmission delay times randomly
ranging from 30 to 90 s (one minute average). Sharks were captured 
at several locations around Nouméa using circle hooks attached to a
floating drum line baited with large pieces of fish (mostly skipjack 
and albacore tuna collected from local fisheries waste). The animals 
were processed immediately after capture in a tonic immobility state 
alongside a small runabout, where their total length in centimeters and
sex were recorded, and then released. The studied sharks comprised 
19 bull sharks, with a sex distribution of 5 males and 14 females, and
11 tiger sharks, with 1 male and 10 females (Table  1). One bull shark 
was excluded from the analysis due to its absence from the detection 
records.

2.2. Acoustic telemetry detections data set

Data were collected from November 2018 to November 2023. The
battery life of the hydrophones lasted for one year, so the data were 
downloaded in November of each year and the batteries replaced. Raw 
acoustic data were filtered to remove potential false detections using 
the FDA Analyzer Tool from the VUE software (VEMCO Ltd., Halifax,
Canada). The dataset was split by species and then divided into 24
 

3 
hourly subsets, with each subset representing detections from a specific 
species and an hour of the day (steps 1 and 2 in Fig.  2).

2.3. Graph construction

We analyzed the 24 datasets for each species by first linking sharks 
to the stations they visited. The network analyses produced a series
of 24-hourly bipartite graphs where nodes represented two distinct 
entities: sharks and stations. An undirected edge connected each shark 
to the stations it visited, with edge weights representing the number 
of visits to each station. This weighting served as an indicator of the 
relative use of each station by individual sharks (step 3 in Fig.  2). This 
structure aimed at capturing the interactions and associations between 
species and their environments.

2.4. Community detection

In network science, a community refers to a set of nodes with 
stronger interconnections than with nodes outside the community
(Wasserman and Faust, 1994). To provide an interpretation of station 
and shark groupings, we therefore applied the Fast-Greedy community 
detection algorithm to each hourly bipartite graph (step 4 in Fig.  2).
This algorithm is part of the Social Network Analysis (SNA) family.
It uses a greedy optimization method, initially treating each vertex 
(node) as an individual community and then iteratively merging pairs
of vertices (or communities) that produce the largest increase in modu-
larity (Clauset et al., 2004; Newman, 2010). This metric quantifies the 
strength of a network’s division into modules. The Fast-Greedy algo-
rithm is suitable for our analysis due to its effectiveness in optimizing 
modularity and its compatibility with bipartite structures. To ensure 
the quality of our community detection results, we also tested two 
additional algorithms: the Label Propagation algorithm, in which nodes 
adopt the most frequent neighboring label (Cordasco and Gargano, 
2011), and the Multilevel algorithm, which uses a hierarchical ap-
proach to optimize modularity (Blondel et al., 2008). All analyses were 
performed in Python using NetworkX (NetworkX community, 2024).
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Table 1
The 30 studied sharks with information on their IDs [(T for Tiger, B for Bull), Unique Identifier, and Sex 
(F for Female, M for Male)], species, sex, size, and tagging date.
 ID Specie Sex Size (cm) Tagging date 
 B01F Bull shark Female 255 27/11/2018  
 B02F Bull shark Female 271 28/11/2018  
 B03F Bull shark Female 282 30/11/2018  
 B04F Bull shark Female 312 08/03/2019  
 B05F Bull shark Female 275 05/11/2019  
 B06F Bull shark Female 294 06/11/2019  
 B07F Bull shark Female 275 10/12/2019  
 B08F Bull shark Female 305 21/01/2020  
 B09M Bull shark Male 237 07/07/2020  
 B10M Bull shark Male 237 15/09/2020  
 B11F Bull shark Female 302 15/10/2020  
 B12F Bull shark Female 306 15/10/2020  
 B13F Bull shark Female 294 15/10/2020  
 B14M Bull shark Male 271 15/10/2020  
 B15F Bull shark Female 285 15/10/2020  
 B16F Bull shark Female 302 15/10/2020  
 B17M Bull shark Male 170 19/11/2020  
 B18M Bull shark Male 259 25/03/2021  
 B19F Bull shark Female 215 28/04/2021  
 T01F Tiger shark Female 205 19/11/2020  
 T02F Tiger shark Female 220 19/11/2020  
 T03M Tiger shark Male 160 12/03/2021  
 T04F Tiger shark Female 168 27/04/2021  
 T05F Tiger shark Female 157 28/04/2021  
 T06F Tiger shark Female 245 28/04/2021  
 T07F Tiger shark Female 370 27/07/2021  
 T08F Tiger shark Female 300 27/07/2021  
 T09F Tiger shark Female 280 16/03/2022  
 T10F Tiger shark Female 337 29/06/2022  
 T11F Tiger shark Female 348 29/06/2022  
 

 

 

 

 

 

 

 

 

 

2.5. Normalized mutual information

To quantify the temporal similarity of detected communities across 
he 24 bipartite graphs for each species, we calculated Normalized 
utual Information (NMI; step 5 in Fig.  2) between community par-
itions in bipartite graphs 𝑖 and 𝑗, where 𝑖, 𝑗 are the 24 h of the 
ay. NMI is a measure used to evaluate network partitioning per-
ormed by community detection algorithms. It is often used due to
ts comprehensive meaning and its ability to compare two partitions 
even when they contain a different number of clusters (Amelio and
izzuti, 2015; Lancichinetti et al., 2009). NMI is an information-theory 
pproach used to measure the shared information between two data
istributions (Cover and Thomas, 2005; Mahmoudi and Jemielniak, 
024), defined as:

NMI(𝑋, 𝑌 ) =
2 ⋅𝑀𝐼(𝑋, 𝑌 )
𝐻(𝑋) +𝐻(𝑌 )

where 𝑀𝐼(𝑋, 𝑌 ) is the mutual information between 𝑋 and 𝑌 , and
(𝑋), 𝐻(𝑌 ) the entropy of 𝑋 and 𝑌  respectively. The mutual informa-
ion 𝑀𝐼 is a measure of the amount of information that one random 
ariable contains about another one. Considering two random variables 
 and 𝑌 , the 𝑀𝐼 value can be calculated as follows:

𝑀𝐼(𝑋, 𝑌 ) =
∑

𝑥∈𝑋

∑

𝑦∈𝑌
𝑝(𝑥, 𝑦) log

(

𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

)

where 𝑝(𝑥, 𝑦) is the joint probability distribution function, 𝑝(𝑥), 𝑝(𝑦) are
the marginal probability distribution functions of 𝑥 and 𝑦 respectively. 
The entropy 𝐻 is a fundamental concept in information theory that 
measures the uncertainty or randomness of a random variable. It can 
be calculated as follows:
𝐻(𝑋) = −

∑

𝑥∈𝑋
𝑝(𝑥) log 𝑝(𝑥)

where 𝑝(𝑥𝑖) is the probability of outcome 𝑥𝑖.
The normalized mutual information (NMI) takes values in the range 

[0, 1]. Value 1 indicates maximum mutual information share between 
X and Y, implying both represent the same communities. Value 0
 

4 
indicates no information sharing between X and Y. The NMI matrix, 
which quantifies the similarity between community structures, can 
therefore be treated as a correlation matrix in the context of clustering. 
Thus, in order to explore the similarity between the shark communities 
detected in 24 hourly bipartite graphs per species, we performed hierar-
chical clustering as implemented in the Python’s scipy.cluster.hierarchy
module (SciPy community, 2024). To achieve this, we first computed 
the pairwise distances from the NMI values, specifically using 1-NMI as 
the distance metric. Then, we used the weighted method to transform 
the distance matrix into a linkage matrix. This method computes the 
average distance between clusters, making it effective for this type 
of community comparison. The resulting dendrogram was then used 
to visualize the hierarchical relationships and clustering patterns of 
the community detection outcomes across different graphs, based on
their similarities in NMI. A heatmap was also generated to provide 
a detailed view of pairwise NMI values. This method of generating 
dendrograms based on NMI values has been widely used in the liter-
ature. For example, Fortunato (2009) provided a thorough review of
community detection methods, discussing the utility of NMI as a mea-
sure of similarity for hierarchical clustering of detected communities 
across networks. By adopting these established methods, our approach 
offers a robust framework for analyzing variations in shark and station 
communities across 24 hourly bipartite graphs. After establishing the 
dendrogram and identifying clusters of temporally analogous hours, we
consolidated all bipartite graphs inside the same cluster into a singular 
bipartite graph. This aggregation preserved the structure of shark-
station interactions but over longer time windows defined by NMI
clustering similarity. We then reapplied the Fast-Greedy community 
detection algorithm to these aggregated graphs (step 6 in Fig.  2). This 
step allowed us to identify temporally stable community structures 
by smoothing out short-term fluctuations and reinforcing persistent 
interaction patterns. This process facilitated the analysis of space-use 
and community dynamics across different times of the day, aiming
to reduce noise from short-term fluctuations and highlight consistent 
interaction patterns.
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Fig. 2. Methodological framework: (1) collecting acoustic detection dataset for two shark species; (2) dividing dataset by species and splitting into 24 hourly datasets; (3) constructing 
ourly bipartite graphs; (4) applying the Fast-Greedy community detection algorithm to identify hourly community structures; (5) using Normalized Mutual Information (NMI),
eatmaps and dendrograms clustering to compare hourly communities and identify temporal changes in community structure; (6) aggregating similar hourly networks based on 
temporal clustering and reapplying Fast-Greedy community detection algorithm to detect stable community patterns.
 

 

 

3. Results

3.1. Acoustic telemetry detections

A total of 753,620 detections were recorded over five years, with 
bull sharks accounting for the majority (644,636 detections) compared 
to tiger sharks (108,984 detections). Among bull sharks, females (n =
14) contributed 480,145 detections, while males (n = 5) contributed
164,491 detections. For tiger sharks, females (n = 10) contributed 
5 
103,180 detections, whereas the sole male tiger shark contributed 5804
detections. Detection counts ranged widely, with bull sharks showing 
greater variability and higher totals than tiger sharks, and females 
in both species generally displaying higher per-individual averages 
compared to males. Bull shark females had individual detection counts 
ranging from 1491 to 175,877 (median = 17,446), while males ranged 
from 18,271 to 69,849 (median = 25,598). Similarly, tiger shark fe-
males ranged from 130 to 84,695 (median = 2116) detections per
individual, whereas the single male had a relatively low total.
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3.2. Key connections in shark movement patterns using bipartite graphs

In our analysis of 24 hourly bipartite graphs for each species, 
we observed strong variability in the number of sharks visiting each 
station, the number of stations visited by each shark, and the number 
of visits by station for a given hour slot across 5 years, based on data
from all sharks combined (Supplementary Material, Figures A.1 to A.3
for bull sharks and Figures A.4 to A.6 for tiger sharks).

Bull sharks exhibited dense, persistent spatial networks throughout 
the day, with high activity levels centered on a core set of inshore 
stations – fishing wharf (H1), Grand Harbor exits (H3, H4), and Small
Harbor exit (P1) – which consistently showed high degrees and edge
weights, with some links exceeding 10,000 visits. Peaks in connectivity 
occurred in early morning (0 h–6 h) and late afternoon (16 h–19 h),
indicating diel shifts in mobility. Among 19 tracked individuals, B04F,
B02F, B03F, and B06F contributed most to network structure and spa-
tial coverage. In contrast, tiger sharks showed sparser, more fragmented 
and temporally variable patterns, with lower degrees per individual and
per station, and frequent periods of disconnection, likely due to inac-
tivity or use of areas outside the array. Their activity was concentrated 
around offshore and mid-shelf sites – Signal Island (IS1), Larégnère 
Island (IS3), Senez Reef (IS2), and Sainte-Marie Bay (SM3) – which 
formed distinct hubs between 4 h–10 h and 18 h–23 h. Most tiger shark 
edges had low weights (1–500 visits), though some exceeded 2000,
suggesting key aggregation zones. T10F, T05F, T06F, and T02F showed 
the broadest station use and highest detection frequencies, while others 
remained unconnected for extended periods.

3.3. Shark community detection at hourly resolution

The application of the Fast-Greedy community detection algorithm 
over the 24 hourly bipartite graphs achieved the highest modularity 
scores, outperforming alternative methods (Supplementary Material, 
Table B.1). Given its superior performance, we used this algorithm for 
the remainder of our analyses. It revealed notable differences in the 
number of detected communities for bull sharks (Fig.  3(a)) and tiger 
sharks (Fig.  3(b)).

For bull sharks, the number of detected communities ranged from 2
to 9 (Fig.  3(a)). The highest community counts occurred during daylight 
hours and were associated with an increase in isolated communities 
(up to 6 per hour). Interestingly, these isolated communities always
consisted of single stations, never single sharks, suggesting that this 
species tends to move in groups that are more mobile at night. The
main isolated stations were located at Anse Vata, Citrons Bay, and
Small Harbor. Bull sharks also formed between two and four multiset 
communities – each involving at least one shark and one station – 
with three such communities observed during most hours. The analysis 
of tiger sharks revealed a higher number of detected communities, 
ranging from 11 to 21 (Fig.  3(b)). As with bull sharks, the highest 
community counts corresponded to the greatest number of isolated 
communities, ranging from 7 to 17 per hour. In contrast to bull sharks, 
however, isolated communities occurred both during the day and at
night and included not only single stations but also single sharks, 
suggesting that this species is relatively solitary. The main isolated 
stations were located at Grand Harbor, Small Harbor, Anse Vata, and
Magenta. Multiset communities ranged from two to five per hour, with 
three communities observed during most hours.

3.4. Spatiotemporal structure of shark communities

The Fast Greedy algorithm, combined with Normalized Mutual In-
formation and clustering techniques, identified three temporally stable 
community structures at specific time intervals for each species (Figs. 
4 & 5; Supplementary Material, Figures B.2, B.3, B.4, B.5, B.6 and B.7).
The number of communities within each interval ranged from two to
four, regardless of species.
6 
For bull sharks, the first interval clustered 15 h (1, 2, 3, 6, 7, 8,
9, 10, 11, 12, 13, 16, 18, 19, and 22 h), representing the baseline 
spatial structure of their communities during most hours of the day
and night (Fig.  4C). Three distinct communities were observed, with 
a clear spatial and sex-based structuring. The first community included 
four males mostly visiting Anse Vata and Citrons Bays, nearby coastal 
islets (Canard and Maître), and the Nautical Center of Sainte-Marie 
(green community in Fig.  4C). The second consisted of two females 
around Dumbéa Bay, Grand Harbor, and oceanic Signal Islet (purple 
community in Fig.  4C). The third and largest community was composed 
of eleven females and one male located at the Grand Harbor fishing 
wharf, the marinas of Small Harbor and frequently visiting oceanic 
Laregnère islet and Senez reef (cyan community in Fig.  4C). The second 
interval clustered a single time slot, 17 h, corresponding to dusk (Fig.
4B). At this time, only two communities were observed. The first and
smaller community included just two males localized in Sainte Marie 
Bay (green community in Fig.  4B). The second encompassed all other 
bull sharks and stations (purple community in Fig.  4B), suggesting a
disruption of the baseline structure at dusk, associated with broad shark 
movements and strong connectivity between the harbor, the beaches, 
and the lagoon islets. The third interval clustered 8 h (0, 4, 5, 14, 15,
20, 21, and 23 h), spanning mostly nighttime from 8 PM to 5 AM but 
also including the middle afternoon (2 PM to 3 PM). Four communities 
were observed. These were similar to those observed during the base-
line structure (Fig.  4C), except that the baseline male community (green 
in Fig.  4C) occasionally split into two subgroups: one with two males 
linked to Anse Vata Bay, Maître Islet, the Nautical Center of Sainte-
Marie, and Magenta Bay (green community in Fig.  4A); and another 
with two males visiting Citrons Bay, Anse Vata Bay, Small Harbor, and
Canard Islet (brown community in Fig.  4A). Tiger sharks also exhib-
ited three time intervals with relatively stable community structures: 
a baseline structure with three communities spanning most hours, a
distinct shift associated with broad shark movements around dusk, and
a fragmentation of the baseline structure into four communities during 
a third interval. The baseline community structure was observed for 
13 h (0, 2, 4, 5, 6, 7, 10, 11, 15, 19, 20, 22, and 23 h), covering the 
entire day and night except most hours in the afternoon (red cluster in 
Fig.  5). It included three communities. The first was restricted to three 
stations in Sainte-Marie Bay and was linked to a single female (T01F)
(green community in Fig.  5C). The second included five females visiting 
all islets (except Canard Islet) and some stations at Ricaudy Reef near 
Anse Vata Bay (purple community in Fig.  5C). The third visited more 
coastal stations encompassing Dumbéa Bay, the exit of Grand Harbor,
Citrons Bay, Canard Islet, Anse Vata Bay, the Nautical Center of Sainte-
Marie Bay, and Magenta Bay, with four females and one male (cyan 
community in Fig.  5C). The second time interval clustered four hours 
(3, 17, 18, and 21 h), including dusk (green cluster in Fig.  5). Two 
communities were observed. The first remained unchanged, restricted 
to a single female at Sainte-Marie Bay (green community in Fig.  5C).
The second included all other sharks and stations, except a few isolated 
stations in the harbor, again suggesting baseline structure disruption 
and broad shark movement at dusk (purple community in Fig.  5B).
The third time interval clustered 7 h (1, 8, 9, 12, 13, 14, and 16 h),
covering mostly the afternoon but also some hours at night and in the 
morning. At these times, the baseline tiger shark community structures 
fragmented into four communities. While the first (green) and second 
(purple) communities remained consistent with the baseline structure, 
the third community split into two. One sub-community (brown in Fig. 
5A) consisted of one male and one female visiting Anse Vata, Citrons 
Bay, the Nautical Center of Sainte-Marie Bay, and Magenta Bay. The 
other sub-community (cyan in Fig.  5A) involved three females visiting 
the exit of Grand Harbor, Dumbéa, and Sainte-Marie Bays.
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Fig. 3. Number of communities (sharks and stations) detected by the Fast-Greedy algorithm across 24 hourly bipartite graphs. The green line shows the variation in the total 
number of detected communities. Blue bars indicate communities that include both sharks and stations. Yellow and orange bars represent isolated communities, highlighting 
instances of isolated sharks or stations, respectively (i.e., no visit made or detected).  (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
 

 

 

 

4. Discussion

Unprovoked shark bites are increasing globally, sparking crises in 
many countries, including the archipelago of New Caledonia in the 
South Pacific (McPhee, 2014). A shark crisis typically rests on three 
pillars. First, an incident involving a shark bite triggers an immediate 
economic crisis, with businesses in the tourism industry impacted by
client cancellations due to fears around swimming and water activ-
ities (Dudley and Cliff, 2010). In response to this economic impact, 
authorities often decide to implement culling campaigns, significantly 
reducing populations of these animals, which are often both threatened 
and legally protected, thus leading to an environmental crisis (Dudley
and Cliff, 2010; Gallagher and Hammerschlag, 2011). This constitutes 
7 
the second pillar of the shark crisis. The third pillar involves societal 
tension, marked by strong divides between advocates for shark conser-
vation and those supporting population control measures (Simpfendor-
fer et al., 2021). In response to such crises, science seeks to shed light on
the situation, aiming to inform decision-makers and help diffuse public 
tensions (Shiffman et al., 2021).

A tropical lagoon is a wild natural environment where the risk 
of injury is never entirely absent (McPhee, 2014). Regarding sharks, 
it is known that unprovoked bites can occur anywhere and at any 
time, although such dramatic incidents are extremely rare compared 
to other natural risks, such as drowning or injuries from jellyfish,
stingrays, or stonefish (Maslin et al., 2000). The objective, therefore, 
is not to identify specific locations or times where water activities in 
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Fig. 4. Stable community structures of bull sharks detected using the Fast-Greedy algorithm applied to temporally aggregated bipartite graphs. Panels show representative two-, 
hree-, and four-community configurations based on NMI clustering of hourly networks. Communities are color-coded to reflect spatial and individual groupings across stations. 
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
 

the lagoon are entirely risk-free, as zero risk does not exist in natural 
environments. Rather, scientists aim to identify areas and times where 
the risk is relatively higher, due to heightened shark activity in these 
zones and times that coincide with a high density of human pres-
ence (Lagabrielle et al., 2018). In Nouméa, risk-prone human activities 
occur during daylight hours (6 am–6 pm) in four key areas: the beaches 
at Citrons and Anse Vata bays, which are popular among swimmers 
and windsurfers (New Caledonia Tourism, 2022); the lagoon islets, used 
8 
by swimmers and snorkelers; the nautical center, attended by children 
learning to sail; and the main harbor, sometimes used by swimmers, 
divers, and those engaged in other water activities such as sailing, 
kayaking, and paddleboarding. These areas are recognized as popular 
recreational sites, indicating a high level of human presence and po-
tential for interactions with sharks. In the absence of more detailed 
data, we evaluated the risk of shark bites by comparing the times and
areas of shark activity – revealed by our network analysis – with the 
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Fig. 5. Stable community structures of tiger sharks detected using the Fast-Greedy algorithm applied to temporally aggregated bipartite graphs. Panels show representative two-, 
three-, and four-community configurations based on NMI clustering of hourly networks. Communities are color-coded to reflect spatial and individual groupings across stations. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
known times and areas of human activity. However, we acknowledge 
that future research would greatly benefit from incorporating direct 
measurements of human presence to provide a more refined assessment 
of interaction risks.

Our application of normalized mutual information (NMI) clustering 
to the communities detected using the Fast-Greedy algorithm across 
24 hourly bipartite graphs revealed three distinct, temporally stable 
9 
spatial patterns in the movements of both bull and tiger sharks. Some 
of these communities may present a particular risk to lagoon users. 
Both bull sharks and tiger sharks exhibited a baseline structure with 
three communities present during most hours of the day and night. The 
two species also displayed a fusion–fission community dynamic. Fusion 
events were observed at dusk for both species, while fission events oc-
curred mostly at night and in the middle of the afternoon for bull sharks 
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and primarily in the afternoon for tiger sharks. Fission–fusion dynamics 
have already been reported for reef shark communities in the central 
Pacific (Papastamatiou et al., 2020). Reports also exist for several taxa,
including avian and mammalian species (Kerth et al., 2011; Silk et al., 
2014). Our study therefore indicates that such dynamics also occur 
for large sharks. These species, especially tiger sharks, are known to
travel large distances spanning hundreds to thousands of km (McPhee,
2014), although some sedentary behaviors have been observed at some 
locations (Dudley and Cliff, 2010). It seems therefore remarkable that 
not only many individuals from both shark species remained around the 
city of Nouméa for years, but also that they formed temporally stable 
fission–fusion groups over diel timescales.

The baseline structure included a very large community of – mostly 
female – bull sharks, with peak activity between 6 am and 1 pm, around 
the main harbor, marinas, fishing wharf, and extending into the reefs 
and islets of the lagoon. This community forms around the industrial 
fishing vessels moored at the fishing wharf (station H1). Morning,
therefore, appears to be a particularly risky time for water activities 
in the main harbor, and to a lesser extent in the bays and islets of 
Nouméa. Female bull sharks often inhabit shallow (<20 m deep), warm
(26 ◦C–33 ◦C) coastal and estuarine waters characterized by minimal
water movement (Rider et al., 2021; Bethea et al., 2014). They exhibit 
strong site fidelity to structured, human-influenced coastal habitats, 
such as harbors and marinas (Smoothey et al., 2019; Daly et al., 2013,
2014). They are known to be attracted by human activities such as
fishing or food disposal (Niella et al., 2021). The harbor of Nouméa 
therefore appears not only as favorable coastal habitat for bull sharks 
but also as an area where the fishing fleet likely attracts and retains 
these dangerous animals near the beaches. A similar situation is known 
at Recife, Brazil (Hazin and Afonso, 2013).

A second baseline structure involved a community of male bull
sharks mostly visiting Anse Vata and Citrons Bay beaches, the coastal 
Canard and Maître islets, and the nautical center. This community split 
into two subcommunities at night and in the middle of the afternoon. 
In Australia, male bull sharks often remain in nearshore waters during 
the afternoon, particularly when water temperatures exceed 20 ◦C,
following rainfall, and when swell heights range between 1.8 and
2.8 m (Smoothey et al., 2019). They exhibit localized movements 
into beach areas coinciding with periods of adequate rainfall and sea 
temperature conditions, potentially increasing human–shark interac-
tions (Werry et al., 2018). Many elasmobranch species (sharks, skates, 
and rays) display aggressive behavior during mating with male biting 
females (Crooks et al., 2013). Mating scars have been observed in 
several shark species, including blacktip reef sharks (Chin et al., 2015)
and bull sharks (Jenson, 1976). However, whether male aggressiveness 
during mating contributes to a heightened risk of unprovoked shark 
bites on humans remains unknown.

A disruption of community structure was observed at dusk, with a
fusion of most sharks and stations into a single community for both 
species. Dusk therefore appears as a transitional period characterized 
by greater shark movement and connectivity among stations. For bull
sharks specifically, this indicates that the large group of females in the 
harbor merged with other communities and exhibited increased activity 
at the beaches and in the lagoon. Given that the baseline structure of 
tiger sharks included three communities with individuals visiting most 
stations at the beaches, islets and nautical center throughout most of 
the day and night, dusk appears simply as a time of increased activity—
and therefore, elevated risk. Tiger sharks display broader movement 
patterns than bull sharks, spending more time offshore and using 
nearshore habitats only transiently (Lipscombe et al., 2020; Niella et al.,
2021). However, elasmobranchs exhibit increased foraging activity and
horizontal movements (e.g., distance traveled, activity space) at dawn
and dusk (review by Hammerschlag et al., 2016). Although shark safety 
guidelines often recommend avoiding the water during these crepuscu-
lar periods, data on human-shark incidents indicate that bites can occur 
at any time of day, with fewer incidents at dawn and dusk (Scala et al.,
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2020). However, it remains unclear whether this pattern simply reflects 
lower human presence in the water during low-light hours.

These insights gained into shark behavior and risk zones were made
possible through the application of one of the best community detection 
algorithms based on modularity. Among the algorithms evaluated, in-
cluding the Label Propagation algorithm, and the Multilevel algorithm, 
the Fast-Greedy algorithm provided the highest modularity scores and
revealed the best community structures (Finn et al., 2014; Casselberry 
et al., 2019). Its ability to identify isolated communities where nodes 
exhibited no links further enhanced our understanding of spatial and
temporal patterns. However, our study still faces several limitations 
that must be acknowledged. One major limitation is in the relatively 
small number of individuals studied and the imbalance between sexes—
for instance, our data included 14 female and 5 male bull sharks, 
and 10 female and only one male tiger shark. This may affect the 
generalizability of our findings, especially for male populations, which 
were underrepresented in our sample. Furthermore, the deployment of 
tags on sharks was conducted at various times, which may have affected 
the consistency and comparability of data across different periods and
conditions. Another methodological limitation is the aggregation of 
data across all days at the same hours, which does not account for 
potential seasonal variations.

Despite these limitations, our study represents a significant ad-
vancement in the field of animal movement ecology, and particularly 
in shark ecology. Our modeling framework integrates several compo-
nents, including dynamic bipartite network construction, modularity-
based community detection, and community similarity clustering using 
Normalized Mutual Information (NMI). While previous studies have 
primarily relied on static or unipartite representations, our approach 
combines high temporal resolution with the preservation of the two-
mode structure inherent in telemetry data, allowing for a more nuanced 
investigation of dynamic species-habitat associations. Although each 
component of our framework has been applied independently in other 
contexts, their combined use in this form has not, to the best of 
our knowledge, been implemented within the field of animal move-
ment ecology. Beyond providing ecological insights, our framework 
represents a scalable methodology for analyzing temporally structured 
movement data in other ecological and behavioral systems where dy-
namic spatial relationships are of interest. Looking ahead, to improve 
our methodology, address the limitations of our work, and enhance the 
robustness of our findings, it would be beneficial to explore advanced
deep learning techniques such as graph neural networks (Zhou et al.,
2020). These models could classify shark movements more accurately 
by accounting for the complexity of interactions within the marine 
environment, including species, sex, seasons and other ecological vari-
ables. Such advanced models may not only refine our understanding 
of shark behaviors but also improve the predictive accuracy of risk, 
thereby contributing to more effective and informed conservation and
public safety strategies.

5. Conclusion

In this study, we delved into the complex movement patterns of 
bull and tiger sharks in the lagoon of Nouméa, highlighting their prox-
imity to human-populated areas through advanced acoustic telemetry 
and graph-based modeling techniques. Our findings offer a detailed 
view of shark activity patterns, revealing distinct temporal and spatial 
behaviors across species and sexes. This nuanced understanding is es-
sential for devising targeted strategies that enhance public safety while 
safeguarding conservation efforts. Specifically, we developed a novel 
framework that preserves the full three-mode structure of movement 
data (individual-location-time) and identifies temporally stable com-
munities of sharks and locations. This was achieved by collecting five 
years of acoustic telemetry data, applying the Fast-Greedy community 
detection algorithm over 24 hourly bipartite graphs and clustering the 
community structures using Normalized Mutual Information (NMI).
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For both species, our framework revealed several temporally stable 
community structures, including a baseline structure occurring at most 
hours of the day and night, and a fission–fusion dynamic where com-
munities merged at dusk, suggesting higher movement activity during 
this low-light transitional period. Our approach highlighted critical 
periods of overlap between shark and human presence, underscoring
the importance of hourly temporal resolution in identifying shark-
location communities when formulating management and conservation 
strategies. Key human-shark interaction areas such as beaches, islets 
and sailing schools would require prioritized risk mitigation measures, 
including enhanced real-time monitoring systems, time-specific safety 
protocols, and public awareness campaigns to educate residents and
visitors on shark behavior and safety precautions. This work not only 
contributes to our understanding of the spatiotemporal dynamics of 
bull and tiger sharks, including sex-specific behavioral ecology, but also 
supports the development of informed, science-based management poli-
cies that ensure both human safety and the conservation of threatened 
marine predators. By balancing these needs, we can support sustainable 
human–wildlife coexistence in marine environments.
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