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Abstract

Entity Matching (EM) automates the discovery of identity links be-
tween entities within different Knowledge Graphs (KGs). Link keys
are crucial for EM, serving as rules allowing to identify identity
links across different KGs, possibly described using different ontolo-
gies. However, the approach for extracting link keys struggles to
scale on large KGs. While embedding-based EM methods efficiently
handle large KGs they lack explainability. This paper proposes a
novel hybrid EM approach to guarantee the scalability link key
extraction approach and improve the explainability of embedding-
based EM methods. First, embedding-based EM approaches are
used to sample the KGs based on the identity links they generate,
thereby reducing the search space to relevant sub-graphs for link
key extraction. Second, rules (in the form of link keys) are extracted
to explain the generation of identity links by the embedding-based
methods. Experimental results demonstrate that the proposed ap-
proach allows link key extraction to scale on large KGs, preserving
the quality of the extracted link keys. Additionally, it shows that
link keys can improve the explainability of the identity links gen-
erated by embedding-methods, allowing for the regeneration of
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77% of the identity links produced for a specific EM task, thereby
providing an approximation of the reasons behind their generation.

CCS Concepts

« Information systems — Entity resolution.

Keywords

Entity matching, Knowledge graphs, Link keys, Embedding-based
EM, Symbolic EM, Graph embeddings, Language models, Hybrid
Al

ACM Reference Format:

Chloé Khadija Jradeh, Ensiyeh Raoufi, Jérome David, Pierre Larmande,
Francois Scharffe, Konstantin Todorov, and Cassia Trojahn. 2025. Graph
Embeddings Meet Link Keys Discovery for Entity Matching. In Proceedings
of the ACM Web Conference 2025 (WWW °25), April 28-May 2, 2025, Sydney,
NSW, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3696410.3714581

1 Introduction

Knowledge Graphs (KGs) offer an explicit representation of knowl-
edge and have emerged as powerful tools for a range of applications,
including recommendation systems, question answering, medical
applications and data federation [23]. The distributed nature of data
across multiple KGs rises different challenges, including addressing
the task of Entity Matching (EM). This task involves automatically
identifying the identity links between different KGs, which consist
of entities from different KGs and referring to the same real-world
object. For addressing the task of EM, key-based approaches involve
the explicit definition or extraction of keys [35], which uniquely
identify equivalent entities across multiple KGs. An example of a
key is ({creator, title} key Work), indicating that when two enti-
ties of the class Work share values for the properties creator and
title then they denote the same entity.
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To perform EM with keys, the KGs must be described using
the same ontology, or their ontologies must be aligned. In order
to overcome this limitation, keys have been generalised as link
keys [5]. An example of a link key is as follows:

({(author, auteur), (title, titre)} linkkey (NonFiction, Essai})

stating that whenever an entity of the class NonFiction and an
entity of the class Essai, share values for roles author and auteur,
and for roles title and titre, respectively, then they denote the same
entity. The automatic extraction of link keys can be solely realised
using Linkex [5]. However, due to its exhaustive nature, Linkex
extracts all potential link key candidates generated from the entire
input KGs, making it difficult to scale on large KGs. Key-based
approaches, including link keys, encompass properties and classes
that can be reused within a given domain. They can be combined
with ontologies and ontology alignments to profit from logical
reasoning.

With the rise of deep learning, there has been an increased adop-
tion of embedding-based methods which automatically learn and
extract features from KGs [16, 21]. Embedding-based EM models
employ representation learning for EM across different KGs using
reference sets of identity links among these KGs. The embedding
module portrays each KG entity and relation as a vector in a lower-
dimensional space. Consequently, embedding-based EM methods
scale better on large and cross-lingual KGs, but lack explainability
for the produced results, i.e., the reasons behind their generation.
To address this issue, our proposed approach, HMatch, combines
the strengths of both embedding-based methods and key-based
approaches, aiming to achieve both scalability and explainability
in EM. HMatch employs embedding-based methods such as BERT-
INT [45] to establish identity links between the given pair of KGs.
These identity links are used to sample the KGs, retaining only
the sub-graphs necessary for extracting link keys. After, Linkex is
deployed on these sub-graphs to extract link keys, which present
explainable rules and can be reused for other EM task, even if no
training data is available. For example, consider three large KGs
within the same domain: KGy, KG;, and KG3. While a reference set
of identity links exists between KG; and KGg, no such set exists
between KG3 and KGs. Due to the scale of these KGs, Linkex cannot
be directly applied to KG; and KGy. However, using HMatch, we
can first train embedding models like BERT-INT on the reference
set of identity links to extract identity links between KG; and KGg.
These identity links can then be used to sample the KGs into sub-
graphs, making it feasible to apply Linkex on these sub-graphs and
extract link keys. Since KG1, KGg, and KG3 belong to the same
domain, the extracted link keys can be reused to construct identity
links between KG2 and KG3 without the need to re-launch Linkex,
even in the absence of a direct reference set of identity links, which
prevents the application of BERT-INT.

Our approach allows, as well, for the extraction of sets of link
keys explaining the generation of the identity links by the embedding-
based approaches. These sets of link keys can be reused to recon-
struct identity links by verifying which entities share values for the
property pairs specified in the link keys.

The main contributions of this paper are: (a) a novel approach
that combines embedding-based and key-based EM methods; (b)
the reduction of Linkex’s search space through the use of identity
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links generated by embedding-based techniques, guaranteeing its
scalability; and (c) improved explainability of the identity links
produced by embedding-based techniques through the use of link
keys.

The paper is structured as follows. Section 2 introduces the
background, while Section 3 presents the proposed framework.
Section 4 details the space-reduction and explainability experiments.
Section 5 analyzes and discusses the results. Section 6 reviews
related work, and finally, Section 7 summarizes the contributions
and outlines directions for future research.

2 Background Definitions

This section provides the formal definitions of KGs, EM and link
keys.

Definition 2.1. A knowledge graph (KG) comprises a set of
triples {(s, p, 0) }, where each triple (s, p, 0) is composed of a subject
s, which is an entity representing a real-world object, a property
p, which is a property or an attribute that describes the nature of
the connection between the subject and the object, and an object
o0, which can either be an entity or an attribute value.

A KG can be accompanied by an ontology that defines the
classes of the entities, the attributes, and the properties represented
in the triples.

Definition 2.2. Let KG; and KG; be respectively a pair of source
and target KGs. The entity matching task involves finding a set
of identity links L = {(x; owl:sameAs y;)}, where x; € KG; and
y; € KGg, such that x; and y; refer to the same real-world entity.
Each identity link (x; owl:sameAs y;) can be associated with a
score s;; indicating the confidence that x; and y; are the same
entity. The identity links L represent the matching pairs of entities
between the two KGs.

To address the task of EM, the concept of link keys has been
introduced.

Definition 2.3. A link key between a pair of KGs KG; and KG;
is an expression of the form:

({(Pi, P} ickq. {€Q), Q})}jein linkkey (C, D)), *

where: (C, D) is a pair of classes of the entities belonging, respec-
tively, to KG; and KGg, {(P;, P})}icEq and {{Q;, Q;-)}jEIN are sets
of property pairs such that P;, Q; belongs to KG; and P, Q’; be-
longs to KG;. The link key asserts that if two entities, belonging
respectively to classes C and D, share all values for the proper-
ties {(P;, P{)} and at least one value for each pair of properties
{(Qy, QJ’.)}, then they are considered identical.

3 HMatch: a Hybrid Approach for EM

This section introduces HMatch.2. The approach consists of two
components: (1) scaling component for link key extraction and
(2) explainability component for embedding-based EM. In that
way, HMatch acts in both ways on the interface between key and

In this paper, we focus only on in-link keys, i.e., link keys with only the set of
properties {(Qj, Q).
Zhttps://github.com/DACE-DL/HMatch/
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embedding-based EM methods. We detail on each of the two com-
ponents below.

The first one (depicted in Figure 2 in the appendix) aims to ensure
the scalability of Linkex by reducing its search-space. Given a pair
of a source and a target KGs, KG; and KGy, along with a reference
set of identity links between them, an embedding-based method
(subject of choice) is applied to generate a set of identity links. The
identity links whose score exceeds the one specified by the user are
given to the sampling process, along with the original KGs. Then for
each graph, the sampling process selects only the triples that refer
to an entity occurring in a generated identity link. More specifically,
given an identity link x owl:sameAs vy, the process iterates over
each triple in KG; and KGg to select triples whose subject matches
the value of x and y, respectively. The selected triples form a new
pair of KGs, KG; and KG’Z, which are sub-graphs of KG; and KGa,
respectively. Next, Linkex is launched on the sampled KGs, KG]
and KG;, to output a set of link keys.

The second component aims to improve the explainability of
the identity links given by embedding-based methods (depicted
in Figure 3 in the appendix). The identity links produced by the
embedding-based methods and whose score exceeds the one speci-
fied by the user, along with the sampled KGs are provided to Linkex.
Linkex in turn outputs sets of link keys, allowing to regenerate the
provided identity links, thereby explaining their entailment.

We now introduce the tools and models used in the frame-
work. The embedding-based methods are TransEdge [42] and BERT-
INT [45]. These state-of-the-art embedding-based EM models, have
different foundations, and a notable performance compared to meth-
ods with similar frameworks on benchmark KGs [26, 42, 49]. We
chose these two methods because TransEdge is entirely based on
the graph structure and only uses the object properties, while BERT-
INT mostly uses attribute values and is one of a few methods that
use almost all literals and descriptions of the entities for EM. The
performance of both methods is significantly better than those of
their peers. To extract link keys we use Linkex, which is the sole
tool capable of performing link key extraction.

BERT-INT. BERT-based Interaction Model for KG alignment
[45] is an approach leveraging Bidirectional Encoder Representa-
tions from Transformers (BERT) [15] to tackle cross-lingual under-
standing and transfer learning tasks. This model uses a pre-trained
multilingual BERT-based model to comprehend and represent text
across different languages. Due to training on a large corpus of
diverse and unlabeled text data, a pre-trained BERT is a language
model specifically designed to acquire a deep understanding of
language semantics and syntax, capturing contextual information
within natural language. BERT-INT efficiently processes and com-
prehends the multilingual content of KG entities. BERT-INT initially
embeds the attribute values of entities across the two KGs using
BERT CLS embedding into a multi-lingual embedding space. Then,
considering similarity matrices, it computes the interactions be-
tween the attributes and neighbors of each pair of entities. Finally,
for the task of EM, the model uses a Multi-Layer Perceptron [36] to
minimize the distance between the aligned entities in the embed-
ding space. BERT-INT has achieved the best results so far on the
DBP15K KGs [49] that are widely used for evaluating EM systems.
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TransEdge. [42] embeds the KGs based on the translational KG
embedding technique TransE [10]. TransE is founded on the notion
that relationships between entities can be represented as transla-
tions in the embedding space, i.e. a relation predicate is a translation
vector between the head and tail entity. However, TransEdge is an
edge-centric model that distinguishes how a relation predicate is
represented based on different contexts of entities holding that re-
lation. Hence, using TransEdge KG embedding, relation predicates
would have different contextualized representations according to
a variety of contexts of their head-tail entity pairs. Furthermore,
to address the challenge of insufficient aligned entities across the
two KGs in each dataset, the approach employs a bootstrapping
strategy [41] to augment the input data. This involves generating
additional likely-aligned entity pairs by resampling from the exist-
ing data, thereby enhancing the representation of aligned entities
and improving the matching model’s performance.

Linkex. [1] uses a two-step process to extract link keys from two
KGs. First, it indexes triples from each KG in hash tables, where keys
represent objects and values represent pairs of subject-properties.
Then, it finds common keys in both indexes to create a third index.
This third index links each pair of subjects with its maximal set
of shared properties. These shared properties are used to build a
concept lattice, where each concept represents a candidate link key.
The concept lattice materializes the partial order (subsumption)
relationship between link key candidates, thus facilitating their
selection. To facilitate the explainability of a given set of identity
links, Linkex allows to extract subsets of link keys which maxi-
mizes the coverage of the given set of identity links by adopting the
approach described in [6], specifically employing the “expand-best
strategy". This strategy operates as a best-first search, systemat-
ically expanding the best combination of link keys based on an
evaluation measure. The evaluation methods implemented are: (1)
the minimum between precision and recall and (2) the f-measure.
The first measure forces the algorithm to optimize the worst-case
scenario between precision and recall, while the second measure
prioritizes a balanced compromise. Using the link key lattice, the
algorithm selectively considers anti-chains, the minimal sets of link
keys concerning the subsumption relation. Finally, candidate link
keys can be filtered using quality estimation measures from [5].
When the set of reference identity links is available, link keys can be
evaluated using precision and recall, which measure the accuracy
and completeness of the links generated by the candidate link keys.
Let L be a set of owl: sameAs links (positive examples) and L. the
links generated by a link key candidate c. The precision and recall
of the link key candidate ¢ with respect to L*:

L 0 Ll L N Ll
= el n=2=_-c

Lel |L*]

In summary, HMatch combines embedding-based methods with
link key extraction to improve respectively their explainability and
efficiency. It ensures the scalability of Linkex by reducing the search
space using embedding-based identity links, while enhancing ex-
plainability by generating link keys that explain the derived identity
by embedding-based methods. This integrated approach uniquely
addresses the challenges of scalability and explainability for EM
tasks.

Precision = Reca
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4 Experiments

This section details the two types of experiments performed to test
the two components of our approach.

Data sets. The approach has been evaluated on the DBP15K
KGs [40] and the Memory Alpha-Star Trek Expanded Universe 3
KGs (referred to as Memory-alphaSTE).

DBP15K KGs. The DBP15K KGs, extracted from DBpedia [28],
are widely used as benchmarks for EM tasks [40, 42, 45]. Available
in English (En.), French (Fr.), Japanese (Ja.), and Chinese (Zh.), each
dataset contains about 40K entities. Inheriting DBpedia’s ontology
structure, they include various types such as Person, Place, and
Organization, and properties describing attributes like names, dates,
and connections among entities (e.g., “president,’ “predecessor"). In
each experiment, the En. KG was the source KG, tested respectively
with Fr., Ja., and Zh. target KGs. Each KG pair has a reference set
of identity links compromising 30K entities (15K per KG), with 30%
used as the training set for each embedding-based EM model.

Memory-alphaSTE KGs. The Memory-alphaSTE KGs, part of
the well known OAEI campaign’s KG track, are derived from Mem-
ory Alpha, a collaborative Star Trek encyclopedia. The Star Trek
franchise encompasses multiple television series, films, novels,
games, and collectibles. The source KG, Memory Alpha, has around
250K entities and 180 relations, while the target Star Trek Expanded
KG has about 55K entities and 130 relations. The reference set of
identity links includes 3,560 entities, with 1,779 entities in each KG.
These KGs were selected to demonstrate the approach’s capability
to ensure the scalability of Linkex, which initially struggled to scale
on them.

Parameters. For each of the experiments performed, to ensure
high-quality identity links, we select identity links whose scores
surpass a specific threshold. Additionally, considering the size of
the KGs, the support threshold of properties used by Linkex varies
across experiments. These parameters used in the experiments are
indicated in Table 1.

Tools. The tools used in the experiments were installed from the
following links: HMatch: https://github.com/DACE-DL/HMatch/,
Linkex: https://gitlab.inria.fr/moex/linkex, BERT-INT: https://github.
com/kosugil1037/bert-int/tree/master/interaction_model, TransEdge:
https://github.com/nju-websoft/TransEdge/tree/master/code.

4.1 Space-Reduction Experiments

Experimental setting. For each of the KGs, three experiments
have been conducted:

(#1) Linkex on the original DBP15K/Memory-alphaSTE KGs (base-
line),

(#2) Linkex on DBP15K/Memory-alphaSTE KGs sampled using
BERT-INT,

(#3) Linkex on DBP15K/Memory-alphaSTE KGs sampled using
TransEdge.

The quality of the link keys obtained in each task and for each of the
experiments performed on the DBP15K KGs is shown in Table 2. We

shttps://oaei.webdatacommons.org/tdrs/testdata/persistent/knowledgegraph/v4/
knowledgegraph_v4.zip
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calculated the precision, recall and f-measure of the extracted link
keys on original KGs using the reference sets of identity links. This
allows to compare the quality of the link keys extracted from the
sampled and original KGs. Table 2 displays the average precision,
recall, and f-measure for the top 10 link keys sorted by f-measure.
We have chosen the average of the first 10 link keys to demonstrate
the effect of over-sampling. However, for the En. & Fr. task, the first
3 link keys — whether from the original KGs or the KGs sampled
by BERT-INT or TransEdge — have an average f-measure of 0.58.
Table 4 presents the variation of runtime across each experiment.

4.1.1 Launching Linkex on DBP15K KGs.

Original KGs (Exp. #1). Due to the size of the original DBP15K
KGs, Linkex was not able to run on the original DBP15K KGs and a
support threshold has been set to 0.1 meaning that only properties
instantiated on at least 10% of instances are considered by Linkex.
As shown in Table 2, running Linkex on the original En. & Fr. KGs
revealed an average quality of link keys, indicated by f-measure
score of 0.48 with a recall of 0.33 but a high precision of 0.88. In
contrast, when Linkex was applied to the En. & Ja.\ Zh. tasks, it
produced link keys of notably poor quality. This issue arises from
Linkex’s inability to handle languages that use different alphabets,
resulting in infrequent agreement of property values in the En. and
the Ja.\Zh. KGs.

The embedding-based models BERT-INT and TransEdge are now
used to extract identity links for sampling the DBP15K KGs. For
each model, the size of the KGs was reduced as indicated in Figure 1.
Due to the relatively still large size of the KGs after the sampling
(especially when the identity links are produced by BERT-INT), we
run Linkex restricting its support threshold to 0.1.

Pereemtage of Origmal St

. . [1

En-Fr En-fa En-Zh
KG Pairs

--.u\\‘plrdl.\‘. KG (MEET-INT) I Sanopled Other i
[ Sl B, KOG (Toansfdge) 0 Samphed Other K

Figure 1: Reduction of KG sizes for different language pairs using
BERT-INT and TransEdge

Sampled KGs using BERT-INT (Exp. #2). As shown in Table 2,
running Linkex on the sampled En. & Fr. KGs preserves the quality
of the extracted link keys. For the En. & Ja.\ Zh. tasks, the quality
of the link keys was slightly improved. This improvement is due
to the sampling process, which removed information resulting in
generating link keys based on false-positive agreements between
the property values of non-equivalent individuals.
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Identity Links | Support
Experiment Type | KGs Sampling Method
P yP pling Score Threshold
Original KGs -
. DBP15K Sampled using BERT-INT 0.1
Space-Reduction p ng 0.75 & 0.85
Sampled using TransEdge
Original KGs - 0.7
MaSTE Sampled using BERT-INT
- 0.5 0
Sampled using TransEdge
. - Sampled using BERT-INT
Explainability DBP15K p ng 0.75
Sampled using TransEdge 0
Sampled using BERT-INT
MaSTE - 0.5
Sampled using TransEdge
Table 1: Experimental Parameters.
Experiment Task precision | recall f-measure Experiment Task | precision | recall f-measure
En. & Fr. 0.88 0.33 0.48 En. & Fr. 0.88 033 0.48
#1 (Original KGs) En. & Ja. 3x107* | 2x1073 3x107* #1 (Original KGs) En. & Ja. 3x107* | 2x1073 3x10~*
En. & Zh. 0.17 9x10~% 1x10~2 En. & Zh. 0.17 9x10~3 1x10~2
En. & Fr. 0.88 0.33 0.48 En. & Fr. 0.76 035 0.46
#2 (KGs sampled with BERT-INT) | En. &Ja. | 5x107% | 5x107° 1x1073 #2 (KGs sampled with BERT-INT) | En. &Ja. | 1x107% | 5x1073 1x1073
En. & Zh. 0.54 1x1072 3x10~2 En. & Zh. 0.44 1x10~2 2x1072
En. & Fr. 0.71 0.35 0.45 En. & Fr. 0.8 0.16 0.25
#3 (KGs sampled with TransEdge) | En. & Ja.* 0 0 0 #3 (KGs sampled with TransEdge) | En. & Ja. 0 0 0
En. & Zh. 0 0 0 En. & Zh. 0 0 0

Table 2: Comparison of the quality of link keys extracted from the
original and the sampled DBP15K KGs using identity links with a
score higher than 0.75.

Sampled KGs using TransEdge (Exp. #3). The number of iden-
tity links returned by TransEdge with a score higher than 0.75 is
very small compared to the ones returned by BERT-INT, resulting
in a huge reduction in the size of KGs. The quality of link keys have
slightly decreased for all tasks due to over-fitting caused by the
substantial reduction in the size of the KGs.

As shown in Table 3, the quality of the extracted link keys when
sampling is performed using identity links with a score higher than
0.85 is lower than that when sampling is performed using a score
higher than 0.75. This is because the large reduction in the search
space prevents Linkex from extracting high-quality link keys where
the over-fitting phenomenon is more evident.

However, when sampling is performed using BERT-INT the qual-
ity of link keys is slightly lower than that one of the link keys
extracted from the original KGs and the KGs sampled with a score
higher than 0.75. Since the number of identity links with a score
above 0.85 is slightly higher than the ones with a score 0.75, this
leads to a similar reduction in the search space. Based on Table 4,
employing BERT-INT or TransEdge for sampling KGs and using
them instead of the original ones for link keys extraction decreases
Linkex’s runtime. As expected, the higher sampling score used, the
smaller the sampled KGs are, and the lower Linkex’s runtime is.
4.1.2  Launching Linkex with Memory-alphaSTE KGs.

This experiment focuses on demonstrating how sampling enables
Linkex to scale on very large KGs.

Original KGs (Exp. #1). Due to the large size of the original
KGs, Linkex could not run without setting a high support threshold
(0.7). However, this resulted in no link key being produced.
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Table 3: Comparison of the quality of link keys extracted from the
original and the sampled DBP15K KGs using identity links with a
score higher than 0.85.

Score of the identity links: 0.75 | Score of the identity links: 0.85
Sampling Method | Original | BERT-INT TransEdge BERT-INT TransEdge
Exp. #1 #2 #3 #2 #3
En. & Fr. 27.01 16.63 1.98 5.93 0.64
En. & Ja. 22.53 8.60 2 9.29 0.73
En. & Zh. 26.06 12.03 29 10.69 0.84

Table 4: Variation of runtime (in seconds) across the experiments
performed on the different task of the DBP15K KGs.

Experiment precision | recall | f-measure | runtime
#1 (Original KGs) - - - 7.25
#2 (KGs sampled with BERT-INT) 0.55 0.83 | 0.66 4.99
#3 (KGs sampled with TransEdge) 0.58 0.8 0.67 3.55

Table 5: Comparison of the quality of link keys and Linkex runtime
(in seconds) using original and sampled memory-alphaSTE KGs

Sampled KGs using BERT-INT(Exp. #2) and TransEdge (Exp.
#3). To ensure a fair comparison between the following experi-
ments, we use for sampling a score of 0.5, which is the highest score
allowing to retrieve identity links between TransEdge and BERT-
INT models. The results showing the quality of the extract link keys
are shown in Table 5. Using BERT-INT, the size of memory-alpha
and STE KGs was respectively reduced to 3.36% and to 6.92% of
their original size. Using TransEdge, memory-alphaSTE KGs were
respectively reduced to 2.23% and to 4.23% of their original size.

Sampling with BERT-INT or TransEdge enables Linkex to scale
on large KGs, and results in extracting link keys with high recall.
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Sampling with the identity links produced by TransEdge, partic-
ularly, results in higher percentage of KGs reduction and conse-
quently lower runtime for Linkex. This, however, results in extract-
ing better quality link keys compared to those extracted from the
KGs sampled with BERT-INT.

4.2 Explainability Experiments

In these experiments, Linkex is used to extract the sets of links
keys which explains the identity links produced by BERT-INT and
TransEdge on DBP15K and Memory-alphaSTE KGs.

Experimental setting. For the DBP15K KGs, we only consider
the En. & Fr. task. Results for the En. & Ja. \Zh. tasks are omitted
due to the poor quality of the generated link keys, as discussed in
Section 4.1. The displayed sets of link keys in Tables 6 and 7 have the
best recall among those calculated optimizing the worst between
precision and recall. We use this strategy since the precision of the
extracted link keys is high on the considered KGs and we seek to
maximise the recall allowing to cover more identity links.

4.2.1 Identity Links generated on DBP15K KGs. We choose the
identity links with scores greater than 0.75. This allows to extract
link keys that explain the most accurate identity links excluding
those that result in the extraction of misleading link keys. The
results for BERT-INT and TransEdge are presented in Tables 6
and 7, respectively. The prefixes used in the following tables are:

o dbp: (http://[en-fr].dbpedia.org/property/),

o foaf: (http://xmlns.com/foaf/0.1/).

BERT-INT. The set of link keys presented in Table 6 has the
highest recall of 0.77 among all the other sets generated. This
indicates that it can regenerate 77% of the identity links produced
by BERT-INT for the En. and Fr. task. Additionally, this set has a
high precision of 0.77. To further investigate the ability of this set
of link keys to generate identity links missed by BERT-INT, we
examined which entities from the original KGs could be linked by
this set and were able to regenerate, among other identity links,
3,036 correct identity links (approximately 20% of the reference
set of identity links) that BERT-INT did not produce. Thus, this
set of link keys not only explains the identity links produced by
BERT-INT but also complements it by generating additional identity
links that BERT-INT misses, improving both the its coverage and
explainability.

TransEdge. The link key set displayed in Table 7 has a recall
of 0.6, allowing to cover 60% of the identity links produced by
TransEdge. It has a precision of 0.8. Additionally, this set of link
keys also allows for the regeneration of 3,650 correct identity links
(approximately 24% of the reference set), among other identity links,
which were not generated by TransEdge.

4.2.2  Identity Links generated on Memory-alphaSTE KGs. We re-
strict ourselves to the identity links with a score greater than 0.5 as
it is the highest common score between the identity links gener-
ated by BERT-INT and TransEdge on Memory-alphaSTE KGs. The
prefixes used in Tables 9 and 8 are:

o rdfs: (http://www.w3.0rg/2000/01/rdf-schema#),

e ma: (http://dbkwik.webdatacommons.org/memory-alpha.

wikia.com/property/),
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Link Keys

{ (foaf:name, foaf:name) }

{ (dbp:birthDate, ns1:dateDeNaissance) }
{(dbp:name, nsl:nom) }

{ (foaf:name, nsl:nom) }

{(dbp:name, ns1:titre) }

{(dbp:deathDate, ns1:dateDeDéces) }

{(dbp:length, ns1:durée), (dbp:released, ns1:sorti) }

{(dbp:name, foaf:name) }

{(dbp:title, foaf:name), (dbp:title, ns1:nom) }

{ (foaf:name, ns1:titre), (dbp:title, ns1:titre) }

{(dbp:released, nsl:sorti), (dbp:title, ns1:titre) }

{(dbp:deathDate, ns1:jusqu’auFonction), (dbp:years, nsl:aPartirDuFo

nction) }

{ (dbp:termEnd, ns1:jusqu’auFonction), (dbp:termStart, ns1:aPartirDu
Fonction), (dbp:years, nsl:nom) }

{(dbp:title, ns1:nom), (dbp:title, ns1:titre) }

{(dbp:termEnd, nsl:dateDéDéces), (dbp:termEnd, ns1:jusqu’auFoncti

on), (dbp:termStart, ns1:aPartirDuFonction) }

{(dbp:termEnd, ns1:jusqu’auFonction), (dbp:termStart, ns1:aPartirDu
Fonction), (dbp:years, ns1:aPartirDuFonction) }

{ (dbp:length, ns1:durée), (dbp:title, foaf:name), (dbp:title, ns1:titre) }
Table 6: The best-recall set of link keys explaining the identity links
given by BERT-INT on the En. & Fr. task.

Link Keys

{ (foaf:name, foaf:name) }

{ (dbp:birthDate, dbp:dateDeNaissance) }
{(dbp:name, dbp:nom) }

{ (dbp:name, dbp:titre) }

{ (dbp:founded, foaf:cration) }

{ (foaf:deathDate, ns1:dateDeDéces) }

{ (dbp:title, dbp:titre) }

{ (foaf:name, dbp:nom) }

{ (dbp:termStart, dbp:aPartirDuFonction) }
{ (dbp:titre, dbp:nom) }

{(dbp:years, dbp:aPartirDuFonction) }
Table 7: The best-recall set of link keys explaining the identity link
of TransEdge on the En. & Fr. task.

o st: (http://dbkwik.webdatacommons.org/stexpanded.wikia.
com/property/),

o skos: (http://www.w3.0rg/2004/02/skos/core#),

o dem: (http://dbkwik.webdatacommons.org/ontology/).

BERT-INT. According to Table 8, the produced set of link keys
shows an average precision of 0.58 and recall of 0.56, i.e., it allows
to regenerate 56% of the identity links produced by BERT-INT. Ad-
ditionally this set of link keys enable to cover other, among others,
500 correct identity links (approximately 28% of the reference set
of identity links) that BERT-INT misses.

TransEdge. According to Table 9, the set of link keys shows an
average level of precision of 0.5 and recall of 0.5. Additionally this
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Link Keys

{(rdfs:label, rdfs:label) }

{ (skos:altLabel, skos:altLabel) }

{(dcm:wikiPageWikiLinkText, st:className) }

{(ma:imagecap, dem:wikiPageWikiLinkText), (ma:imagecap, rdfs:label)
rdfs:label), (ma:imagecap, skos:altLabel), (dcm:wikiPageWikiLinkText,
dem:wikiPageWikiLinkText), (rdfs:label, dem:wikiPageWikiLinkText),
(skos:altLabel, dcm:wikiPageWikiLinkText) }

{(ma:dt, dem:wikiPageWikiLinkText), (ma:dt, st:name),

(ma:name, dcm:wikiPageWikiLinkText), (ma:name, st:name),
(dem:wikiPageWikiLinkText, dem:wikiPageWikiLinkText),
(dem:wikiPageWikiLinkText, st:name), (dcm:wikiPageWikiLinkText,
rdfs:label), (dcm:wikiPageWikiLinkText, skos:altLabel) }

Table 8: The best-recall set of link keys explaining the identity link
of BERT-INT on memory-alphaSTE KGs.

Link Keys

{ (dem:wikiPageWikiLinkText, rdfs:label), (dcm:wikiPageWikiLinkText
, skos:altLabel), (rdfs:label, rdfs:label), (rdfs:label, skos:altLabel),
(skos:altLabel, rdfs:label), (skos:altLabel, skos:altLabel) }

{ (ma:armament, st:weapons), (dcm:wikiPageWikiLinkText, st:className) }

{ (dem:wikiPageWikiLinkText, dem:wikiPageWikiLinkText), (rdfs:label,
dem:wikiPageWikiLinkText) (skos:altLabel, dem:wikiPageWikiLinkText) }

Table 9: The best-recall set of link keys explaining the identity link
of TransEdge on memory-alphaSTE KGs.

Model precision | recall | f-measure
BERT-INT 0.95 0.65 0.77
TransEdge 0.95 0.03 0.07

Table 10: The precision, recall and f-measure of the identity links
with a score higher than 0.5 produced by BERT-INT and TransEdge
models.

set of link keys enable to cover other, among others, 1280 identity
links (approximately 72% of the reference set of identity links) in
the reference set of identity links.

To further investigate why the recall of the link keys sets shown
in Tables 8 and 9 are not optimal, we calculated the precision and
recall of these identity links against the reference set of identity
links (Table 10). The inability of Linkex to produce link keys that
adequately cover the considered identity links is due to the average
recall of the identity links produced by BERT-INT and the extremely
low recall of those produced by TransEdge. This latter factor also
explains the ability of the set of link keys in Table 9 to generate
many identity links not covered by TransEdge.

The capacity of the generated sets of link keys to generate iden-
tity links, which are missed by embedding-based methods, can
be attributed to the fact that embedding-based approaches often
prioritize structural similarities over exact attribute matches.
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5 Discussion

Results: The experiments reveal promising results in the associa-
tion of embedding-based methods (such as BERT-INT or TransEdge)
and key-based methods (such as Linkex) for the task of EM. More
specifically, the proposed approach allows to reduce of the task of
link keys extraction from a pair of original KGs to a pair of sampled
KGs. This guarantees the scalability of Linkex on large KGs and
allows to significantly reduce its runtime. This reduction in runtime
does not compromise the quality of the extracted link keys, pro-
vided that over-fitting is avoided. Additionally, the explainability
of the identity links produced by BERT-INT can be approximated
by associating a set of rules, represented as link keys.
Limitations: The explainability of identity links is currently lim-
ited to cases where there is a syntactic overlap between direct
attribute values, making it difficult to provide clear interpretations
for matches without such an overlap. This explains the room for im-
provement of the recall of the sets of link keys produced in the the
explainability experiments. Enhancing recall could be achieved by
extracting more expressive link keys, such as those that include in-
verse and composed properties, leading to new agreement between
these properties. These link keys will allow to cover more identity
links and thus augmenting the recall. Also for sampling the original
KGs, the approach requires to have reference set of identity links to
train the embedding-based methods, which in turn will output the
identity links used in sampling. To sidestep this requirement in the
training phase, semi-supervised or unsupervised EM approaches
are preferred [11, 14, 24, 29, 30]. Besides, since the sampling process
depends on the identity links generated by embedding-based meth-
ods, the choice of the embedding-based method and of the score of
the identity links produced by embedding-based methods must be
adequate. As the quality and number of the identity links used in
the sampling affects the quality and the size of the sampled KGs.
This in turns affects the quality of the extracted link keys and the
runtime of Linkex. It is worth noting that even if Linkex initially
demonstrates strong performance, its overall effectiveness is tied to
the accuracy of the identity links used for sampling. For instance,
Linkex outperforms BERT-INT on Doremus KGs [3], where the best
link key achieves an f-measure of 0.804 compared to BERT-INT’s
0.57. However, when sampling is performed using identity links
produced by BERT-INT, the quality of the extracted link keys from
the sampled KGs decreases due to the quality of the identity links.
Implications: The reduction in runtime achieved by sampling
does not negatively impact the quality of the extracted link keys.
Additionally, since link keys can be reused for other EM tasks,
without necessitating training, this framework provides a balance
between efficiency and reusability, which is essential for matching
large KGs. Associating link keys for the identity links produced by
embedding-based methods helps approximate the reasons behind
the generation of the identity links, by providing the properties
pairs allowing the regeneration of these identity links and thus
providing more interpretability in the results, it allows as well to
generate other correct identity links missed by embedding-based
methods, which can prioritize structural similarities over attribute
similarity.
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6 Related Work

This section discusses key and embedding-based EM methods, along
with approaches that provide explanations for these later.

Keys and link keys for EM. Different methods for key extrac-
tion have been proposed [2, 7, 35, 44]. In [35], an algorithm for
extracting keys from KGs without necessitating a complete scan
of the KGs is proposed. It identifies first maximal non-keys (i.e.
properties combinations that share values for at least two entities).
Then it derives minimal keys based on the discovered set of non-
keys. However, [35] struggles to handle large KGs and necessitates
data with no errors or duplicates. A scalable method for discover-
ing almost keys, resilient against erroneous data, was developed
in [44]. An almost key is a set of properties that is not a key due to
a few exceptions. This method uses heuristics to identify keys and
efficiently derive almost keys from non-keys, scaling effectively
on large KGs. Another algorithm for extracting keys and pseudo
keys has been proposed in [7]. Pseudo keys are keys that tolerate
some exceptions. However, approaches such as [7, 44] can not deal
with KGs described using different ontologies. Link keys overcome
this challenge. An approach based on pattern structure for discov-
ering link keys was presented in [1]. However, this approach still
requires considering the entire KGs for building the candidate link
keys. Our approach, on the other side, consists of sampling the KGs
to remove entities that are irrelevant for link keys extraction. Other
approaches such as [34] compare various blocking workflows and
nearest-neighbor methods, focusing on performance trade-offs in
EM. In contrast, our approach retains only the identical individuals,
eliminating the need for complex blocking workflows and nearest-
neighbor methods, and allows for the efficient production of link
keys.

Embeddings for EM. Embedding-based approaches have been
largely adopted in EM [17, 40, 43, 50]. They involve representing
entities, relations, or other structured data in a continuous vec-
tor space [37, 47]. With a focus on relations between the entities,
Translational KG embedding methods such as MTransE [12], IP-
TransE [51], and TransE [10] are well-known approaches that inter-
pret relations as translation vectors operating on entity embeddings.
Several entity alignment models such as [41] have been designed
by using translational KG embedding techniques. To investigate
the benefits of these relation-centric methods in link key extraction,
we use the TransEdge model which learns KG embeddings through
contextualized relation representations. More recently, pre-trained
language models, like BERT [15], have been increasingly utilized
for EM in KGs [33, 45]. Language models can learn embeddings
that encode the semantic information of entities. To investigate
benefits of using language models for EM, we used the BERT-INT
model [45] that has been efficiently applied on many benchmark
KGs [17]. EAGER [32] integrates graph embeddings and attribute
similarities through machine learning to perform EM. While it
achieves strong performance, particularly on rich KGs, it falls short
in explainability due to the opaque nature of embeddings. Limited
studies [13, 25] have explored the use of large language models
(LLMs) in EM, but further research is needed to enable LLMs to
generate identity links enriched with confidence scores, data types,
and relational properties for better supporting evidence.
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Explainability of embedding-based EM models. Recently,
there has been a push to explain the mechanics and outputs of
embedding-based models [4, 19, 20, 27]. There are two main ap-
proaches: prediction explanations and model explanations [22]. As
an example, [22] creates model explanations for deep analysis of
KG embedding models by extracting propositional features from a
KG. In parallel, other studies have focused on explaining the pre-
dictions made by different embedding models [9, 18, 38, 39]. For
instance, [38] proposes KELPIE (Knowledge graph Embeddings for
Link Prediction: Interpretable Explanations) which explains a pre-
diction by computing the subset of training facts enabling the model
to return it, while [39] explains link prediction and triple classifica-
tion using entity co-occurrence data. [8] enhances the explainability
of link prediction methods in KGs by improving KELPIE [38]. It
reduces candidate explanations, and improves explanation effec-
tiveness using a semantic similarity measure. The studies done
in [46, 48] relate more closely to our research and delve into ex-
plaining the model’s predictions on EM tasks. I-Align [46] uses
Transformer encoders to create an EM model that explains each
alignment prediction, and Xin et al. [48] introduces a Transformer-
based EM model with a comprehensive reasoning process to provide
evidence for EM. Unlike transformer-based explainability methods
for EM, our approach extracts rules in the form of link keys possi-
bly composed of data and relation properties, optimally covering
the generated identity links. Other methods, such as LightEA [31]
provides explanations based on relational properties only.

7 Conclusion and Perspectives

This paper introduces a framework that combines embedding-based
methods with Linkex, both addressing the EM problem. For an EM
task involving a pair of KGs, the proposed framework utilizes the
identity links produced by BERT-INT or TransEdge on a pair of
source and target KGs to sample them before applying Linkex. This
results in a notable reduction in Linkex’s runtime while maintaining
the quality of the extracted link keys, as long as over-fitting is
avoided. Moreover, this approach enhances the scalability of Linkex
for extracting link keys from large KGs. Last but not least, the
framework enables the extraction of sets of link keys that cover the
identity links generated by embedding-based methods, providing
an approximation of the reasons behind their generation and thus
enhancing the explainability of these methods’ results.

Future work includes eliminating the need for the sampling
phase by providing the identity links directly to Linkex which in
turn restricts its search space to the entities contained in those
links. Additionally for improving the recall of the extracted link
keys we aim for extracting more expressive link keys, i.e., link keys
including complex property constructors. Another direction is to
compare our relational and data property link keys with those from
LightEA [31] on benchmark datasets.
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Figure 2: Space-reduction for link key extraction.

Figure 3: Explainability of the Identity Links.

References
[1] Nacira Abbas, Jérome David, and Amedeo Napoli. 2020. Discovery of Link Keys in

[3

[4

l6

[7

=

o

=

=

/R ——

RDF Data Based on Pattern Structures: Preliminary Steps. In CLA 2020 - The 15th
International Conference on Concept Lattices and Their Applications (Proceedings
of the 15th International Conference on Concept Lattices and Their Applications).
Tallinn / Virtual, Estonia. https://hal.science/hal-02921643

Manel Achichi, Mohamed Ben Ellefi, Danai Symeonidou, and Konstantin Todorov.
2016. Automatic Key Selection for Data Linking. 3-18. doi:10.1007/978-3-319-
49004-5_1

Manel Achichi, Pasquale Lisena, Konstantin Todorov, Raphaél Troncy, and Jean
Delahousse. 2018. DOREMUS: A graph of linked musical works. In The Semantic
Web-ISWC 2018: 17th International Semantic Web Conference, Monterey, CA, USA,
October 8-12, 2018, Proceedings, Part II 17. Springer, 3-19.

Sule Anjomshoae, Kary Framling, and Amro Najjar. 2019. Explanations of black-
box model predictions by contextual importance and utility. In Explainable, Trans-
parent Autonomous Agents and Multi-Agent Systems: First International Workshop,
EXTRAAMAS 2019, Montreal, QC, Canada, May 13-14, 2019, Revised Selected
Papers 1. Springer, 95-109.

Manuel Atencia, Jérome David, and Jérome Euzenat. 2014. Data Interlinking
through Robust Linkkey Extraction. In Proceedings of the Twenty-First European
Conference on Artificial Intelligence (Prague, Czech Republic) (ECAI’14). 10S Press,
NLD, 15-20.

Manuel Atencia, Jérome David, and Jérome Euzenat. 2019. Several Link Keys are
Better than One, or Extracting Disjunctions of Link Key Candidates. In Proceedings
of the 10th International Conference on Knowledge Capture (Marina Del Rey, CA,
USA) (K-CAP ’19). Association for Computing Machinery, New York, NY, USA,
61-68. doi:10.1145/3360901.3364427

Manuel Atencia, Jérome David, and Francois Scharffe. 2012. Keys and Pseudo-

Keys Detection for Web Datasets Cleansing and Interlinking. In EKAW.
Roberto Barile, Claudia d’Amato, and Nicola Fanizzi. 2023. Explanation of Link

Predictions on Knowledge Graphs via Levelwise Filtering and Graph Summa-
rization. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI
Press.

3352

—_

9]

[10

(1]

[12

(13]

[14

[15]

[16

=
=

(18

[19

[20

[22

[23

[24

[26

[27]

(28]

[29

[30

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Patrick Betz, Christian Meilicke, and Heiner Stuckenschmidt. 2022. Adversarial
Explanations for Knowledge Graph Embeddings.. In IJCAI Vol. 2022. 2820-2826.
Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Denvar Antonyrajah, Ali
Hadian, and Jaehun Lee. 2021. Augmenting ontology alignment by semantic
embedding and distant supervision. In The Semantic Web: 18th International
Conference, ESWC 2021, Virtual Event, June 6-10, 2021, Proceedings 18. Springer,
392-408.

Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. 2016. Multilingual
knowledge graph embeddings for cross-lingual knowledge alignment. arXiv
preprint arXiv:1611.03954 (2016).

Xuan Chen, Tong Lu, and Zhichun Wang. 2024. LLM-Align: Utilizing Large
Language Models for Entity Alignment in Knowledge Graphs. doi:10.48550/
arXiv.2412.04690

Antonia Creswell, Kyriacos Nikiforou, Oriol Vinyals, Andre Saraiva, Rishabh
Kabra, Loic Matthey, Chris Burgess, Malcolm Reynolds, Richard Tanburn, Marta
Garnelo, et al. 2020. Alignnet: Unsupervised entity alignment. arXiv preprint
arXiv:2007.08973 (2020).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Sarah G Elnaggar, Ibrahim E Elsemman, and Taysir Hassan A Soliman. 2023.
Embedding-Based Deep Neural Network and Convolutional Neural Network
Graph Classifiers. Electronics 12, 12 (2023), 2715.

Nikolaos Fanourakis, Vasilis Efthymiou, Dimitris Kotzinos, and Vassilis
Christophides. 2022. Knowledge Graph Embedding Methods for Entity Align-
ment: An Experimental Review. arXiv preprint arXiv:2203.09280 (2022).
Nicholas Halliwell, Fabien Gandon, and Freddy Lecue. 2021. User scored evalua-
tion of non-unique explanations for relational graph convolutional network link
prediction on knowledge graphs. In Proceedings of the 11th Knowledge Capture
Conference. 57-64.

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov. 2020. Explaining black
box predictions and unveiling data artifacts through influence functions. arXiv
preprint arXiv:2005.06676 (2020).

Vikas Hassija, Vinay Chamola, Atmesh Mahapatra, Abhinandan Singal, Divyansh
Goel, Kaizhu Huang, Simone Scardapane, Indro Spinelli, Mufti Mahmud, and
Amir Hussain. 2024. Interpreting black-box models: a review on explainable
artificial intelligence. Cognitive Computation 16, 1 (2024), 45-74.

Meng He, Lijuan Duan, Baochang Zhang, and Shengwen Han. 2023. Knowledge
Graph Embedding Method Based on Entity Metric Learning. In Proceedings of
the 2023 9th International Conference on Computing and Artificial Intelligence.
381-387.

Youmna Ismaeil, Daria Stepanova, Trung-Kien Tran, and Hendrik Blockeel. 2023.
FeaBI: A Feature Selection-Based Framework for Interpreting KG Embeddings.
In International Semantic Web Conference. Springer, 599-617.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. 2021.
A survey on knowledge graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning systems 33, 2 (2021), 494-514.
Chuanyu Jiang, Yiming Qian, Lijun Chen, Yang Gu, and Xia Xie. 2023. Unsuper-
vised Deep Cross-Language Entity Alignment. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 3-19.

Xuhui Jiang, Yinghan Shen, Zhichao Shi, Chengjin Xu, Wei Li, Zixuan Li, Jian
Guo, Huawei Shen, and Yuanzhuo Wang. 2024. Unlocking the Power of Large
Language Models for Entity Alignment. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational
Linguistics, Bangkok, Thailand, 7566-7583. doi:10.18653/v1/2024.acl-long.408
Xuhui Jiang, Chengjin Xu, Yinghan Shen, Fenglong Su, Yuanzhuo Wang, Fei Sun,
Zixuan Li, and Huawei Shen. 2023. Rethinking GNN-based Entity Alignment on
Heterogeneous Knowledge Graphs: New Datasets and A New Method. arXiv
preprint arXiv:2304.03468 (2023).

Insa Lawler and Emily Sullivan. 2021. Model explanation versus model-induced
explanation. Foundations of Science 26 (2021), 1049-1074.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Séren
Auer, et al. 2015. Dbpedia-a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic web 6, 2 (2015), 167-195.

Shengxuan Luo and Sheng Yu. 2022. An Accurate Unsupervised Method for Joint
Entity Alignment and Dangling Entity Detection. In Findings of the Association
for Computational Linguistics: ACL 2022, Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin,
Ireland, 2330-2339. doi:10.18653/v1/2022.findings-acl.183

Xin Mao, Wenting Wang, Yuanbin Wu, and Man Lan. 2021. From Alignment to
Assignment: Frustratingly Simple Unsupervised Entity Alignment. In Proceedings


https://hal.science/hal-02921643
https://doi.org/10.1007/978-3-319-49004-5_1
https://doi.org/10.1007/978-3-319-49004-5_1
https://doi.org/10.1145/3360901.3364427
https://doi.org/10.48550/arXiv.2412.04690
https://doi.org/10.48550/arXiv.2412.04690
https://doi.org/10.18653/v1/2024.acl-long.408
https://doi.org/10.18653/v1/2022.findings-acl.183

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

[31

[32]

[33

[34]

[35]

[36

[37]

[38]

[39]

[40]

of the 2021 Conference on Empirical Methods in Natural Language Processing, Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.).
Association for Computational Linguistics, Online and Punta Cana, Dominican
Republic, 2843-2853. doi:10.18653/v1/2021.emnlp-main.226

Xin Mao, Wenting Wang, Yuanbin Wu, and Man Lan. 2022. LightEA: A Scalable,
Robust, and Interpretable Entity Alignment Framework via Three-view Label
Propagation. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.).
Association for Computational Linguistics, Abu Dhabi, United Arab Emirates,
825-838. d0i:10.18653/v1/2022.emnlp-main.52

Daniel Obraczka, Jonathan Schuchart, and Erhard Rahm. 2021. Embedding-
Assisted Entity Resolution for Knowledge Graphs. In KGCW@ESWC. https:
//api.semanticscholar.org/CorpusID:235357613

Matteo Paganelli, Francesco Del Buono, Andrea Baraldi, Francesco Guerra, et al.
2022. Analyzing how BERT performs entity matching. Proceedings of the VLDB
Endowment 15, 8 (2022), 1726—1738.

George Papadakis, Marco Fisichella, Franziska Schoger, George Mandilaras,
Nikolaus Augsten, and Wolfgang Nejdl. 2023. Benchmarking Filtering Tech-
niques for Entity Resolution. In 39th IEEE International Conference on Data
Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 653-666.
doi:10.1109/ICDE55515.2023.00389

Nathalie Pernelle, Fatiha Sais, and Danai Symeonidou. 2013. An automatic key
discovery approach for data linking. Journal of Web Semantics 23 (2013), 16-30.
d0i:10.1016/j.websem.2013.07.001

Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65, 6 (1958), 386.
Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo
Merialdo. 2021. Knowledge graph embedding for link prediction: A comparative
analysis. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 2
(2021), 1-49.

Andrea Rossi, Donatella Firmani, Paolo Merialdo, and Tommaso Teofili. 2022.
Explaining link prediction systems based on knowledge graph embeddings. In
Proceedings of the 2022 international conference on management of data. 2062~
2075.

Tathagata Sengupta, Cibi Pragadeesh, Partha Pratim Talukdar, et al. 2017.
Inducing interpretability in knowledge graph embeddings. arXiv preprint
arXiv:1712.03547 (2017).

Zequn Sun, Wei Hu, and Chengkai Li. 2017. Cross-lingual entity alignment
via joint attribute-preserving embedding. In The Semantic Web-ISWC 2017: 16th

3353

[41]

[42

[43

S
it

[45

[46]

[47]

S
&

[49

[50

[51]

Chloé Khadija Jradeh et al.

International Semantic Web Conference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part I 16. Springer, 628-644.

Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. 2018. Bootstrapping
entity alignment with knowledge graph embedding.. In IJCAI Vol. 18.

Zequn Sun, Jiacheng Huang, Wei Hu, Muhao Chen, Lingbing Guo, and Yuzhong
Qu. 2019. Transedge: Translating relation-contextualized embeddings for knowl-
edge graphs. In The Semantic Web—ISWC 2019: 18th International Semantic Web
Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I 18.
Springer, 612-629.

Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz
Akrami, and Chengkai Li. 2020. A benchmarking study of embedding-based
entity alignment for knowledge graphs. arXiv preprint arXiv:2003.07743 (2020).
Danai Symeonidou, Vincent Armant, Nathalie Pernelle, and Fatiha Sais. 2014.
SAKey: Scalable Almost Key Discovery in RDF Data. In The Semantic Web — ISWC
2014: 13th International Semantic Web Conference, Riva Del Garda, Italy, October
19-23, 2014. Proceedings, Part I (Riva del Garda, Italy). Springer-Verlag, Berlin,
Heidelberg, 33-49. doi:10.1007/978-3-319-11964-9_3

Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, and Cuiping Li. 2020.
BERT-INT: a BERT-based interaction model for knowledge graph alignment.
interactions 100 (2020), el.

Bayu Distiawan Trisedya, Flora D Salim, Jeffrey Chan, Damiano Spina, Falk
Scholer, and Mark Sanderson. 2023. i-Align: an interpretable knowledge graph
alignment model. Data Mining and Knowledge Discovery 37, 6 (2023), 2494-2516.
Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724-2743.

Kexuan Xin, Zequn Sun, Wen Hua, Wei Hu, and Xiaofang Zhou. 2022. Informed
multi-context entity alignment. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining. 1197-1205.

Kaisheng Zeng, Chengjiang Li, Lei Hou, Juanzi Li, and Ling Feng. 2021. A
comprehensive survey of entity alignment for knowledge graphs. AI Open 2
(2021), 1-13.

Rui Zhang, Bayu Distiawan Trisedya, Miao Li, Yong Jiang, and Jianzhong Qi. 2022.
A benchmark and comprehensive survey on knowledge graph entity alignment
via representation learning. The VLDB Journal 31, 5 (2022), 1143-1168.

Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2017. Iterative Entity
Alignment via Joint Knowledge Embeddings.. In IJCAL Vol. 17. 4258-4264.


https://doi.org/10.18653/v1/2021.emnlp-main.226
https://doi.org/10.18653/v1/2022.emnlp-main.52
https://api.semanticscholar.org/CorpusID:235357613
https://api.semanticscholar.org/CorpusID:235357613
https://doi.org/10.1109/ICDE55515.2023.00389
https://doi.org/10.1016/j.websem.2013.07.001
https://doi.org/10.1007/978-3-319-11964-9_3

	Abstract
	1 Introduction
	2 Background Definitions
	3 HMatch: a Hybrid Approach for EM
	4 Experiments
	4.1 Space-Reduction Experiments
	4.2 Explainability Experiments

	5 Discussion
	6 Related Work
	7 Conclusion and Perspectives
	Acknowledgments
	A Supplementary Figures
	References



