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A B S T R A C T

An increasing number of supraglacial ponds have formed and expanded on the surface of debris-covered glaciers 
across the Hindu Kush-Himalaya (HKH) mountain range in the last decades. Despite the pronounced spatio- 
temporal variability observed in supraglacial ponds at annual and decadal scales, investigations of their sea
sonal changes are limited over large spatial scales. These investigations are critical for evaluating their impacts 
on glacier ablation and dynamics and predicting water resource availability. Here, we produced detailed seasonal 
maps of supraglacial ponds at five sites of the HKH for the years 2017 to 2022 using a deep-learning-based 
mapping method applied to PlanetScope imagery. Using these maps, we investigate pond seasonality and 
interannual variability. We found that (1) the average pond number and percentage ponded area over the debris- 
cover area were higher in the Central Himalaya (417, 1.55%) and Eastern Himalaya (481, 1.93%) compared to 
those in the Hindu Kush (142, 0.20%) and Western Himalaya (153, 0.19%); (2) pond percentage area over 
debris-cover area showed an increase in the Karakoram (+0.2% in an absolute sense), Central Himalaya (+0.6%) 
between 2017 and 2020, and Eastern Himalaya (+0.9%) between 2018 to 2021; (3) supraglacial ponds reached 
their peak at the onset of the ablation season (May-June) in the Karakoram and the Hindu Kush, during the pre- 
monsoon season in the Western and Central Himalaya, and during the monsoon or post-monsoon period in the 
Eastern Himalaya; (4) the Central Himalaya displayed a highest occurrence of persistent ponds (17.2%), while 
only 4.3% of supraglacial ponds in the Karakoram were persistent. Our results provide a spatially diverse and 
temporally detailed dataset that serves to advance the understanding of supraglacial pond dynamics across the 
Hindu Kush-Himalaya.

1. Introduction

The Hindu Kush-Himalaya (HKH) mountain range, containing the 
world’s largest ice and snow outside the polar regions, is home to 
~40,000 glaciers, with a total area of ~60,000 km2 (Dyurgerov and 
Meier, 2005). With the progressive mass wastage of debris-covered 
glaciers (DCG) in the HKH (Kääb et al., 2012; Thompson et al., 2016), 
an increasing number of supraglacial ponds have been forming and 
expanding in the recent decades (Bolch et al., 2008; Nie et al., 2017; 
Khadka et al., 2018; Chand and Watanabe, 2019), partly due to melt
water accumulating within depressions on low-sloping (<10◦), stagnant 

surfaces of glaciers (Sakai and Fujita, 2010; Benn et al., 2012; Thompson 
et al., 2016). These ephemeral supraglacial water bodies originate from 
‘perched’ ponds situated above the hydrological base-level (Benn et al., 
2012). Over time, some of these ponds evolve, deepen and drain once 
they become connected to the en- or sub-glacial drainage systems (Benn 
et al., 2012). Other fast-developing ponds coalesce, forming large 
supraglacial lakes that ultimately may evolve into proglacial lakes (Benn 
et al., 2012; Thompson et al., 2012), posing concerns for glacier lake 
outburst floods.

Supraglacial ponds are important meltwater storage reservoirs, 
effectively modulating glacial runoff and the timing and availability of 
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meltwater to downstream communities (Irvine-Fynn et al., 2017). These 
ponds facilitate basal sliding and increasing glacier velocity through 
water infiltration into the englacial system (Watson et al., 2016; Miles 
et al., 2017a; Wendleder et al., 2021). As local “hot spots” of ice melt, 
supraglacial ponds can enhance glacial ablation rates by a factor of 14 
±3 (Miles et al., 2018). Additionally, they facilitate heat transfer to 
subaqueous ice and contribute to potentially up to 1/8 of the catchment 
ice mass losses (Sakai et al., 2000; Miles et al., 2016; Mertes et al., 2017; 
Miles et al., 2018; King et al., 2019; Racoviteanu et al., 2022). 
Furthermore, the evolution of supraglacial ponds into proglacial ice or 
moraine-dammed lakes enhances the potential for generating glacier 
lake outburst floods, posing significant risks to downstream commu
nities (Richardson and Reynolds, 2000; Benn et al., 2012).

Existing studies in the HKH report rapid expansion of supraglacial 
ponds in recent decades, with high spatiotemporal variability. At a 
regional scale, several studies report larger ponds and higher expansion 
rates in West Nepal (Everest region) and Bhutan, versus smaller ponds 
with lower growth rates in the Hindu Kush and the Karakoram (Gardelle 
et al., 2011; Nie et al., 2017). However, most of the previous studies on 
temporal changes were limited to individual ponds/glaciers in well 
studied catchments in the Nepal Himalaya (Miles et al., 2017b; Steiner 
et al., 2019; Taylor et al., 2021; Zeller et al., 2024) and focused on 
decadal scales only in these same regions (Bolch et al., 2008; Watson 
et al., 2016; Chand and Watanabe, 2019).

Quantifying the spatial-temporal patterns of supraglacial ponds is 
therefore important, and this requires detailed investigations on the 
basis of accurate, comprehensive, and multi-temporal supraglacial pond 
datasets. However, these are lacking over the HKH region due to the 
highly dynamic behavior and diverse characteristics of these ponds (e.g., 
irregular shapes, varying sizes, and turbidity) and the limited frequency 
of measurements over the large extent of the HKH (Chen, 2021). Field 
studies have been conducted on limited supraglacial ponds such as those 
on Ngozumpa Glacier in the Khumbu region of Nepal (Benn et al., 2000; 
Benn et al., 2001; Casey et al., 2012; Qiao et al., 2015). In the last de
cades, the increased availability of remote sensing data has triggered 
increased interest in mapping supraglacial ponds, though this was 
conducted mainly at annual or decadal scales, using Landsat and ASTER 
data (Wessels et al., 2002; Bolch et al., 2008; Khadka et al., 2018; 
Gardelle et al., 2011). With the availability of high-resolution optical 
and radar satellite images such as Sentinel-1, Sentinel-2, WorldView and 
PlanetScope, recent efforts have also been made to investigate short- 
term seasonal and inter-annual changes in supraglacial ponds (e.g., 
Watson et al., 2016; Miles et al., 2017a, 2017b; Narama et al., 2017; 
Chand and Watanabe, 2019; Taylor et al., 2021; Wendleder et al., 2021).

Various semi-automated algorithms have been used so far, including 
band ratio or normalized difference water indices (NDWI) (Johansson 
and Brown, 2013; Watson et al., 2018; Hochreuther et al., 2021), 
threshold segmentation based on SAR backscatter intensity (Wangchuk 
and Bolch, 2020), object-based image analysis (Panday et al., 2011; Qiao 
et al., 2015; Kraaijenbrink et al., 2016; Mitkari et al., 2017) and linear 
spectral unmixing (Scherler et al., 2018a; Kneib et al., 2021b; Racovi
teanu et al., 2021). These allowed mapping supraglacial ponds from 
various remote sensing datasets in a more time-efficient way, mitigating 
the time-consuming and labor-intensive manual delineation (e.g., 
Thompson et al., 2012; Watson et al., 2016; Miles et al., 2017b). How
ever, many of the conventional methods mainly rely on manually- 
specified features and iterative threshold adjustment, and thus are 
difficult to apply effectively to large-volume multi-temporal images. 
Establishing an appropriate threshold value applicable for mapping 
supraglacial ponds across large regions is challenging due to diversity in 
the water index caused by pond properties such as turbidity, composi
tion, and depth (Watson et al., 2016). Employing a single threshold of 
certain index may lead to the exclusion of some supraglacial ponds and 
the misclassification of features such as clean ice or snow patches, which 
also exhibit high water index values. Furthermore, some studies have 
used a fixed lake area threshold as a filter (e.g., 0.0036 km2 in Gardelle 

et al., 2011; 0.008 km2 in Nie et al., 2017; 0.05 km2 in Shugar et al., 
2020), thus overlooking a large number of small-sized supraglacial 
ponds. Despite significant progress in supraglacial pond mapping, we 
still lack robust, detailed spatio-temporal characterization of supra
glacial ponds across the HKH range.

Deep learning provides a powerful tool for supraglacial pond 
extraction at multi-temporal spatial scales in a systematic manner. These 
algorithms automatically extract features from raw data, enabling quick 
and accurate analysis through parallel processing. Furthermore, deep 
learning models trained for specific tasks can be adapted for broader 
applications across various domains using transfer learning (Huang 
et al., 2022). This capability enhances the accuracy and efficiency of 
pond mapping by enabling the inference of pond presence across 
different times and regions. With their high efficiency and trans
ferability, deep-learning-based methods have great potential for effec
tively capturing the dynamic nature and diverse characteristics of 
supraglacial ponds across large regions. Specifically, the method of 
image semantic segmentation, which interprets the image at the pixel 
level by classifying each pixel into a predefined category, is suitable for 
delineating supraglacial pond boundaries from satellite images 
(Qayyum et al., 2020; Wang et al., 2022; Xu et al., 2024). For instance, 
Yuan et al., (2020) employed a Convolutional Neural Network to extract 
supraglacial lakes in Southwest Greenland from Landsat-8 imagery. Lutz 
et al. (2023) developed a deep learning architecture based on U-Net to 
map supraglacial lakes from Sentinel-2 images over Northeast 
Greenland. Dirscherl et al. (2021) applied a modified U-Net semantic 
segmentation model and automatically mapped Antarctic supraglacial 
ponds on Sentinel-1 Synthetic Aperture Radar (SAR) imagery. Chen 
(2021) applied a U-Net-based deep learning model to extract supra
glacial pond boundaries and other surface features from GaoFen-3 SAR 
imagery in the Everest region. Despite the significant advantages that 
deep-learning-based methods offer in mapping supraglacial ponds, it is 
essential to recognize that they do have certain limitations, which 
include: (1) ineffectiveness in identifying small and elongated supra
glacial ponds (Chen, 2021); (2) occurrence of false predictions on 
shadows.

This study addresses these challenges, by improving existing tech
niques to better map supraglacial ponds with the goal of investigating 
short-term variations of supraglacial ponds over several regions in the 
HKH. Specifically, our objectives are: (1) to produce a systematic deep 
learning technique that can map supraglacial ponds automatically and 
accurately from multi-temporal, high-resolution PlanetScope imagery; 
(2) to investigate the spatio-temporal variability of supraglacial ponds in 
five representative sites across the HKH region at seasonal scales for the 
period 2017 to 2022 and (3) to quantify and compare the dynamics and 
persistency of individual supraglacial ponds at regional scale. We 
investigate the short-term dynamics and the regional heterogeneities of 
supraglacial ponds, and assess the climatic factors (such as temperature 
and precipitation) and glacier settings that may affect these dynamics at 
regional scales.

This paper is organized as follows. Section 2 introduces the location, 
climatic setting, and key glacier characteristics of our study area. Section 
3 details the datasets and methodologies employed to map supraglacial 
ponds, quantify their spatio-temporal changes, and track the dynamics 
of individual ponds. Section 4 presents our findings, including mapping 
accuracy, a comparative analysis of pond distribution and seasonal 
variation patterns across the five study areas, and insights into the dy
namics of individual ponds. Section 5 critically evaluates the strengths 
and limitations of our mapping approach and explores the potential 
factors underlying the observed distinct patterns of pond distribution 
and change.

2. Study area

Our study areas are situated within the HKH region, which extends 
3,500 km and covers a total area of 3,441,719 km2 (Sharma and Partap, 
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1994). Due to the size of the domain and the large amount of data 
needed to cover it, we selected five study sites (~2000 km2 each) based 
on percentage debris cover and pond abundance distributed across the 
HKH regions: the Hindu Kush, the Karakoram, the Western, Central and 
Eastern Himalaya (Fig. 1). While we acknowledge that the study sites 
may not fully capture the diversity of the entire sub-region due to local 
variability, they serve as indicative samples, exhibiting a broad range of 
elevations and sharing comparable distributions in terms of area, slope, 
and glacier velocity with those spanning the entire subregion 
(Figure S1). For the sake of simplicity, we used the larger sub-region 
name to refer to our study areas in the remainder of the paper.

These sites are situated under different climatic conditions, which 
are linked to the occurrence of the Indian Summer monsoon (Bookhagen 
and Burbank, 2006). The east-west gradient in monsoon intensity causes 
differences in temperature, precipitation, and humidity across the HKH, 
influencing glacier dynamics, mass balance and glacio-hydrological 
patterns. The Central and Eastern Himalaya regions experience large 
amounts of precipitation during the monsoon period (~ June to late 
September) (Bookhagen et al., 2005). The intensified rainfall during the 
monsoon season acts as one of the water inputs and modulates the 
seasonal variation of supraglacial ponds. In contrast, the Hindu Kush 
and Karakoram regions are influenced by mid-latitude westerlies, which 
bring large amounts of moisture and snow during the winter (Palazzi 
et al., 2013).

Glacier mass balance vary among regions. In the Himalayas, glacier 
mass balance tends to be mostly negative (Kääb et al., 2012; Azam et al., 
2018; Hugonnet et al., 2021), with total mass loss rates reaching -0.52 
±0.15 m w.e. yr-1 in the Eastern Himalaya, -0.36±0.09 m w.e. yr-1 in the 
Central Himalaya and -0.37±0.09 m w.e. yr-1 in the Western Himalaya 
for the period 2000 to 2018 (Shean et al., 2020). However, glaciers in 
the Karakoram (-0.04±0.04 m w.e. yr-1) and the Hindu Kush (-0.09 
±0.06 m w.e. yr-1) have experienced relatively stable mass balance 
during 2000 and 2018 (Shean et al., 2020), although this anomaly is 
coming to an end (Hugonnet et al., 2021).

Glaciers characteristics vary across the five study sites (Table 1). 
Supraglacial debris cover is estimated to 14-18% in the Himalayas 
around the year 2000 (Kääb et al., 2012). Over the last five to six de
cades, the debris-covered area around the globe, including the 

Himalayas, has increased due to glacier mass wastage (Scherler et al., 
2011; Nuimura et al., 2012; Thakuri et al., 2014; Mölg et al., 2020). 
Within our study sites, the proportion of debris cover is high in the study 
areas of Hindu Kush, Western, and Central Himalaya, but lower in the 
Karakoram and Eastern Himalaya (Table 1). Glaciers in the Hindu Kush, 
Karakoram and Western Himalaya are generally located at lower ele
vations with steeper slopes compared to those in the Central and Eastern 
Himalaya.

3. Data and methodology

3.1. PlanetScope image and auxiliary dataset collection

For this study, we used the PlanetScope images (https://www.planet 
.com) for mapping supraglacial ponds, leveraging their high spatial 
resolution (3.7 m pixel size) and daily acquisitions. We obtained the 
cloudless images (filtered with cloud cover < 5%) for the five sites at 
seasonal intervals spanning 2017 to 2022. After visual inspection, we 
manually selected high-quality images, i.e., where debris-covered area 
was minimally obscured by mountain shadows, cloud or snow cover 
(data description in Supplemental Table S1). PlanetScope surface 
reflectance product offers atmospherically-corrected 4-band imagery 
comprising Band 1: Blue (455-515 nm), Band 2: Green (500-590 nm), 
Band 3: Red (590-670 nm), and Band 4: near-infrared (NIR) (780-860 
nm). We generated RGB color composites (Band 321) and NDWI using 
the formula (Green – NIR)/(Green + NIR), both on a seasonal basis for 
each study site. NDWI exhibits a distinct spectral contrast between water 
and the surrounding debris cover, and therefore is commonly used to 
map water bodies including supraglacial ponds with low turbidity or 
frozen surface (Watson et al., 2018).

We defined the seasons based on the Indian Summer Monsoon and 
the Westerlies climatic patterns, as follows: for the Hindu Kush and 
Karakoram study sites, we selected images over three periods: beginning 
(May-June), mid (July-August) and end (September-October) of the 
ablation season. For the monsoon-influenced Himalayan region, we 
selected images from four seasons: pre-monsoon (March 1 to June 15), 
monsoon (June 16 to September 30), post-monsoon (October 1 to 
November 30), and winter (December 1 to February 28) if snow-free 

Fig. 1. Glacier distribution across the HKH, showing clean glacier (blue) and supraglacial debris cover (tan) at the five sites with PlanetScope images acquired in 
October 2022 as background image.
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images were available following the similar season setting employed by 
Miles et al. (2017b). For each site, suitable images were mosaicked for 
each season, preferably within a single month, and supplemented with 
images from other months within the 3-month seasonal window to 
ensure full coverage. Within each seasonal time frame, we selected the 
most recent image to compile the mosaics if multiple images are avail
able. The seasonal mosaic RGB image and mosaic NDWI images for each 
study site were used as input data in the deep learning model to map 
supraglacial ponds.

In addition to the PlanetScope imagery, we collected auxiliary 
datasets (glacier outlines, glacier velocity, elevation data from a Digital 
Elevation Model (DEM), debris cover, ERA5 reanalysis dataset) subse
quently used for pond mapping and analysis, as listed in Table 2.

3.2. Inventorying supraglacial ponds using deep learning model

We trained the deep learning model (DeepLabv3+) based on RGB 
and NDWI images separately for delineating supraglacial ponds from 
multi-temporal PlanetScope imagery at these five sites (Chen et al., 
2018). We adopted DeepLabv3+ as the network architecture with 
Xception-65 as our backbone, a more advanced deep learning archi
tecture than previously used models such as U-Net. In contrast with U- 
Net which features a symmetric encoder-decoder architecture with skip 
connections, DeepLabv3+ employs an encode-decode structure with 
atrous separable convolution to refine segmentation boundaries and 
extract multi-scale contextual information by adjusting the field of view 
without losing resolution (Fig. S3) (Chen et al., 2018). DeepLabv3+ has 
shown successful applications in mapping landforms from satellite im
ages in previous studies (Chen et al., 2018; Huang et al., 2020; Zhang 
et al., 2021) and outperformance in the PASCAL VOC image 

segmentation contest. This serves as a benchmark challenge, providing 
standardized datasets and evaluation metrics for comparing various 
methods. Fig. 2 shows the flowchart of training and testing the deep 
learning model, with details described in the following subsections.

3.2.1. Preparing input data
Input data consisted of training and label images. Training images 

contain supraglacial ponds from the Eastern Himalaya study site span
ning all seasons over five years (2017–2022) to ensure temporal di
versity of training data, since pond surface color, shape, and frozen 
condition may vary over time. We also obtained supraglacial pond labels 
from Maharjan et al. (2018), Wang et al. (2020), and Chen et al. (2021). 
To ensure that the label boundaries matched our PlanetScope imagery, 
we manually delineated 3241 representative and diverse supraglacial 
ponds in the Eastern Himalaya (referred to as “positive polygons”) 
(Fig. S1). We also mapped 573 non-supraglacial-pond objects such as 
snow, bare terrain, vegetation, shadows, and glaciers (“negative poly
gons”) and included them in the training sample to reduce false pre
dictions due to similarity of landforms (Table S2). We subsequently 
created binary (1/0) label images by rasterizing positive and negative 
polygons with a 300-m buffer area to include contextual information. 
We divided training and label image patches into training (90%) and 
validation (10%) to ensure sufficient training samples (Table S2).

To test the deep learning model accuracy and transferability across 
different sites and seasons, we manually delineated 1,809 supraglacial 
ponds in the Central Himalaya in 2018 and 1,905 supraglacial ponds in 
the Karakoram in 2021 based on multi-season RGB and NDWI images 
and used these as ground truth labels.

3.2.2. Training the deep learning network
We initialized the network using a DeepLabv3+ model pre-trained 

by the ImageNet dataset, which is a large-scale image database con
taining over 14 million annotated images across more than 21,000 
categories (https://image-net.org/). We fine-tuned the model with RGB 
and NDWI images separately to test the performance of each approach. 
We set the learning rate to 0.003, the batch size to 8, and the iteration 
number to 30000, respectively, as recommended by Chen et al. (2018). 
During the training process, the predictive model was also applied to the 
validation datasets and labelled each pixel as a supraglacial pond or non- 
supraglacial-pond class. We evaluated the model accuracy on the vali
dation datasets by calculating the intersection over union (IoU) between 
the output raster images and the ground truth label image using the 
equation: 

IoUpixel =
tp

tp + fp + fn
(1) 

where tp, fp, and fn are the numbers of true positive, false positive, and 
false negative pixels, respectively. We trained the network iteratively 
until the IoUpixel value for the supraglacial pond class reached 0.8 and 
the mean IoU (mIoU) value of supraglacial pond and non-supraglacial- 
pond class reached 0.9 (comparable to the performance of the top 

Table 1 
Glacier characteristics of the five selected sites based on RGI 7.0 glacier boundaries (RGI 7.0 Consortium, 2023), supraglacial debris cover for the period 2013 to 2017 
from Scherler et al. (2018b) and glacier velocities in 2018 from ITS_LIVE (Gardner et al., 2019).

Study site Total area 
(km2)

Glacierized 
area 
(km2)

Percent glacierized area 
(%)

Debris cover area 
(km2)

Percent debris 
cover 
(%)

Mean 
Elevation 
(m)

Mean 
Slope 
(◦)

Mean glacier 
velocity 
(m/yr)

Hindu Kush 1940 524.77 27.04 179.96 34.29 5255 29.9 22
Karakoram 2074 1686.16 81.29 302.21 17.92 5183 34.6 110

Western 
Himalaya 1993 862.70 43.30 233.56 27.07 4928 29.2 27

Central 
Himalaya 2045 512.50 25.05 135.14 26.37 5872 24.0 12

Eastern 
Himalaya

2057 851.48 41.40 124.45 14.62 5702 21.4 25

Table 2 
Auxiliary datasets and their sources for pond mapping and analysis.

Dataset Source Usage

Glacier outlines
RGI 7.0 (RGI 7.0 
Consortium, 2023)

Define glacier mask and 
distinguish supraglacial ponds 
from other water bodies (e.g., 
proglacial lakes)

Debris cover Scherler et al. (2018a)

Calculate the percentage ponded 
area of the debris-covered area 
and enable comparison with 
other studies

DEM
Copernicus DEM GLO-30 (
European Space Agency, 
2024))

Supplementary information for 
constructing slope profile and 
removing false predictions by 
setting slope threshold

Glacier velocity
ITS_LIVE data (Gardner 
et al., 2019)

Implement ice flow correction 
for tracking individual 
supraglacial ponds

Temperature and 
precipitation

ERA5-Land hourly climate 
reanalysis dataset (Muñoz- 
Sabater et al., 2021)

Characterize seasonal changes of 
temperature and precipitation 
and investigate the correlation 
with pond variation
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models in the PASCAL VOC contest) through enriching the negative 
training samples, adjusting image augmentation strategies, and fine- 
tuning hyperparameters.

3.2.3. Post-processing steps and evaluating accuracy
The output of the DeepLabv3+ model was a binary image. We vec

torized the inferred supraglacial pond pixels (class 1) to polygons, and 
performed a series of post-processing procedures to remove false pre
dictions. First, to account for uncertainties in RGI glacier boundaries, we 
considered any polygon whose intersection percentage with the RGI 
glacier outlines exceeded 90% to be a supraglacial pond, and the 
remaining were regarded as other water bodies such as proglacial lakes 
and were thus removed. We then calculated the mean slope of the 
mapped pond polygons based on the 30-m resolution Copernicus Global 
DEM (European Space Agency, 2024). Acknowledging the DEM un
certainties, and the possibility that supraglacial ponds may be situated in 
areas with relatively high average slopes but low longitudinal gradients 
(Richardson and Reynolds, 2000; Benn et al., 2012; Miles et al., 2017b), 
we set a conservative slope threshold (<40◦) to reduce false predictions 
such as shadows due to steep valleys.

Subsequently, we tested and evaluated the detection accuracy of our 
model on independent test images from sites situated in the Karakoram 
and Central Himalaya. After post-processing, we calculated the IoU 
value between deep learning predicted polygon and manual delineated 
polygon and regarded those with IoU larger than 0.5 as true positives. 
We used standard metrics such as precision, recall, and F-1 score 

(Supplementary Text S1) to quantify the detection accuracy of the 
mapping results. Finally, we estimated the pixel error of the deep 
learning boundary delineation by calculating the average distance be
tween deep-learning-generated boundaries and manually mapped out
lines (Supplementary Text S2). To compare delineation accuracy with 
human level, we also quantified the manual delineation error by 
comparing the manually delineated boundaries on ~400 supraglacial 
ponds among three experts (Supplementary Text S2).

We applied our trained deep-learning model to map supraglacial 
ponds over the five sites and generated seasonal maps. To ensure high 
product quality, we visually inspected and manually refined the map
ping results by (1) removing any misclassified supraglacial ponds due to 
image artifacts and inaccurate glacier outlines, (2) splitting polygons 
covering more than one supraglacial pond, (3) merging multiple poly
gons covering the same pond, and (4) retrieving polygons missed due to 
cloud cover, mountain shadow, snow cover, frozen surface, slope 
threshold setting, and inaccurate glacier outlines. In the compilation 
step, we adopted the mapped polygon from NDWI images unless the 
supraglacial ponds were missed from the RGB images, or when mapped 
pond boundary was incomplete.

3.3. Quantifying spatio-temporal variations of supraglacial ponds

We reported the total ponds and calculated the total pond area per 
site and the percentage ponded area (defined as percentage of the total 
debris-covered area occupied by supraglacial ponds) based on 

Fig. 2. Workflow of establishing the deep-learning-based mapping method based on RGB and NDWI images, respectively.
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supraglacial debris cover from Scherler et al. (2018a). We estimated the 
areal uncertainties of individual ponds using the pixel error multiplied 
by the pond perimeter and image spatial resolution (Zhang et al., 2021).

Pond density maps (pond counts divided by glacier area in 
0.025◦×0.025◦ grids) were generated based on the seasonal pond maps. 
We also analyzed pond distribution with respect to their area, elevation, 
glacier velocity (Gardner et al. (2019), and distance from the glacier 
termini.

Annual and seasonal time series for both pond number and per
centage ponded area across the five study sites were used to investigate 
pond seasonality and interannual variability. The annual time series, 
derived primarily from our mapping results for October, minimized the 
potential impact of monthly variations on evaluating and comparing 
interannual pond dynamic trends. We performed site-specific assess
ments, taking into account the regional climatic conditions when char
acterizing seasonal patterns. In the Hindu Kush and Karakoram regions, 
we analyzed pond variation throughout the onset, middle, and end of 
the ablation season. In the Himalayan sites, we tracked pond changes 
through pre-monsoon, monsoon, post-monsoon, and winter periods.

3.4. Tracking the dynamics of individual ponds

We first implemented ice flow correction on the generated seasonal 
maps following Kneib et al. (2021a) and Zeller et al. (2024) to identify 
unique supraglacial ponds and track pond dynamics across the five study 
sites. Specifically, we shifted the pond position to the earliest acquisition 
time in June 2017 based on glacier surface velocity from ITS_LIVE data 
(Gardner et al., 2019). Subsequently, we compared each seasonal pond 
map with the corresponding previous observations to assess the pond 
dynamics, quantifying events such as appearance, disappearance, 
expansion, shrinkage, merging, and splitting for each observation time 
(Fig. S4). These change events were categorized into two groups for 
analysis. Group 1 encompasses events such as appearance, expansion, 
and merging, which contributed to pond growth. Group 2 includes 
events such as disappearance, shrinkage, and splitting, which lead to 
pond decline.

We compared the spatial overlap of ponds across seasons during 
2017 and 2022, considering overlapping ponds as repeated detections 
and counting only non-overlapping pond polygons as unique features. 
This approach accounted for the dynamic nature of supraglacial ponds 
and enabled a conservative estimation of the total number of distinct 
supraglacial ponds within each study area over the investigation period.

For each unique supraglacial pond, we further calculated the pond 
frequency through the study period and classified the ponds into three 
categories: ephemeral supraglacial ponds (observed in less than half of 
total observations with pond frequency lower than 0.5), persistent 
supraglacial ponds (observed in more than half of total observations 
with pond frequency exceeding 0.5) and permanent supraglacial ponds 
(observed from every seasonal map with pond frequency of 1). We then 
compared the number of different types of supraglacial ponds and 
analyzed the topographic (elevation) and glacial settings (velocity, 
distance to glacier termini) for each category of supraglacial ponds at 
five study sites.

4. Results

In this section, we first present the mapping performance of our deep 
learning method in Section 4.1. Section 4.2 provides a summary of our 
observed spatial-temporal changes of supraglacial ponds across the five 
sites. October 2022 is used as a common time window to provide a 
comparative analysis of supraglacial pond distribution across the five 
study sites in Section 4.3. Section 4.4 gives site-specific analyses of the 
interannual and seasonal variations of supraglacial ponds. Finally in 
Section 4.5, we present the time series of pond change events and report 
the statistics of pond frequency across five study areas.

4.1. Mapping accuracy of the deep-learning method

The mapping accuracy of the RGB-based model and NDWI-based 
model are comparable in terms of pixel-based IoU metrics (Table 3); 
the IoUpixel curve throughout the training process is shown in Fig. S5. 
The mean IoUpixel values for both RGB-based and NDWI-based models 
reached 0.91 after iterative training. The F1 scores of RGB-trained model 
ranged from 0.55 to 0.72 on test images obtained from Central Himalaya 
across various seasons (Table S3). In the Karakoram, the F1 scores of 
RGB-trained model ranged from 0.62 to 0.78 (Table S4), generally 
higher than those of the NDWI-trained models (Fig. S6). The average 
pixel error of the deep learning mapped boundaries from RGB images 
was 1.41 pixels (~5.2 m), comparable to the average manual delinea
tion error of 1.38 pixels (~5.1m). The average pixel error of the deep 
learning mapped boundaries from NDWI images was 1.73 pixels. 
Consequently, the deep learning model trained on RGB images demon
strated a superior capability for identifying supraglacial ponds in terms 
of both number and boundary (Fig. S7).

Our deep learning model successfully mapped supraglacial ponds 
with high turbidity, shadow cover, frozen ponds, and intricate shapes 
(Fig. 3). Both the RGB and NDWI trained models accurately delineated 
the boundaries of turbid ponds (Fig. 3a–c) and ponds partially covered 
by shadow (Fig. 3d–f). However, 69% of the small supraglacial ponds 
with extremely bright appearance were missed by the RGB-trained 
model in the zoom-in area (Fig. 3h), while 92% of them were identi
fied by the NDWI-trained model (Fig. 3i). Moreover, the ponds with 
complex boundaries were accurately identified by the RGB-based model 
(Fig. 3k). The mapping results based on RGB images therefore served as 
the primary data source for compiling the final pond maps.

4.2. Overview of spatial-temporal variation of supraglacial ponds across 
the HKH during 2017- 2022

The characteristics of supraglacial ponds for each study site are 
summarized in Table 4. Supraglacial ponds in the eastern sites (Central 
and Eastern Himalaya) exhibited higher percentage ponded area and 
density, as well as more variable seasonal changes compared to those in 
the western sites (Western Himalaya and Hindu Kush). Supraglacial 
pond area increased from 2017 to 2022 across all study sites except in 
the Hindu Kush. Notably, the Karakoram site exhibited the largest pro
portions of ephemeral ponds (95.7%, Table 4) and ponds smaller than 
0.001 km2 (42%, Fig. S9).

4.3. Spatial distribution of ponds across the HKH in October 2022

Our deep learning approach enabled the generation of seasonal pond 
maps across the five study sites. For simplicity and clarity and inter- 
comparison among sites, here we present the pond density maps 
generated for the reference period of October 2022 (Fig. 4) with the 
pond maps shown in Fig S8. This month was specifically selected to 
capture the ablation season across the five sites when images were 
cloud-, shadow-, and snow-free. In this month, supraglacial ponds 
covered more than 1.49% of the debris-covered area in the Central and 
Eastern Himalaya, which was ~8 times greater than in the Hindu Kush 
and Western Himalaya, and 5 times greater than in the Karakoram 
(Table 5). Additionally, the average supraglacial pond density was 
significantly higher in the Central Himalaya (1.5 ponds/km2) compared 
to other sites (< 0.68 ponds/km2). In the Central and Eastern Himalaya, 

Table 3 
IoUpixel values of background class and supraglacial pond class of the trained 
deep-learning DeepLabv3+ models.

IoU_non-supraglacial-pond IoU_supraglacial pond Mean IoU

RGB-based 0.995 0.825 0.910
NDWI-based 0.995 0.817 0.906
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the pond distribution exhibited high spatial heterogeneity, with local
ized concentration observed at glacier termini, where pond density 
reached 20-24 / km2 (Fig. 4).

Approximately 70% of supraglacial ponds were located on the lower 
part of the glaciers within the normalized distance of 0 to 0.4 from the 
glacier termini, with a decrease in the total pond area towards the 
glacier upper sections (Fig. 5) across the five study sites. In contrast, in 
the Central and Eastern Himalaya, more than 40% of supraglacial ponds 
are located in the middle to upper sections, with the normalized distance 
from the glacier termini of 0.4 to 0.8; but their total area is relatively 
lower than those near the glacier termini (Fig. 5d&e, Fig. S10). We 

observed large supraglacial ponds (> 0.1 km2) at the stagnant glacier 
terminus at these two sites compared to the other three (Figs. S11&S12).

Across the Himalayan sites, approximately 90% of supraglacial 
ponds are distributed in areas with low glacier velocities (0-20 m/yr) 
(Fig. 5b). In contrast, 35% of supraglacial ponds at the Karakoram site 
are situated in areas with glacier velocities exceeding 50 m/yr; this 
anomaly will be further discussed in Section 5.2.

4.4. Interannual and seasonal pond variation from 2017 to 2022

Between 2017 and 2022, the number of supraglacial ponds in 

Fig. 3. Examples of the mapping results on turbid ponds (a–c), ponds covered by cloud shadow (d–f), frozen ponds (g–i), and ponds with complicated shapes (j–l) in 
the Central Himalaya (CH) produced by the deep learning models trained separately using RGB and NDWI images, and the mapped ponds based on manual 
delineation.
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October fluctuated, but there was no clear inter-annual trend across the 
five sites (Fig. 6). The percentage ponded area increased significantly (p- 
value < 0.05) in the Karakoram and the Western Himalaya, while it 
remained low (< 0.2%) in the Hindu Kush. In addition, the percentage 
ponded area increased by 57% in the Eastern Himalaya from 2018 to 
2021 and by 44% in the Central Himalaya from 2017 to 2020, 
respectively.

Supraglacial ponds exhibited approximately 20% seasonal variation 
in both number and percentage ponded area across all study sites but the 
Karakoram during the study period (Fig. 7). At the Hindu Kush and 

Karakoram sites, the pond number and area decreased during the 
ablation season in most years, except for 2018 and 2020 (Fig. 7a–b). 
Notably, at the Karakoram site, pond number reached 1131 and covered 
0.83% of the debris-covered area in May 2022, which was 2.4 times 
higher than the average level (478, 0.36%) (Fig. 7b). However, obser
vations for other years were unavailable in May (beginning of ablation 
season) due to substantial snow cover.

At the Western and Central Himalayan sites, pond number and area 
decreased during the monsoon season, with more complex seasonal 
variability observed in the Eastern Himalaya. In the Western Himalaya, 
the pond number halved from approximately 200 in the monsoon season 
(July) to about 100 in the post-monsoon period (October), but the per
centage area over debris-covered glaciers remained relatively stable at 
0.2% (Fig. 7c). At the Central Himalaya site, the pond number and the 
percentage ponded area exhibited peak values predominantly in the pre- 
monsoon season (May/June) (Fig. 7d), followed by a consistent decline 
throughout the monsoon season, reaching the lowest levels in 
December, except for 2020 when there was an increase between July 
and October.

At the Eastern Himalaya site, supraglacial ponds displayed distinct 
variability without a prominent and reliable seasonal cycle (Fig. 7e). In 
2019, 2021 and 2022, the percentage ponded area increased from the 
pre-monsoon season, peaked during the monsoon or post-monsoon 

Table 4 
Characteristics of supraglacial ponds by study site: spatial distribution, temporal variation, pond change events, and persistency.

Study site Sec. 4.3 Distribution 
(average pond density)

Sec. 4.4 Interannual change 
of percentage ponded area

Sec. 4.4 Seasonal variation Sec. 4.5 Pond change events Sec. 4.5 Percentage of 
ephemeral ponds

Hindu Kush

Sparse (0.29-0.41/ 
km2)

Remained low
Decreased during ablation season

Stable 85.3%

Karakoram Showed a statistically 
significant increase (p-value 
< 0.05)

Increasing pond change events from 
2017 to 2022

95.7% (highest in all 
sites)

Western 
Himalaya

Pond number decreased from July to 
October, pond area remained 
relatively stable Pond appearance, 

expansion, and merging events 
peaked in May/June then declined 
towards winter

85.1%

Central 
Himalaya

Dense (0.68-1.5/ km2)

Notable increase (44% from 
2017 to 2020)

Pond number and area peaked in 
May or June and then declined 
during monsoon

82.8%

Eastern 
Himalaya

Notable increase (57% from 
2018 to 2021)

Distinct seasonal change without a 
prominent and reliable seasonal 
cycle

87.3%

Fig. 4. Maps of supraglacial pond densities expressed as count divided by glacier area (units: number per km2), shown in 0.025◦×0.025◦ grids, using October 2022 as 
a reference for comparison.

Table 5 
The pond numbers and percentage of debris-covered area in October 2022.

Study site Pond 
number

% of debris- 
covered area

Average pond density 
(number / km2)

Hindu Kush 170 0.18 0.34
Karakoram 466 0.29 0.41

Western 
Himalaya

162 0.22 0.29

Central 
Himalaya 396 1.49 1.5

Eastern 
Himalaya

502 2.13 0.68

X. Xu et al.                                                                                                                                                                                                                                       Global and Planetary Change 253 (2025) 104949 

8 



period, and finally declined during the winter.

4.5. Dynamics of individual supraglacial ponds

4.5.1. Quantification of pond change events
The number of pond change events (group 1: appearance, disap

pearance, expansion; group 2: shrinkage, merging and splitting) 
exhibited regional differences across the five study sites (Fig. 8). The 
Hindu Kush site showed a relatively stable pattern of pond change 
events during the 2017-2022 period. In contrast, the Karakoram site 
experienced an increase in pond change events from 2017 to 2022. 
Notably, in May 2022, pond change events doubled compared to other 
Mays, with 952 pond appearances and 116 pond expansions; while from 
May to July, 719 ponds disappeared, and 243 ponds shrank. A similar 
but less pronounced pattern was observed in the Hindu Kush site, with 
more appearance and expansion events in May 2022 and more disap
pearance and shrinkage in July 2022 compared to other years.

Across the Himalayan sites, the supraglacial pond growth events 
(appearance, expansion, and merging) showed a consistent seasonal 
trend (Fig. 8c-e). The highest number of these events occurred during 

the pre-monsoon season, typically from May to June. Subsequently, the 
total number of pond appearance, expansion, and merging events 
declined during the monsoon season, reaching their lowest point in 
winter. In contrast, pond decrease events did not display an evident 
seasonal pattern. However, in the Eastern Himalaya, we observed a 
gradual increase in pond disappearance and shrinkage from the 
monsoon season to the post-monsoon (winter season) in 2021 and 2022.

4.5.2. Frequency of supraglacial ponds
The total number of unique supraglacial ponds, exhibited consider

able variations across five study sites, ranging from 524 in the Western 
Himalaya to 2797 in the Karakoram (Table 6). The number of unique 
supraglacial ponds in the eastern and Central Himalaya is 2.6 to 3.5 
times higher than that of the western sites except for the Karakoram site.

The quantification of pond frequency allows us to distinguish 
ephemeral, persistent, and permanent supraglacial ponds as shown in 
Fig. 9. Notably, at the Karakoram site, 95.7% of supraglacial ponds were 
identified as ephemeral ponds and 57.9% of supraglacial ponds there 
occurred only once or twice during the study period, with a frequency 
ranging from 0 to 0.1 (Fig. 10). The Central Himalaya had the highest 

Fig. 5. Distribution of supraglacial ponds and glaciers with respect to (b) glacier velocity and (c) normalized distance from glacier termini. The black line indicates 
the sum of pond area in each bin.

Fig. 6. (a) Time series of pond numbers at five selected sites (b) percentage ponded area over debris-covered area in October (lines with error bars). Note that the 
percentage areas were similar in the Western Himalaya and Hindu Kush.
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proportion of persistent ponds (17.2%) and highest number of perma
nent ponds (43) throughout the entire period.

Approximately 96% of ephemeral supraglacial ponds were smaller 
than 0.01 km2 (Fig. S13), while only 57% of persistent ponds were small- 
sized (<0.01 km2). However, we observed no significant differences in 
their elevations and glacier settings (velocities and glacier sections) 
between ephemeral and persistent supraglacial ponds (Fig. S14).

5. Discussion

5.1. Advantages and limitations of the current data and method

Our deep-learning-based method enabled automated mapping of 
supraglacial ponds from multi-temporal PlanetScope images. This 
automated approach eliminates the need to determine thresholds for 
parameters like NDWI (Otsu, 1979; Huggel et al., 2002; Li and Sheng, 
2012; Taylor et al., 2021), significantly improving the mapping effi
ciency from months to days for generating seasonal pond maps across 

the study sites from 2017 to 2022, compared to conventional manual 
and semi-automatic methods. Previous deep-learning-based mapping 
efforts for supraglacial ponds have been relatively limited, with one 
notable trial in Antarctica (Dirscherl et al., 2021). This limitation is 
particularly evident within the HKH ranges due to the complex topog
raphy and debris cover (Yuan et al., 2020). While there has been one 
attempt to use deep learning techniques for mapping supraglacial ponds 
in the Everest region using GaoFen-3 SAR images and a U-Net-based 
model (Chen, 2021), it faced difficulties in extracting small and narrow 
supraglacial ponds.

We improved the accuracy of supraglacial pond mapping in the HKH 
mountain ranges through three key aspects: the model, input satellite 
imagery, and training dataset. Firstly, we adopted DeepLabv3+ model, 
incorporating ‘atrous’ separable convolution to capture multi-scale 
contextual information, surpassing the other commonly used U-Net. 
Secondly, the use of high-resolution PlanetScope images (3.7 m) allowed 
for more precise pond boundaries than those obtained in previous 
studies using Landsat (30 m) and Sentinel-2 (10 m) imagery. Another 

Fig. 7. Time series of pond numbers (vertical bars) and pond percentage area over debris cover from 2017 to 2022 at (a) Hindu Kush, (b) Karakoram, (c) Western 
Himalaya, (d) Central Himalaya, and (e) Eastern Himalaya.
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strength of our mapping method is its combination of RGB and NDWI 
outputs, which helped identify ponds partially frozen or covered by 
cloud (Fig. 3f&3h). Furthermore, we used representative and diverse 
training samples, making our method applicable for extracting supra
glacial ponds with various sizes, shapes, colors, textures, and context. 
Our approach enhanced the mapping accuracy and generalization of the 
mapping method compared to existing pond mapping methods such as 
threshold segmentation and U-Net based deep learning models. Because 
it was trained on diverse samples collected from the HKH regions, our 
model is well-suited for mapping ponds in regions with complex 
topography and pond characteristics.

Our mapping approach still has several limitations. First, we set a 
conservative area threshold for the mapped supraglacial ponds (0.0005 
km2) according to the image resolution to ensure reliable identification 
and differentiation of these ponds from other features such as snow 
slushes and shadows from ice cliff in the PlanetScope imagery. Assuming 

Fig. 8. Temporal changes in the numbers of appearances, expansion, merging, disappearance, shrinkage, and splitting events at five study sites.

Table 6 
Numbers and percentages (in parenthesis) of different types of supraglacial 
ponds.

Study site Unique 
ponds

Permanent 
ponds

Persistent 
ponds

Ephemeral 
ponds

Hindu Kush 538 5 79 (14.7%) 459 (85.3%)
Karakoram 2797 4 120 (4.3%) 2677 (95.7%)

Western 
Himalaya 524 11 78 (14.9%) 446 (85.1%)

Central 
Himalaya 1399 43 241 (17.2%) 1158 (82.8%)

Eastern 
Himalaya

1836 15 233 (12.7%) 1603 (87.3%)
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our pond size-frequency distribution follows the log-linear fit relation
ship (Miles et al., 2017b), the exclusion of ponds smaller than 0.0005 
km2 (Fig. S15) would result in approximately 17.9% of the total pond 
area being omitted. However, incorporating smaller ponds would 
compromise the dataset reliability due to the reduced ability to accu
rately identify small, turbid, and brown-surfaced supraglacial ponds 
(Fig. S16a&b).

Furthermore, we adopted the RGI 7.0 glacier outlines to separate 
supraglacial ponds from water bodies within glacier boundaries. The 
accuracy and reliability of our supraglacial pond maps are therefore 
influenced by the glacier boundaries adopted, particularly as many 
supraglacial ponds are clustered near the glacier termini. Any temporal 
changes or boundary errors in glacier termini may have an impact on the 
resulting pond maps as well as subsequent analyses related to pond 
number and area. We acknowledge that RGI 7.0 glacier outlines (cor
responding to ~year 2000) (RGI 7.0 Consortium, 2023) do not fully 
represent the glacier boundaries during our study period (2017–2022), 
necessitating the post-processing to refining pond compilation.

Additionally, there is an inconsistency between our pond datasets 
and the debris cover datasets utilized. The debris cover boundaries in 
Scherler et al. (2018a) were derived from Landsat-8 and Sentinel-2 
satellite images from the period 2013-2017, and we assumed a con
stant extent throughout our study period (2017-2022). Considering that 
the supraglacial debris cover expanded up-glacier due to negative mass 
balance (Jiang et al., 2018; Compagno et al., 2022), we visually 
inspected and corrected misclassed or missed supraglacial ponds. This 

approach ensured a more comprehensive pond assessment.
Moreover, the model performance decreased for frozen or snow- 

covered supraglacial ponds (Fig. S16c), which are challenging to iden
tify. This can be attributed to factors such as a lack of discriminative 
features, reduced contrast and texture, similarity to surrounding snow or 
glaciers, and limited training samples. Zeller et al. (2024) has contrib
uted to pond mapping during winter which required accurate ice iden
tification and comparison with prior water mask to determine frozen 
lake. Further efforts are warranted to address the challenges posed by 
winter conditions and enhance the identification of frozen or snow- 
covered supraglacial ponds.

Further developments should focus on employing high-performing 
deep learning networks to achieve higher mapping accuracy for supra
glacial ponds with complex shapes, frozen surface, or those inside 
landmass. From a methodological perspective, it would be beneficial to 
adopt a network that can accommodate four or more bands, thereby 
allowing to incorporate additional spectral or terrain information. 
Moreover, specialized algorithms or models specifically trained for 
winter pond detection could be developed. From a data perspective, the 
inclusion of SAR images should be considered to supplement optical 
images for pond mapping, as radar signals can penetrate clouds and 
shallow snow and ice on the water surface (Wangchuk and Bolch, 2020; 
Chen, 2021). For instance, as shown in Fig. S17, supraglacial ponds in 
our Central Himalaya study site can be distinguished from SAR images 
even when they are still frozen and indistinguishable in optical images.

Fig. 9. Examples of permanent, persistent, and ephemeral ponds at each of the five study sites.

Fig. 10. Statistical distribution of supraglacial pond frequency.
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5.2. Contrasting distribution patterns of supraglacial ponds across the 
HKH

Our findings revealed a distinct east-west gradient in the distribution 
of supraglacial ponds across the HKH mountain ranges, consistent with 
the findings from Gardelle et al. (2011). The contrasting pond distri
bution is likely influenced by the regionally-varying glacier mass bal
ance, monsoon precipitation, and topographic settings (Scherler et al., 
2011; Sakai and Fujita, 2010). Specifically, higher pond cover and dense 
distribution observed in the Central and Eastern Himalaya can be 
attributed to significant negative glacier mass balance (King et al., 2017; 
Shean et al., 2020), higher monsoon precipitation (Racoviteanu et al., 
2021) and the presence of low-slope, low-velocity, debris-covered 
glacier tongues (Dehecq et al., 2015; Thompson et al., 2016; Watson 
et al., 2016). Glacier mass loss and rainfall supply abundant water, while 
the low-gradient, near-stagnant glacier tongues allow the glacial melt
water and precipitation to accumulate in surface depressions, facili
tating formation and expansion of supraglacial ponds (Reynolds, 2000; 
Miles et al., 2017b; Taylor et al., 2021). The Indian summer monsoon 
precipitations in June-July-August (JJA) showed large differences be
tween the Central and Eastern Himalaya and the other three areas in the 
western part of the HKH (Fig. 11b). The JJA rainfall in the Central and 
Eastern Himalaya exceeded 600 mm every year whereas the precipita
tion was below 400 mm in the Hindu Kush, Karakoram, and Western 
Himalaya.

Supraglacial ponds in the Central and Eastern Himalaya were 
concentrated in areas with glacier velocities below 20 m/yr, higher than 
the velocities (below 8 m/yr) reported by Taylor et al. (2021). Notably, 
over 40% of supraglacial ponds were located in the middle to upper 
sections of glaciers in these two sites, contrasting with other sites and 
previous observations that ponds are concentrated near glacier termini 
(Zeller et al., 2024).

Fewer supraglacial ponds were sparsely distributed at the Western 
Himalaya and the Hindu Kush sites. These regions receive less meltwater 
and precipitation input for the formation of supraglacial ponds 
compared to the Central and Eastern Himalaya. We also observed low 
pond coverage in the Karakoram with 42% of the ponds smaller than 
<0.001 km2 (Fig. S9). However, the number of supraglacial ponds in the 
Karakoram was comparable to those in the Central and Eastern Hima
laya, possibly due to the glacier melting and thin debris cover (0-0.5 m) 
(Fig. S19). Glaciers in the Karakoram exhibited accelerated thinning in 
the late 2010s (Hugonnet et al., 2021), providing meltwater for pond 
formation. The thin supraglacial debris layer enhances surface melting 
by absorbing more solar radiation compared to clean ice, promoting the 
formation of supraglacial ponds (Rounce et al., 2021; Chen et al., 2023). 
We acknowledge that the debris thickness dataset (Rounce et al., 2021) 
used in this study was derived from a model based on satellite brightness 
temperature measurements, bearing significant uncertainty, particularly 
in areas containing supraglacial ponds.

Factors such as slope, longitudinal gradient, and englacial connec
tivity can influence the distribution of supraglacial ponds. However, we 
did not investigate nor compared the pond distribution with respect to 
these conditions due to the unavailability of high-quality and consistent 
datasets across the HKH ranges.

5.3. Interannual variabilities and seasonality of supraglacial ponds across 
the HKH

Supraglacial ponds demonstrated contrasting interannual variabil
ities in pond area during our study period (2017-2022), with stable pond 
cover in the Hindu Kush and increases in other sites. The increase of 
supraglacial ponds in the Central and Eastern Himalaya and the 
consistently low pond area in the Hindu Kush align with the trends re
ported by Gardelle et al. (2011) from 1990 to 2009 and Nie et al. (2017)

Fig. 11. (a) March-April-May (MAM) precipitation, (b) June-July-August (JJA) precipitation, (c) September-October-November (SON) precipitation, and (d) 
December-January-February (DJF) precipitation from ERA5-Land hourly climate reanalysis dataset at five selected sites.
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between 1990 and 2015. In the Eastern Himalaya, we noted a moderate 
correlation between the change of the pond percentage area with the 
Indian summer monsoon precipitations (June to August), as shown in 
Fig. 11b. The percentage ponded area had been exhibiting significant 
increases in the Eastern Himalaya from 2018 until a drop in 2022, 
similar to the trend in the summer monsoon precipitation, rising from 
2019 to 2021 and declining in 2022.

At the Karakoram site, we observed a gradual increase in pond area 
from 2017 to 2020, consistent with the findings of Wendleder et al. 
(2021), who reported a linear increase in the pond area at a rate of 
11.12% per year on the Baltoro glacier in the Karakoram between 2016 
and 2020. This, however, is in contrast with the reported decreasing 
trend (~-0.4 ha/year) between 1990 and 2009 in Gardelle et al., 2011. 
This discrepancy highlights the unique glaciological behavior of the 
Karakoram region compared to the rest of the HKH. This region is 
characterized by glacier stability or slight mass gain since 2000 (Hewitt, 
2005; Hewitt, 2014), referred to as the Karakoram anomaly, which is 
slowly coming to an end as suggested by recent studies (Hugonnet et al., 
2021; Bhattacharya et al., 2021; Yao et al., 2022; Jackson et al., 2023). 
The shift from a decrease to a slight increase in pond area in the Kar
akoram may be indicative of the diminishing glacier anomaly in this 
region (Hugonnet et al., 2021). Moreover, simultaneous increases in the 
pond area and summer rainfall were observed in the Karakoram 
(Fig. 11b).

The seasonal variability of supraglacial ponds in number and area 
amounted to ~ 20% across five sites except for Karakoram reaching 52% 
mainly due to the anomaly in 2022. In May 2022, the Karakoram sites 
recorded a peak number of 1131 supraglacial ponds, exceeding the 
average level by over twofold (478). A total of 952 supraglacial ponds 
formed before May, and 719 supraglacial ponds completely drained 
before July. The comparison of PlanetScope-based observations in late 
May between 2022 and previous years (Fig. S18) suggests an earlier 
onset of melting in 2022. In previous years, the glaciers remained frozen 
until late May. The accelerated glacier ice melt contribute to the for
mation of numerous supraglacial ponds on glacier surface.

In the monsoon-influenced sites of the Western and Central 

Himalaya, supraglacial ponds decreased from pre-monsoon or monsoon 
season to winter for most years. The Western Himalaya study site is 
situated in a transitional region influenced by both the westerlies to 
Indian Summer monsoon, where the long-lasting snow cover from 
November to the following June limits the observations in the winter 
and pre-monsoon seasons. However, in the Eastern Himalaya, the pat
terns of pond seasonal variation were more complex and diverse. The 
pond area increased from pre-monsoon and reached its peak during 
monsoon or post-monsoon season in 2019, 2021 and 2022. Our obser
vations indicated that the seasonal changes of the supraglacial pond area 
in Eastern Himalaya sites showed consistency with the seasonal tem
perature and total precipitation (Fig. 12b). Numerous supraglacial 
ponds thawed and appeared starting from around May, with the peak 
appearance occurring in the pre-monsoon season (Fig. 9), possibly due 
to increased meltwater availability when ablation started. Substantial 
precipitation during the monsoon sustained high levels of pond 
appearance and expansion (Fig. 9). The decrease in pond area from 
monsoon to post-monsoon season in most years could be attributed to 
frequent pond drainage events, where more supply of meltwater or 
precipitation facilitates pond drainage into englacial networks via 
opening conduits (Taylor et al., 2021). Subsequently, the number and 
area of supraglacial ponds declined in the winter due to drainage and 
freezing. The influence of glacier settings such as the seasonal changes in 
mass balance and ice velocities as well as englacial networks should also 
be considered but not discussed here due to the lack of high-resolution 
and field datasets.

The seasonal pattern observed in the Eastern Himalaya aligns with 
the findings reported by Miles et al. (2017b) for supraglacial ponds over 
five glaciers in the Langtang Valley, Nepal. Their study documented 
pond emergence during pre-monsoon, peaking at monsoon onset at 2% 
of debris-covered area, and declining post-monsoon. Similarly, Chand 
and Watanabe (2019) highlighted pronounced seasonal variability for 
ponds on 23 debris-covered glaciers in the Everest region from 1989 to 
2017. Their findings revealed comparably high pond area being during 
the pre- and post-monsoon seasons and lowest in the winter. Zeller et al. 
(2024) documented a slightly different pattern of pond changes in eight 

Fig. 12. Time series of pond area percentage over debris cover (dashed lines with error bars), seasonally cumulative precipitation (vertical bars) and seasonal mean 
2-m air temperature (T2m) (thick black lines) in the (a) Central Himalaya and (b) Eastern Himalaya.
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glaciers in the Khumbu region, Nepal, where pond area reached its peak 
in March, decreased during the monsoon season to its minimum in 
September, and then demonstrated a steady increase through post- 
monsoon and winter periods based on daily Planet observations. Due 
to the data gaps and seasonal interval of generated maps, we are unable 
to capture the winter increase and daily pond variation. The adequate 
characterization and comparison of pond seasonality with Zeller et al. 
(2024) required higher-frequency and long-term observations. Our 
findings also allow for the quantification of individual-pond-scale 
changes as well as glacier-wide assessments of pond dynamics. Our 
study specifically focuses on the local scale analysis to characterize the 
condition of ponds and highlight regional contrasts.

5.4. Pond persistency variations and associated influencing factors across 
the HKH

The climate conditions and glacial environments, characterized by 
factors such as debris thickness, glacier velocity, glacier mass loss, and 
englacial connectivity, play vital roles in determining the dynamics and 
lifespan of supraglacial ponds across the study sites. Ephemeral supra
glacial ponds accounted for approximately 85% of the total at most 
study sites, with the Karakoram exhibiting a much higher proportion 
(95.7%), indicating their highly dynamic and transient nature. The 
frequent formation and drainage of ponds in the Karakoram could be 
attributed to the thin debris layer (0-0.5 m) covering the glacier surface 
and the high glacier velocity of up to 100 m/yr there (Fig. S19 &S20). 
While the thin debris enhanced surface melting and pond formation 
(Rounce et al., 2021; Chen et al., 2023), the rapid ice flow enhances the 
connectivity between the supraglacial and englacial hydrologic systems, 
facilitating pond drainage and hindering the expansion or persistence of 
supraglacial ponds (Miles et al., 2017b).

On the contrary, the Central and Eastern Himalayan sites exhibit a 
higher prevalence of persistent supraglacial ponds compared to other 
sites. Several factors contribute to the persistence of these supraglacial 
ponds. Firstly, the abundant glacier melting water and substantial 
monsoon precipitation supply the consistent water input, supporting the 
formation and longevity of supraglacial ponds. In addition, the rela
tively low glacier velocity of the debris cover part provides a stable 
environment for water accumulation in the supraglacial environment. 
Furthermore, small supraglacial ponds can coalescence and have the 
potential to transform into large terminal glacial lakes. This process 
involves the accumulation of large volume of water, reducing the like
lihood of complete drainage of ponds through englacial channels.

Within each study site, our results reveal that there was no signifi
cant difference in the topographic and glacier settings between persis
tent and ephemeral supraglacial ponds (Fig. S13). Both types of 
supraglacial ponds were distributed within similar elevation ranges, 
glacier velocity ranges, and sections of glaciers. These findings indicate 
that the persistence of supraglacial ponds at a local scale is likely 
controlled by factors associated with the connectivity to englacial net
works within the glaciers. Further investigations, including field ob
servations, are warranted to explore the specific mechanisms behind 
englacial processes that govern the persistence or transience of supra
glacial ponds.

6. Conclusions and perspectives

In this paper we successfully applied an advanced deep-learning- 
based method for mapping supraglacial ponds and investigated their 
spatio-temporal variability. We automatically mapped supraglacial 
ponds at five sites across the HKH from 2017 to 2022 at seasonal scales. 
The results demonstrated the applicability and transferability of our 
approach in mapping supraglacial ponds from multi-temporal satellite 
images, and enabled us to efficiently produce high-quality supraglacial 
pond datasets with an error (1.41 pixels) comparable to human level for 
analyzing their spatial-temporal variations.

This study provides a first representative overview of spatial- 
temporal variation of supraglacial ponds in the HKH range, revealing 
significant regional differences in pond distribution, interannual 
changes, seasonal variations, and persistency. Specifically, we found 
that 

(1) the mean percentage ponded area over the debris-covered area in 
the Central Himalaya (1.55%) and Eastern Himalaya (1.93%) 
were significantly higher compared to the sites in the Hindu Kush 
(0.19%), Karakoram (0.36%), and Western Himalaya (0.20%), 
which was attributed to substantial glacier mass loss and abun
dant monsoon precipitation in the eastern HKH;

(2) pond total area increased from 2017 to 2022 except in the Hindu 
Kush, which remained consistently low (< 0.2%);

(3) supraglacial ponds generally decreased during the ablation/ 
monsoon season, except in the Eastern Himalaya, where peak 
pond area was observed during monsoon or post-monsoon 
periods;

(4) the Karakoram exhibited the highest proportion of ephemeral 
ponds (95.7%), while the Central and Eastern Himalaya con
tained more persistent supraglacial ponds.

We found regional heterogeneity of pond distribution and evolution 
at local scales and seasonal intervals. The controlling factors on pond 
spatial-temporal changes across different regions required further 
investigation with more comprehensive datasets on glacier dynamics 
and local hydrological systems.

Understanding the dynamics of supraglacial ponds is crucial for 
comprehending the broader implications for glacial meltwater storage, 
runoff patterns, and the overall mass balance of glaciers. Further 
research is needed to investigate the complex interactions between 
debris cover, glacier velocity, englacial connectivity, and the behavior of 
supraglacial ponds across diverse glacial environments. This knowledge 
holds the potential to enhance predictions of glacial response to climate 
change and shed light on its downstream water resources impact.

CRediT authorship contribution statement

Xingyu Xu: Writing – original draft, Methodology, Investigation. Lin 
Liu: Writing – review & editing, Supervision, Conceptualization. Ling
cao Huang: Validation, Methodology. Yan Hu: Writing – review & 
editing, Validation. Guoqing Zhang: Writing – review & editing, Su
pervision. Adina Racoviteanu: Methodology, Writing – review & 
editing. Emily Victoria Liu: Data curation. YingTo Agnes Chan: Data 
curation.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgement

Great thanks to Professor Stephan Harrison for providing guidance 
and insights. This work is supported by the following research grants: 
the Hong Kong Research Grants Council (HKPFS PF18-21555, 
CUHK14303119, CUHK14302421, F-CUHK404/22)) and the CUHK 
Direct Grant for Research (4053592 and 4053644). Adina Racoviteanu’s 
contribution was supported by the French National Research Institute 
for Sustainable Development (IRD) and the PROCORE FRANCE- HONG 
KONG project 49478PK.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 

X. Xu et al.                                                                                                                                                                                                                                       Global and Planetary Change 253 (2025) 104949 

15 

https://doi.org/10.1016/j.gloplacha.2025.104949


org/10.1016/j.gloplacha.2025.104949.

Data availability

The PlanetScope CubeSat images are copyrighted by Planet Labs Inc., 
restricted by commercial policies and are not open to the public. The 
supraglacial pond inventories are accessible through Xu et al., (2023), 
Zenodo, https://doi.org/10.5281/zenodo.7984795

References

Azam, M.F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., Kargel, J.S., 2018. Review of 
the status and mass changes of Himalayan-Karakoram glaciers. J. Glaciol. 64 (243), 
61–74.

Benn, D.I., Wiseman, S., Warren, C.R., 2000. Rapid growth of a supraglacial lake, 
Ngozumpa Glacier, Khumbu Himal, Nepal. In: Debris-Covered Glaciers. International 
Association of Hydrological Sciences, pp. 177–185.

Benn, D.I., Wiseman, S., Hands, K.A., 2001. Growth and drainage of supraglacial lakes on 
debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J. Glaciol. 47 (159), 
626–638.

Benn, D.I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L.I., Quincey, D., 
Thompson, S., Toumi, R., Wiseman, S., 2012. Response of debris-covered glaciers in 
the Mount Everest region to recent warming, and implications for outburst flood 
hazards. Earth Sci. Rev. 114 (1–2), 156–174.

Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa, V., Yao, T., 
2021. High Mountain Asian glacier response to climate revealed by multi-temporal 
satellite observations since the 1960s. Nat. Commun. 12 (1), 4133.

Bolch, T., Buchroithner, M.F., Peters, J., Baessler, M., Bajracharya, S., 2008. 
Identification of glacier motion and potentially dangerous glacial lakes in the Mt. 
Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 8 (6), 
1329–1340.

Bookhagen, B., Burbank, D.W., 2006. Topography, relief, and TRMM-derived rainfall 
variations along the Himalaya. Geophys. Res. Lett. 33 (8).

Bookhagen, B., Thiede, R.C., Strecker, M.R., 2005. Late Quaternary intensified monsoon 
phases control landscape evolution in the northwest Himalaya. Geology 33 (2), 
149–152.
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