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ABSTRACT. Optical satellite remote sensing images allow the analysis of topographic change
detection based on digital elevation model differencing. Accurate change detection
requires co-registration of 3D models derived from multitemporal datasets, so far,
usually achieved with external reference data or manual intervention. Based on
structure from motion photogrammetric algorithms, co-registering images from dif-
ferent epochs together by extracting multitemporal tie-points, such as the time-
scale-invariant feature transform (SIFT) approach, has been proven to be efficient
for aerial images. We propose a first test of the time-SIFT approach on Pléiades tri-
stereoscopic satellite imagery, covering the coastal plain in northeastern Tunisia.
The multitemporal tie-points, coupled with the rational polynomial coefficient models
of all the images, are refined in a joint bundle adjustment routine. The accuracy of the
derived digital elevation models is assessed in absolute (using external ground truth
data) and relative (between epochs). The time-SIFT approach reduces the normal-
ized median absolute deviation from 1.80 to 1.14 m when compared with the
classical approach. Our results demonstrate that the time-SIFT approach can be
extended for change detection analysis using Pléiades images, without ground con-
trol points or a posteriori co-registration, which paves the way to automated inves-
tigation of time series of past and future 3D satellite datasets. We highlight the
application of the time-SIFT approach to Pléiades images leveraging their high spa-
tial resolution for change detection.
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1 Introduction

The landscape spatial patterns are continuously changing notably due to both climate change and
human activities. Prior to understanding the impacts of the above-mentioned factors on landscape
variation, its spatial dynamics have to be identified and assessed. Accordingly, there is a growing
demand for detecting and monitoring these changes to understand their causes and their eventual
consequences.

Remote change detection is one of the advanced techniques for characterizing the Earth’s
surface dynamics that are coupled to environmental processes at different spatial and temporal
scales. The analysis of the 3D changes occurring on the Earth’s surface is based on time-series
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datasets acquired from different systems, including light detection and ranging (LiDAR), radar,
and optical sensors.

Although LiDAR provides high-resolution point cloud data, it is hindered by its expensive
cost.! The synthetic-aperture radar imagery has the advantage of working in all weather con-
ditions but is affected by speckle noise and electromagnetic interference. Stereoscopic optical
images are able to perceive 3D space and capture spatial details, contributing to an accurate
reconstruction of the scenes.

The 3D reconstruction approaches have been categorized into two groups: traditional and
learning-based approaches.>® Traditional reconstruction methods are based on geometry and
image processing techniques. Deep learning—based 3D reconstruction methods utilize neural net-
works to learn the mapping from images to 3D scenes. However, high-precision reconstruction
results depend on a large amount of training data and are resource-consuming.”*

The process of change detection aims to identify the differences between the registered 3D
data. The main approaches for 3D change detection can be divided into two categories, according
to the representation of the changed output: point-based and pixel-based. A direct strategy for
point-based change detection is to calculate the distances between points from each point cloud,
namely, cloud-to-cloud (C2C), multiscale model-to-model cloud comparison (M3C2), point-to-
triangle, and point-to-plane distancing.

Often, the volume of the 3D point cloud is large, which can be difficult to process. By pro-
jecting the 3D point cloud into 2.5D data forms such as a digital elevation model (DEM), a 2D
image matrix is obtained where each pixel encodes height information. Accordingly, 2D change
detection methods can be applied. Change detection can be performed by DEM differencing,’”’
requiring careful selection of the “change/no change” threshold, DEM rationing, change vector
analysis,*'" transformation-based approaches such as principle component analysis, and
classification-based approaches.'!!?

Both, point-based and pixel-based change detection, have also been treated as a learning-
based classification problem, although they require a moderate to large amount of training data
and computing resources.'?

Accordingly, optical satellite systems have made considerable advancements enabling the
production of high-resolution products with minimal error. Among them, the Pléiades satellite,
comprising Pléiades-1A and Pléiades-1B, was launched in 2011 and 2012, respectively. Pléiades
satellite is able to acquire three-stereo images, with a push-broom sensor, allowing 3D recon-
struction of the scene. The Pléiades images are supplied with rational polynomial coefficients
(RPCs), which are a standard product provided by satellite data vendors that embed necessary
information for DEM generation. The RPC is a projection function that relates the image to the
object space.

In computer vision, the structure from motion (SfM) algorithm, based on the digital photo-
grammetric technique, produces stereo reconstruction that relies almost exclusively on image
information and camera models to iteratively solve the camera parameters (interior and exterior
orientation)'* using thousands of automatically detected feature matches between overlapping
images, based on key point detection algorithms.

The main difference between typical vision workflows and satellite stereo workflows is the
camera model (pinhole versus RPCs). Frame cameras, commonly modeled using the pinhole
camera model, are characterized by a central perspective projection. The relationship between
the object space and image space is rigorously described by the collinearity equations, which
account for the interior orientation (camera geometry) and exterior orientation (position and
rotation relative to the object space). However, in the case of the Pléiades satellite, the physi-
cal-mathematical model is defined with the central perspective projection in the across-track
direction and the orthogonal projection in the along-track direction. Given that the collinearity
equations describing this model are complex, they are replaced by the RPCs'* for the 3D recon-
struction. According to Oh and Lee,'® the RPCs assure an absolute geo-location accuracy of
some meters.

However, for change detection, the relative accuracy of multitemporal datasets is more
important than the absolute geo-location, as pointed out, for instance, by Li et al.'” In the same
context, comparing two datasets acquired in different times requires precise spatial
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co-registration, which is commonly executed a posteriori. In fact, insufficient spatial fit generates
uncertainties leading to the identification of artifact changes.'®!

Previous studies, with frame cameras and pinhole models, have shown that joining multi-
epoch datasets during the 3D reconstruction workflow will optimize the image co-registration
using tie points covering several surveys and consequently impose a common geometry.>!” As
stated by Feurer and Vinatier,’ the abovementioned method resulted in consistent geometric
reference of 3D models, and consequently, accurate DEMs of difference (DoDs), with exclu-
sively image information.

Over time, after the “United Bundle Adjustment” proposed in 2017 by Li et al.'” and the
“time-SIFT” method proposed in 2018 by Feurer and Vinatier,” extensive literature has devel-
oped on this approach referring to it by different terminologies, namely “co-alignment” by Cook
and Dietze,” “global bundle adjustment” by Garieri et al.,>' “Multi-epoch single-imagery” by
Blanch et al.,*> “Historical SfM multiple dates—multiple blocks (4D SfM) mode” by Knuth
et al.,”> and “multitemporal SfM” by Scaioni et al.>* These authors proved that the co-alignment
of multitemporal images without using ground control points (GCPs) produces approximately
the same distribution of measured changes when compared with the classical approach using
GCPs. Regardless of the different terminology adapted by the authors, the above-mentioned
approach, herein referred to as the time-SIFT approach, relies on extracting multitemporal
tie-points and performing a common bundle adjustment. Moreover, it is worth noting that all
the references using time-SIFT approaches were conducted on data acquired with frame cameras.

To the best of our knowledge, such an approach with a common bundle adjustment with
push-broom sensors has not yet been studied. As stated before, the existing literature about time-
SIFT approaches all used frame cameras.>!"?*>* Frame cameras capture the entire scene in a
single exposure, simplifying the geometry and calibration processes in photogrammetric appli-
cations. Consequently, common bundle adjustment techniques have been extensively applied and
studied in this context. By contrast, push-broom sensors acquire imagery line by line as the
sensor moves, introducing unique challenges related to varying viewing geometries, time-
dependent distortions, and sensor orientation. However, the uses of push-broom sensors for 3D
change monitoring are numerous in the literature, but none of them have applied the time-SIFT
approach (see details in Sec. 2 below). Hence, we propose to experiment with the time-SIFT
approach using Pléiades images to produce time-series DEMs and DoDs.

The overarching goal of this study is to explore the potential of the time-SIFT approach on
multitemporal stereo satellite imagery to detect 3D change with a case study using multitemporal
Pléiades satellite images in the context of a Mediterranean agricultural landscape.

From this point on, the paper is structured as follows: Sec. 2 provides a brief overview of
state-of-the-art of the Earth’s surface change detection based on Pléiades satellite imagery; Sec. 3
represents the method; Sec. 4 describes the experimental results and discussion; and finally, the
conclusion is in Sec. 5.

2 Related Work

In remote sensing and photogrammetry, RPCs describe the imaging geometry model for trans-
forming image pixel coordinates to map coordinates. The projection function of an RPC model is
formulated as follows:*

Py(h. i)
— Lt 1
P =y ih) M
_ P5(¢. A h)
" Plpih) @

where ¢, 1, and h represent respectively the longitude, latitude, and altitude of a 3D point, and p
and r are the image coordinates. P; is the nominator and denominator functions of the RPC
equations, which are defined by
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where a; ;. is the polynomial coefficient that approximates the sensor model information to relate
the ground point coordinates to the image pixel coordinates, usually provided by the product
vendor.

However, the RPCs represent some inaccuracies due to some measurement errors in attitude
angle, position, and velocity that characterize the sensor. These errors can cause significant pro-
jection errors, leading to inconsistencies in different views of a scene. Such systematic errors
degrade the accuracy of 3D models reconstructed from multiple views. Consequently, the
RPCs require some refinement. In the literature, the two main approaches for refining the
RPCs are the direct and indirect approaches. The direct approaches adjust the original RCP coef-
ficients with some GCPs for example, whereas the indirect approaches add complementary cor-
rection functions defined in the object space or image space to correct the camera models.?**’

For the direct approaches, Kaichang et al.”® proposed directly recomputing a new RPC based
on a large number of GCPs that has been later on proven unfeasible by Grodecki and Dial* and
Hu et al.*® Other direct approaches such as the batch iterative least squares and the incremental
discrete Kalman filtering require a significant number of GCPs and covariance matrices of the
RPC, which are not always available to users.’' In addition, applying the pseudo GCP method
and the Using Parameters Observation Equation method proposed by Bang et al.*>* involves the
challenge of properly assigning the weightings for many different observation equations.

Although direct approaches attempt to refine RPCs using GCPs, they face some limitations,
such as the requirement for a large number of GCPs or the availability of covariance matrices.
These constraints have led to the development of three different indirect approaches. Fraser and
Hanley™ and Grodecki and Dial®® proposed the bias compensation method that is based on a
polynomial model defined in the image space to correct the RPC. Grodecki and Dial®® proposed a
polynomial model defined in the domain of object coordinates to correct the RPC, and Kaichang
et al.”® proposed a polynomial model defined in the domain of object coordinates to correct the
ground coordinates derived from the vendor-provided RPC’s. In terms of accuracy, the indirect
approaches are more accurate than the direct approaches.”

Among the indirect approaches, the bias compensation method outperforms the polynomial
models defined in the domain of object coordinates as in object space, the ground coordinates do
not reflect the satellite sensor’s imaging geometry. Consequently, it is the most commonly used
method'>?"** that aims to minimize the reprojection error of the tie points. For a set of N 3D
points {X,},—, and their corresponding 2D observations x,,, across M cameras with pro-
jection functions {P,, },._; . . the bundle adjustment finds the optimal solution by minimizing
the reprojection error

%, “

where X, and P,, contain the variables to be adjusted.

The reprojection error is typically defined as the sum of squared Euclidean distances
between the estimated reprojected 3D points, P,,(X,,), and their actual 2D observations in the
images, X,,,-

After running the bundle adjustment, every tie point projected across different cameras is
expected to be in the corresponding 2D geo-location in the images, and consequently, the cor-
rected RPCs are consistent in a common reference frame. Once the RPCs are refined, the 3D
model can be derived based on a 3D reconstruction algorithm.

Recently, the 3D reconstruction of scenes using multiple images has been widely studied for
the two-view and multiview scenarios. Multiview stereo (MVS) algorithms generate a dense 3D
model of the scene as a point cloud. In a typical MVS pipeline, the inputs are the robust esti-
mations for the camera pose and the sparse points derived by SfM. To solve the correspondence
search problem, many traditional and, later on, learning-based approaches have been developed.
MVS algorithms may include voxel-based, surface-evolution-based, feature-point-growing-
based, and depth-map-based approaches. Refer to Zhou et al.** for a detailed description of
traditional multiview reconstruction approaches. Of the aforementioned approaches, the depth
map-based approach is the most used due to its overall efficiency and scalability.*>°
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Remote sensing—based change detection, applied in geosciences, involves different appli-
cations and allows the investigation of land surface dynamics and evolutions. Pléiades images
have been widely used for deriving DEMs and estimating the changes for different environmental
applications.

To assess the potential of Pléiades images in 3D reconstruction in mountainous areas, Perko
et al.*’ used the RPCs to estimate the a priori geo-location accuracy in terms of mean and stan-
dard deviation of x and y pixel residuals compared with some ground truth datasets. For two
different test sites, Trento and Innsburck, the geo-location accuracy is ~9 and 5 m, respectively.
After optimizing the sensor models with ground control points, the 3D model has a horizontal
and vertical accuracy of 0.5 and 1 m, respectively.

The potential of Pléiades images for estimating vertical ground displacement after an earth-
quake was demonstrated by comparing derived Plé¢iades DEMs with pre-earthquake Lidar
DEMs. Zhou et al.*® reported a standard deviation of elevation differences of ~0.3 m and iden-
tified meter- and sub-meter-scale offsets along fault lines, showcasing the precision of Pléiades
DEMs for displacement analysis. In forested areas, a change analysis between the 2001 Ikonos
stereo pair and the 2014 Pléiades stereo pair revealed height variations that were explained by the
forest fire that occurred in 2007.%

In the context of glaciers, Pléiades images have proven effective in producing DEMs and
monitoring elevation changes. After co-registering with reference altimetric data on ice-free ter-
rain, Berthier et al.*’ evaluated the vertical precision of Pléiades-derived DEMs, highlighting
their ability to achieve high accuracy, particularly for flat glacier tongues. Similarly,
Deschamps-Berger et al.*' demonstrated that Pléiades DEMs provide reliable results on stable
terrain and perform well even in snow-covered areas when co-registered with NASA Airborne
Snow Observatory data.

More recently, Falaschi et al.*? utilized Pléiades DEMs from 2012 and 2020 to monitor
glacier variations, achieving reliable alignment with field-surveyed checkpoints after
co-registration. Berthier et al.*’ assessed Pléiades DEMs co-registered to the Copernicus
GLO-30 DEM and validated them against Lidar surveys. Their study confirmed near-zero
median elevation differences on and off glaciers and demonstrated the suitability of Pléiades
DEMs for high-accuracy glacier change detection over various spatial scales.

In summary, according to the reviewed research, external reference data or a posteriori
co-registration is crucial to co-register 3D models derived from multitemporal Pléiades imagery,
for 3D change detection. As already mentioned, the time-SIFT approach has been proven to be
efficient using aerial images, but it has not yet been implemented on satellite imagery and
push-broom sensors, which is the aim of this work.

3 Method
3.1 Study Area

In the Mediterranean regions, the main sources of change in agroecosystems include vegetation
dynamics, topographical factors, and anthropogenic activities. These changes occur on varying
spatial and temporal scales, ranging spatially from the variability observed within the parcels to
the monitoring of topographic features at the watershed level. Temporally, the study focuses on
two dates, 2015 and 2018, allowing analysis of changes over a nearly 3-year interval.

The region of interest is the Lebna watershed, located in the coastal plain in northeastern
Tunisia, in the Cap Bon peninsula (Fig. 1). It has an area of ~210 km?. The study area is char-
acterized by a typical Mediterranean climate, and it is an agricultural region with intense plant
production, including fruit culture, field crops, pastures, and olive cultivation.***> Both the
climate and the agricultural practices enhance the watershed vulnerability to soil erosion.**

Although the Lebna watershed hosts a long-term agro-hydrological observatory, providing
in situ data,*® remote sensing surveys cover a wide spatial extent for detecting and monitoring
potential changes.

For this study, tri-stereo Pléiades imagery was ordered in 2015 and 2018 through the
DINAMIS platform. The panchromatic images, with a 0.5-m resolution, are used for the
DEM generation.
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Fig. 1 Hillshaded Copernicus DEM of the study area showing the geo-location of CP,,, and CP,.

3.2 Data Processing

The time-SIFT approach has been applied to understand the effectiveness of this procedure to
align satellite datasets featuring multiple characteristics and different acquisition times, com-
pared with the classical approach. Both approaches have been examined for epoch-to-epoch
image block co-registration, focusing on their performances in terms of reconstruction accuracy
and processing time.

The data were processed with the free open-source software tool for photogrammetry—
MicMac.*” In the classical approach, each image block of an epoch has been independently proc-
essed to generate the DEM, following the typical SfIM-MVS workflow: image alignment and
dense cloud generation. The image alignment consists of tie point extraction and RPC refine-
ment. Image tie points are extracted and matched using the SIFT algorithm™® that is able to handle
large images. In a further step, the RPCs camera models are refined in a bundle adjustment rou-
tine. MicMac resolves the RPCs refinement procedure based on the bias compensation method.**
Two polynomial correction functions are defined in image space and estimated via a bundle
block adjustment routine. Each bundle adjustment is performed with the individual images
of a single epoch, i.e., individually for surveys 1 and 2. The dense cloud generation is based
on the semi-global matching (SGM) algorithm. SGM provides a highly resolved topography.
However, alignment errors between the point clouds are possible because they did not have
exactly the same sensor orientation due to the separate bundle adjustments. Following the
approach of Nuth and Kiiib,* we compensated these alignment errors by applying the iterative
closest point (ICP) algorithm on the 2018 DEM, which was co-registered onto the 2015 DEM.
ICP is a frequently used algorithm for point cloud co-registration, particularly when the two
clouds are already coarsely registered, which is the case here thanks to the RPC data.

On the other hand, the time-SIFT approach relies on joining all images from different epochs
in the same block, hence allowing for extracting multitemporal tie points. For this step, the
Agisoft Metashape Pro (v1.6.3) software package was used for multitemporal tie-point extrac-
tion, as the first experiment (not shown here) with MicMac yields almost 1% of intra-epoch tie
points. The tie points extracted with Agisoft Metashape Pro were then used to continue the
processing with MicMac.

The RPCs of different epochs are, as well, refined within a joint bundle adjustment routine.
The result of the joint bundle adjustment is a sparse point cloud containing tie points that have
been matched across overlapping frames acquired at different times. The joint bundle adjustment
offers the advantage of significantly increasing the number of observations, consequently
enhancing the reliability of the estimated parameters. For dense cloud generation, the
images are separated into the original surveys. The computed dense models are hence—by
construction—aligned in a common reference frame (during the bundle adjustment, considering
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Fig. 2 Flowchart of the classical (a) and the Time-SIFT (b) approaches.

the inter-epoch tie points), and consequently, no further co-registration is required for the change
detection analysis.

It is worth mentioning that no field-surveyed GCPs were used during the processing of both
approaches and image information and RPCs are the unique inputs. Not employing GCPs in
workflow reconstruction significantly streamlines the process, making it more efficient and
thereby reducing the need for manual interventions.

Figure 2 represents the flowchart of the time-SIFT approach (b) compared with the classical
approach (a).

To perform change detection, the multitemporal DEMs are subtracted to produce a pixel-
level change map or DoD. The information of change is represented as a triple change mask:
positive, negative, and non-change, describing the status of the change. Post-processing, such
as filtering and thresholding, is required to remove false alarms, caused by noise and
miss-registration.

For comparative purposes, two co-registered multitemporal Pléiades images were used to
produce a residual image indicating potential changes.’® The differences are measured from the
radiometric values of the pixels. Pixels with unchanged radiance are distributed around the mean,
whereas pixels with change are distributed in the tails of the distribution curve.

3.3 Data Analysis
To evaluate the time-SIFT approach performance, some metrics are used to assess its impact on
the registration of 3D reconstructions from multitemporal stereo pairs.

The reprojection error [Eq. (4)] is obtained from all tie point observations in terms of
Euclidean distance and expressed in pixels. It indicates the quality of the reprojection at the
orientation stage.

The mean number of extracted tie-points per image pair serves as a measure of the quality of
feature matching during the image alignment stage. Using the time-SIFT approach, this number
compromises inter- and intra-epoch tie points.

The absolute accuracy of DEM reconstruction is determined by quantifying the residuals
between some checkpoints (CP) in stable areas and their corresponding points in the derived 3D
model, in terms of mean error (ME), standard deviation, and root mean square error. The absolute
accuracy was quantified by manually extracting the coordinates and elevation of all CP,,,
(xy from the orthophoto and z from the corresponding DEM) and calculating the offset.
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The relative accuracy was determined by quantifying the offset between both models in xy
and z directions derived from the classical and the time-SIFT approaches. The same error sta-
tistics were estimated. The NMAD was also assessed as it is less sensitive to outliers compared
with standard deviation, to compare the obtained results with results from the literature.

In stable and relatively flat areas, which mainly correspond to road surfaces, a hundred
points (herein referred to as CP,) have been manually selected through the study area and
exploited for quality assessment. In the absence of systematic errors in the DEMs, areas that
were unchanged during the study period are expected to be stable zones (values expected to
be close to zero) in the DoD.

The absolute accuracy performed on the CP,,, in terms of standard deviation is also used to
estimate the minimum level of detection (LoD). This LoD is used as a threshold to distinguish
real topographic change from noise. Thus, detected change below this LoD is considered noise at
the chosen level of confidence.

For this purpose, the derived models were assessed for their planimetric and altimetric accu-
racy in absolute using 9 CP,, that were surveyed across the study area in April 2016. These data
were collected using a DGPS in RTK mode, with an accuracy of 1 cm+ 1 ppm for the x and y
coordinates and 1.5 cm + 1 ppm for the z coordinate. All the coordinates were surveyed in the
WGS 84 reference system.

For both approaches, the time required for generating the DEMs is recorded. For the
classical approach, the time required to perform the co-registration process is summed up to
the time required for generating the DEMs.

4 Experimental Results and Discussion

The processing of Pléiades images following the classical approach results in two DEMs of 1-m
spatial resolution. The reprojection error is ~0.54 and 0.57 pixels for DEM 2015 and DEM 2018,
respectively. Both values are less than one, hence, the orientation can be considered valid data.

Before applying ICP, the DEM 2015 shows an absolute xy accuracy of ~8.81 m on average
and an absolute z accuracy of ~2.7 m on average. For 2018 DEM, the absolute xy accuracy is
~2.25 m on average, and the absolute z accuracy is ~3.54 m on average (Fig. 3).

It is worth mentioning that the spatial accuracy of the Pléiades panchromatic images was
estimated at 8.5 m for CE90 at the nadir direction and 10.5-m CE90 within 30-deg off-nadir when
applying the provided RPC model.’! According to Berthier et al.,*’ the Pléiades DEMs can be
biased in height component by 10 to 20 m when derived without GCPs. The obtained results are
consistent with the results of similar processing in the literature.***

The processing of Pléiades images following the time-SIFT approach results in two DEMs of
1-m spatial resolution. The reprojection error is ~0.52 pixels, which is as well less than 1. The

0(3) 5{b)
1
Mean
I BN RMSE
a8 4
£ E
g )
2 6 @3
5 3
] 0
© ®
> N
v 4 L2
. .
o
a2 2
=3 <
2 [ 1

0

T 0
2015 2018 2015 2018

Fig. 3 Classical approach—absolute accuracy in the (a) xy direction and (b) z direction. Error bars
denote the standard deviation.

Journal of Applied Remote Sensing 024501-8 Apr—Jun 2025 ¢ Vol. 19(2)



(a) (b)

10 5
Mean
= RMSE
8 4
E £
= E
(") >
S 6 g3
o o
© ®
X )
g 4 E 2
2 2
3 <
2 1
s I |

2015 2018 0 2015 2018
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proportion of tie points per image pair is balanced between inter- and intra-epoch tie points. Of
the total mean number of tie points per image pair, 52.50% correspond to inter-epoch tie points,
and the remaining 47.49% correspond to intra-epoch tie points, ensuring accurate relative
orientations.

The time-SIFT approach shows that for 2015 DEM, the absolute xy accuracy is ~4.73 m on
average and the absolute z accuracy is ~1.05 m; and for 2018 DEM, the absolute of xy accuracy
is ~4.60 m and the absolute z accuracy is ~0.37 m (Fig. 4).

The DoDs derived from both approaches show a systematic error in the extreme part of the
study area. However, the histogram of the results from the time-SIFT approach tended mostly to
0, whereas the classical approach revealed higher deviations. This can be visualized in the DoDs
and their relative histograms (Fig. 5).

The lowest range of elevation differences between both DEMs was fulfilled with the time-
SIFT approach. The standard deviation of the elevation differences is reduced by almost 28%,
from 1.77 in the classical approach to 1.27 m in the time-SIFT approach. The NMAD decreased
with the time-SIFT approach compared with the classical approach from 1.80 to 1.14 m. These
standard deviation and NMAD values are roughly equivalent in magnitude to other Pléiades
DoDs used in geoscience applications. In the context of glaciers, Berthier et al.*’ found a standard
deviation and an NMAD of about +1 and +0.5 m, respectively. Deschamps-Berger et al.*!
reported an NMAD of 0.4 m in stable terrain and 0.69 m in snow-covered areas.

Similarly, Falaschi et al.** reported that regardless of the seasonal snow conditions, the
NMAD over off-glacier terrain remained consistently around 4+1.3 m and ranged from +0.6
to +1.2 m in two regions of High Mountain Asia, respectively. Furthermore, Belart et al.>
assessed the vertical bias obtained after Pléiades DEM co-registration, in terms of NMAD,
revealing random errors of less than 0.5 m.

For the classical approach, using the 9 CP,,, the relative accuracy in xy direction is ~0.65 m
on average. In the z direction, the relative accuracy is ~0.46 m on average. These findings are
worthy of comparison with the results of processing Pléiades with the classical approach from
literature. Previous studies reported that the relative DEM accuracy extends from 0.2 to 1 m,
indicating the potential for accurate change detection over time.**> For the time-SIFT approach,
the relative accuracy in xy direction is ~0.56 m on average. In the z direction, the relative
accuracy is ~0.51 m on average (Fig. 6).

The boxplots in Fig. 6 further illustrate the relative accuracy distributions for both
approaches in the xy and z directions. In the xy direction [Fig. 6(a)], the median for the classical
approach is 0.51 m, whereas the median for the time-SIFT approach is 0.39 m, indicating a
slightly lower central tendency for the time-SIFT approach. The spread of the data, as represented
by the interquartile range (IQR), is 0.36 m for the classical approach and 0.29 m for the
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Fig. 5 Graphic representation of (a) the DoD issued from the classical approach, and (b) the DoD
issued from the time-SIFT approach. (c) Histograms of the elevation differences.
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median values, the white dots represent the mean values, and the black dots are outliers.
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time-SIFT approach, suggesting less variability in the time-SIFT approach. In the z direction
[Fig. 6(b)], the median for the classical approach is 0.67 m, whereas the median for the
time-SIFT approach is 0.35 m, emphasizing a substantially lower central tendency for the
time-SIFT approach. The IQR is 2.95 m for the classical approach and 2.67 m for the
time-SIFT approach, indicating slightly reduced variability in the time-SIFT approach in the
z direction.

Both approaches (classical and time-SIFT) lead to similar relative accuracy outcomes, ensur-
ing that applying the time-SIFT approach on Pléiades imagery is relevant for change detection
analysis, with no need for a posteriori co-registration. The difference between the relative accu-
racy of both approaches is not statistically significant in xy (#-test, p-value = 0.5) and z (#-test,
p-value = 0.8) directions.

Further analysis of the accuracy of change detection was conducted with the CP,. To elimi-
nate the effect of the absolute xy offset, the residuals on CP,,, are aligned with the global frame
by a translation. For the classical approach, the average of the elevation differences in stable
zones is —0.1 m with a standard deviation of 1.3 m. For the time-SIFT approach, the average
of the elevation differences in stable zones is 0.07 m. The result aligns with the prediction that in
stable zones, the elevation differences are supposed to be null or negligible. The standard
deviation of the elevation differences in stable zones is ~0.74 m (Fig. 7). The findings of the
time-SIFT approach are also similar to those obtained by Ref. 54 using the classical approach
with a posteriori co-registration. Some extreme values are also reported. These values corre-
spond to areas that are mostly on the border of the DEMs. In these areas, noise and distortions
are not well attenuated.’

For the classical approach, the median is —0.11 m, whereas the median for the time-SIFT
approach is 0.02 m, indicating a slightly lower central tendency for the time-SIFT approach. The
IQR is 1.95 m for the classical approach and 0.87 m for the time-SIFT approach, suggesting less
variability in the time-SIFT approach.

The processing time has been estimated for both approaches. The classical approach takes
around 10% longer duration in the processing than the time-SIFT approach. The increased time
in the classical approach is mainly due to the additional step of performing the ICP. This step
requires initially filtering the water bodies zones, which is not necessary in the time-SIFT
approach. This filtering step adds delays to the overall process, highlighting the efficiency of
the time-SIFT approach.

The exploration of the DoD derived from the time-SIFT approach exhibits different 3D
change information such as man-made firewalls in a forested area, quarry excavation, and eroded
zones. Figure 8 shows some detected 3D changes on the DoD, alongside the orthophotos of 2015
and 2018 and the corresponding 2D changes from Pléiades images.
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Fig. 7 Elevation differences within the CP,, situated in stable zones for the classical and the time-
SIFT approaches. The horizontal lines within the boxes represent the median values, the white
dots represent the mean values, and the black dots are outliers.
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Fig. 8 Detected 3D changes on the time-SIFT DoD (left) and 2D changes on the Pléiades images
(right). (a) Change associated with the man-made firewall in a forested area. (b) Change asso-
ciated with quarry excavation. (c) Change associated with erosion. Contains information®
CNES (2015, 2018), Distribution Airbus DS, all rights reserved. Commercial use is prohibited.

Height differencing is the most useful method for an initial check on the data quality,
although it leads to potential errors. A first attempt is to examine if the subtraction could already
reveal some significant changes based on the selected data; further filtering and thresholding can
be developed from this point.

Although 2D change detection outlines the changes among multitemporal images, the pat-
terns are not completely compared with those derived from the 3D change detection approach.
Furthermore, 2D change detection lacks volumetric information, which is crucial for environ-
mental monitoring.

5 Conclusion

In this work, two different co-registration approaches, applied using an open-source software tool
for photogrammetry, are compared in terms of achievable accuracy and processing time. The
time-SIFT approach was tested for the first time on multitemporal tri-stereo satellite imagery
and showed promising results for change detection studies as it results on co-registered
DEMs with no need for further posterior co-registration.

The accuracy of the DoD is the consequence of the generation of intra-epoch tie-points
among multitemporal surveys. This finding exhibits a more accurate change detection as all the
images from different surveys are refined using multitemporal tie-points and all the RPCs, result-
ing in a common reference system. The time-SIFT approach reveals a level of change detection
comparable to that of the classical approach, with no need for a posteriori co-registration, and
with a reduced processing time.

The main contribution of applying the time-SIFT approach to Pléiades images is its ability to
reduce geometric misalignment between multitemporal satellite datasets. Accordingly, the
approach can be fully automated using programming languages, hence opening the way to auto-
mated processing of past and future archives of 3D satellite acquisitions.

The success of the 3D change detection task depends on several sub-tasks, including the
choice of the sensors, the selection of the 3D reconstruction approach and the registration of
the 3D dataset, and finally, the 3D change detection algorithm. In this case of study, the tri-stereo
Pléiades images processed with the time-SIFT approach provide valuable insights into landscape
dynamics within the change detection algorithm.
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