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A B S T R A C T

Metabolomics is a powerful approach to investigate the effect of environmental conditions on metabolite vari
ations in marine algae. Here, we focused on crustose coralline algae (CCA), a group of calcifying, red algae which 
play an important role on coral reefs through their interactions with corals and contribution to coral reef for
mation. Despite their ecological importance, little is known about their metabolome and how it varies with 
environmental conditions and phylogeny. Using an untargeted metabolomic approach, we explored the 
metabolomic fingerprints of seven CCA species (order: Corallinales) commonly found on the coral reefs of 
Moorea, French Polynesia. We developed an extraction method to characterize the CCA metabolome on two 
sample types (whole fragment and surface only) and explored the chemical variations of CCA across species, reef 
habitat and microhabitat. The extraction method successfully characterized the CCA metabolome, as demon
strated by a technical variability lower than the biological variability for both sample types. The CCA metab
olome was species-specific and a correlation was found between phylogenetic taxonomy and metabolomic 
profiles of the different species. Moreover, the metabolomic composition of certain species differed between the 
back and fore reef habitats and between exposed and cryptic microhabitats. These results highlight a high 
variability in the CCA metabolome mediated by phylogeny and environmental conditions. This study provides 
valuable insights into the sources of metabolomic variation in CCA. It lays the groundwork for exploring the 
ecological functions of the CCA metabolome and its potential use as a tool to assess organismal and ecosystem 
health.

1. Introduction

Marine organisms produce a wide range of secondary metabolites 
that have different ecological functions. These secondary metabolites 
are the end products of biological processes and are defined as small 
molecules of low molecular weight [1]. Recent advances in metab
olomics have enabled to describe these metabolites and how their di
versity and composition vary under different environmental conditions 
at a given time [2]. This approach requires a high degree of robustness 
and reproducibility as interpretation can change according to extraction 
or analytical methods [3,4]. Additionally, metabolomics is a powerful 

tool to evaluate the effect of environmental factors on living organisms, 
particularly marine algae [4–6]. For example, it has been used to 
discriminate between green, red and brown algae [7] and to investigate 
the effects of different factors on metabolite variability in several algal 
species [8,9].

Multiple sources of fluctuation have been identified in the metab
olome composition of marine organisms, including sponges [10,11], 
corals [12] and algae [7]. Among these factors, genetic and environ
mental conditions have emerged as predominant drivers of metabolome 
variation [13,14]. For instance, differences in the metabolome of green, 
red and brown seaweeds mirror host phylogeny [13,15]. Marine algae 
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can adapt to highly changing environments and modulate the biosyn
thesis of secondary (specialized) metabolites according to environ
mental conditions [9,16]. Their chemical composition can be influenced 
by a number of environmental and biological parameters, such as tem
perature [17], salinity [18], light intensity [19], nutrient availability 
[19], herbivory [16], species [13], life history stage [8] and lifestyle 
[20]. Their habitat can also influence their metabolome [4,6]. Spatio- 
temporal metabolome variations have been observed in different algal 
species, such as Asparagopsis taxiformis [6,9] and algae of the Lobophora 
genus [4,21].

Here, we focused on crustose coralline algae (CCA). These red 
calcareous algae belong to the orders Corallinales, Corallinapetrales, 
Hapalidiales and Sporolithales and are common in the euphotic zone of 
many marine benthic habitats [22,23]. On coral reefs, they contribute to 
reef formation and primary productivity [24], act as settlement inducer 
for coral larvae [25], and inhibit the recruitment of macroalgae that 
could otherwise harm corals [26]. Despite their ecological importance, 
few studies have investigated the sources of metabolomic variation in 
CCA species. CCA are complex holobionts with a diverse microbiome 
[27] and metabolome [30]. Investigations on their chemical ecology 
have led to significant advances in areas such as the composition of their 
dissolved organic matter exudates [28], signaling compounds and/or 
microbes underpinning coral recruitment [20], and allelopathic activity 
against algal spores [29]. However, the CCA metabolome and its envi
ronmental and genetic variability remain largely understudied.

The goal of this study was to reveal the variation patterns of CCA 
metabolomes and how these variations are influenced by environmental 
conditions and phylogeny using an untargeted metabolomic approach. 
Specifically, we aimed: i) to develop an extraction method to charac
terize the CCA metabolome and ii) to describe the variation patterns in 
the CCA metabolome across species, reef habitats and microhabitats. We 
targeted 7 CCA species distributed across a range of reef habitats and 
microhabitats on the coral reefs of Moorea, French Polynesia. Species 
identification was based on morphological observations and genetic 
characterization. Since algal metabolome varies with species [20,30] 
and environmental conditions [4], we hypothesized that the CCA 
metabolome would vary according to phylogeny, reef habitats and 
microhabitats.

2. Materials and methods

2.1. Study site and species

We studied the CCA metabolome at 2 sites (17◦ 28′ 52.7” S, 149◦ 50′ 
55.62”W and 17◦ 28′ 47.2” S, 149◦ 51′ 06.8” W) representing 2 reef 
habitats (back reef and fore reef, respectively). The seabed on the back 
reef was characterized by scattered massive Porites colonies, inter
spersed with sand and rubble, and colonized by macroalgae, branching 
corals, and turf. The fore reef consisted of low relief coral spur-and- 
groove formations, primarily covered by branching Pocillopora col
onies, CCA and turf. The back reef was subject to high light intensity and 
nutrient loading, while the fore reef was low in light intensity and 
nutrient and experienced intense fish grazing [31,32]. Both habitats 
exhibited a high diversity of CCA species.

We studied 7 CCA species or species complex (thereafter simply 
referred to as ‘species’): Dawsoniolithon spp. (family: Porolithaceae), 
Harveylithon minutum (Porolithaceae), Porolithon cf. onkodes (Poroli
thaceae), Hydrolithon spp. (Hydrolithaceae), Lithophyllum flavescens 
(Lithophyllaceae), Lithophyllum insipidum (Lithophyllaceae) and Neo
goniolithon cf. megalocystum (Spongitidaceae) (Fig. S1). These species 
were selected because they are commonly found on the coral reefs of 
Moorea and can be reliably identified in-situ [33,34]. CCA samples were 
identified based on morphological observations in the field and labo
ratory by the same observer (MN), as well as DNA analyses on 60 
samples collected in September 2021 (Table S1). Four genes were tar
geted for DNA-based analyses: the chloroplast gene psbA, the 

mitochondrial cytochrome c oxidase subunit 1 (COI) gene and the two 
rDNAs SSU (small subunit or 18S) and LSU (large subunit, or 28S). Total 
DNA extraction and genes amplification followed protocols used by 
Caragnano et al. [35]. PCR products were sequenced by Genoscreen 
(Lille, France).

2.2. Metabolomic signatures of CCA species

2.2.1. Sampling
CCA fragments (ca. 10–15 cm2) were collected using hammer and 

chisel in April 2016. To validate the extraction method, fragments (n =
10) of Hydrolithon spp. and P. cf. onkodes were collected at the back reef 
at 1–2 m depth. Each replicate fragment was selected from a haphaz
ardly chosen individual patch. For interspecies comparison, fragments 
(n = 5) of all 7 CCA species were collected from the same back reef site. 
For inter-habitat comparison, fragments (n = 5) of 5 CCA species 
(Hydrolithon spp., L. insipidum, N. cf. megalocystum, Dawsoniolithon spp., 
and P. cf. onkodes) were collected from the fore reef at 12–14 m depth 
and compared with samples from the back reef. For inter-microhabitat 
comparison, two CCA species (Hydrolithon spp. and P. cf. onkodes) and 
two microhabitats (exposed vs cryptic) were selected from the back reef 
site. We defined the exposed microhabitat as an area receiving direct 
sunlight and easily accessible from grazers, and the cryptic microhabitat 
as an area low in light intensity and relatively protected from grazers 
[34]. Since Hydrolithon spp. commonly forms rhodoliths (i.e., unat
tached nodules), Hydrolithon spp. rhodoliths (n = 5) were sampled. 
Exposed and cryptic samples were collected from their top and bottom 
surfaces, respectively. Note that, for the previous comparisons, only the 
top (i.e., exposed) surfaces of Hydrolithon spp. rhodoliths were sampled. 
For P. cf. onkodes, it was not possible to find individuals subject to both 
microhabitats. Thus, samples (n = 5) were collected from haphazardly 
chosen individuals in each microhabitat. Fragments were placed in a 
separate Ziplock bag filled with seawater and transported in a closed 
cooler to the CRIOBE research station. In the laboratory, samples were 
immediately frozen at − 20 ◦C, freeze-dried and stored at − 20 ◦C until 
chemical extraction to preserve the integrity of biological samples [36].

2.2.2. Metabolites extraction
The validation of the extraction method was performed on two 

sample types: i) whole CCA fragment, and ii) CCA surface only (n = 5 for 
each type). Whole fragment biological replicates (250 mg) were ob
tained by grinding fragments with a mortar and pestle, while surface 
biological samples (250 mg) were obtained by scrapping the living CCA 
surface with a scalpel. To obtain technical replicates, additional powder 
(250 mg) was obtained from each fragment by further grinding or 
scrapping as appropriate. The resulting powder was pooled across 
sample types, homogenized and divided in 5 equal samples. Sufficient 
additional powder could not be obtained from P. cf. onkodes surface 
samples, thus technical replicates could not be performed for these 
samples. For comparisons across species, habitats and microhabitats, 
CCA surface biological samples were processed. For all samples, a 
biphasic solid-liquid extraction was performed with a mixture of methyl 
ter-butyl ether (MTBE), methanol (MeOH) and ultrapure water (v/v/v, 
7:3:1). Algae powder was first extracted with a mixture of MTBE and 
MeOH under 5 min of vortex and sonification. Then, ultrapure water was 
added and the entire extract was vortexed and extracted under sonifi
cation. The mixture was centrifuged at 2050g for 20 min to obtain two 
phases and the organic phase was carefully transferred into glass tube. 
The extraction was carried out three times, and extracts were pooled and 
evaporated using a Genevac TM centrifugal concentrator (EC-2 series, 
SP Industrie, UK).

2.3. Mass spectrometry analysis and data processing

2.3.1. Analytical system
Samples were resolubilized in MeOH, prepared at 1 mg mL− 1 and 
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filtrated on Uptidisk (PTFE, 13 mm, 0.2 μm, Interchim, San Diego, 
California). Quality Control (QC) samples were prepared by pooling 
equal volume of each sample to ensure reproducibility and absence of 
analytical drift (Fig. S2). Samples were injected over two analytical se
quences and run under the same analytical conditions. The first 
sequence included samples for the method validation, while the second 
sequence included samples for the inter-species, habitats and micro
habitats comparisons. For both sequences, MeOH blanks and QC sam
ples were injected at the beginning to ensure system suitability and 
column condition. QC samples were injected every 7 samples to detect 
analytical drift.

All samples were injected in HPLC-MS using an Accela system 
(autosampler and quaternary pump), coupled with a LCQ Fleet ion trap 
from Thermo Scientific (Waltham, Massachussetts), equipped with an 
electrospray ion source. The separation was achieved using a Kinetex 
C6-phenyl column (1.7 μm, 100 Å, 100 × 2.1 mm, Phenomenex, Tor
rance, CA, USA) at 30 ◦C with a flow rate of 270 μL min− 1. Gradient 
solvents were composed of H2O + 0.1 % formic acid (A) and acetonitrile 
+0.1 % of formic acid (B). The gradient system was programmed as 
follows: 60 % of (B) for 2 min, from 60 % to 80 % (B) in 6 min, from 80 % 
to 100 % (B) in 14 min, 100 % (B) for 6 min, from 100 % to 60 % (B) in 2 
min, and 60 % (B) for 8 min (38 min/run). For MS conditions, ionization 
was operated in positive ion mode. Sheath gas flow rate was set to 25 a.u 
(arbitrary units), auxiliary gas was set to 5 a.u and sweep gas was set to 
1 a.u. The capillary temperature was set to 290 ◦C, and a spray-voltage 
of 4.5 kV was applied. The source current was set to 100 UA with a tube 
lens of 120 V. The analysis was acquired in a full scan mode between a 
mass range of 150 to 2000 m/z.

2.3.2. Mass spectral data processing
Raw HPLC-MS data were converted to mzXML files in centroid mode 

using MS convert software (version 3.0, from Proteowizard library, Palo 
Alto, CA, USA). mzXML files from each analytical sequence were loaded 
and processed separately using Workflow4Metabolomics on the Galaxy 
web platform [37]. Optimized parameters were set as follows: a peak 
picking (method = “MatchedFilter”, binSize = 0.2, steps = 2, mzdiff =
0.4, sntresh = 30 for the first sequence and 10 for the second sequence), 
a peak grouping (bw = 30, minfrac = 0.2, minSize = 0.25), a correction 
of retention time (method = “obiwarp”), a matching peak across sam
ples (bw = 10, minfrac = 0.2, minSize = 0.25), a peak filling and a 
‘CAMERA’ peak annotation. Two feature tables with features m/z, 
retention time and peak intensity were generated from each sequence. 
These included 482 and 937 features, respectively. A first filtration step 
was applied by removing features whose intensity was higher than in 
MeOH blanks (t-stat, p < 0.05). A second filtration was applied by 
removing features whose relative area was upper than 30 % of the 
pooled QC samples. Since the QCs of each sequence were well super
imposed in the PCA, a batch correction was not applied in either dataset. 
Finally, redundancies due to isotopes were manually removed and only 
monoisotopic mass were kept. Final feature tables for the two sequences 
included 326 and 378 features, respectively. A sum normalization and 
an auto-scaling were applied to both datasets using MetaboAnalyst 6.0 
[38], and datasets were independently analyzed.

2.4. Statistical analysis

Statistical analyses were performed using R (version 4.2.2). Plots 
were drawn using the ggplot package [39]. Differences in metabolomic 
composition were visualized using a Principal Component Analysis 
(PCA) with the vegan package [40] and analyzed using a Permutational 
Multivariate Analysis of Variance (PERMANOVA) with the adonis 
function of the same package. Pairwise comparisons were performed 
using the pairwise.adonis function of the pairwiseAdonis package and 
adjusted with the Benjamini and Hochberg method [41]. For the method 
validation, metabolomic beta-dispersion was calculated using the beta
disper function and analyzed for each CCA species separately using a 

one- or two-way Analysis of Variance (ANOVA) (rstatix package), 
including the factors sample type (whole fragment vs surface) and/or 
replicate type (biological vs technical) as appropriate. For comparisons 
across species, reef habitats and microhabitats, metabolomic alpha- 
diversity (Shannon index) and composition were analyzed using para
metric ANOVA and PERMANOVA, respectively, with the factors species, 
species and habitat, and species and microhabitat as appropriate, fol
lowed by Tukey’s HSD pairwise comparisons. Prior to all ANOVAs, 
parametric assumptions were tested for normality (Shapiro-Wilk test) 
and variance homogeneity (Levene’s test).

To test the correlation between the DNA and metabolomic profiles of 
the 7 CCA species, genetic sequences were cleaned, edited in Geneious 
version 7.1.9 (http://www.geneious.com, [42]) and aligned using the 
MUSCLE algorithm available in the software. Sequences were then 
assigned to species with the Basic Local Alignment Search Tool (BLAST; 
https://blast.ncbi.nlm.nih.gov/, [43]). The genetic distance matrix was 
compiled with one representative value per species for statistical anal
ysis. Multilocus (psbA, COI, SSU, LSU) concatenated matrices were 
assembled for phylogenetic reconstruction. Maximum likelihood (ML) 
trees were performed using RAxML [44] through the CIPRES web portal 
[45] and launched using the “rapid bootstrapping and search for the 
best-scoring ML tree” algorithm, the GTR + I + G evolutionary model, 
and 1000 bootstrap (bs) iterations [46]. Results were visualized in Fig
tree v.1.4.4 [47]. For metabolomic data, clustering was constructed 
based on mean features per species. The hierarchical clustering analysis 
(HCA) was then constructed using Euclidean distances and Ward’s 
minimum variance method. The correlation between phylogenetic and 
metabolomic distance matrix was assessed using a mantel test with the 
mantel function of the vegan package.

3. Results and discussion

A total of 73 new sequences were submitted to GenBank, including 
12 COI sequences (under accession numbers PV221098-PV221103), 19 
psbA sequences (PV174085-PV174103), 21 18S sequences (PV174043- 
PV174063) and 21 28S sequences (PV174064-PV174084) (Table S1). 
Genetic analysis allowed us to identify 12 species among our samples 
and confirmed most of morphological-based assignation: Dawsoniolithon 
conicum, D. sp1–4, Harveylithon minutum, Hydrolithon reinboldii, H. sp1, 
Lithophyllum insipidum, L. flavescens, Neogoniolithon cf. megalocystum and 
P. cf. onkodes. The distinct species within the genera Dawsoniolithon and 
Hydrolithon could not be recognized using morphological observations. 
Therefore, we used the plural form ‘spp.’. Detailed explanations for the 
suffix ‘cf.’ in N. cf. megalocystum and P. cf. onkodes are provided in Vizon 
et al. [34].

The extraction method was successful in characterizing the CCA 
metabolome, as shown by a technical variability lower than the bio
logical variability for both sample types in Hydrolithon spp. and for P. cf. 
onkodes whole fragments (beta-dispersion: ANOVA: p < 0.001 for 
Hydrolithon spp. and p = 0.004 for P. cf. onkodes whole fragment; 
Table S2; Fig. 1B). This result validates its potential application for CCA 
metabolomics studies. Not surprisingly, metabolomic composition 
differed whether sampling whole fragment or surface only (PERMA
NOVA, p = 0.001 for Hydrolithon spp. and p = 0.006 P. cf. onkodes 
biological replicates, Fig. 1A). This difference could be explained by the 
fact that the biological matrix is a major factor influencing metabolite 
composition. Marine algae host a wide range of microorganisms, 
including epi- and endosymbiotic procaryotes and eucaryotes [48,49]. 
Likewise, CCA host a multitude of specific and distinct microorganisms 
on their surface [50,51], while their calcareous skeleton is colonized by 
a wide variety of endolithic communities [52,53]. Therefore, the choice 
of sample type (i.e., whole fragment vs surface) needs to be carefully 
considered, notably with regards to research objectives. For example, 
since this study was part of a wider aim to investigate CCA-associated 
settlement cues for coral larvae [20], surface samples were processed 
for the subsequent comparisons.
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The CCA metabolome differed both in terms of diversity and 
composition between the 7 species collected from the back reef (alpha- 
diversity: ANOVA, p < 0.001, Table S3A, Fig. 2A; composition: PER
MANOVA, p = 0.001, Table S3B, Fig. 2B). These results are consistent 
with an earlier study on the CCA metabolome in Moorea [20]. Inter
species metabolome variability has been previously observed in marine 
algae [6,15]. Since these differences could be associated with phylogeny 
[13], we explored the relationship between phylogenetic taxonomy and 
metabolomic profiles of the 7 CCA species. The concatenated multilocus 
phylogeny (Fig. 3) showed that the 7 CCA species were strongly sup
ported (bs = 100), as well as interspecies relationships (bs > 90), except 
between Dawsoniolithon spp. and H. minutum (bs = 77). There was a 
significant correlation between phylogenic and metabolomic distances 
(Mantel test: r = 0.54, p = 0.028). The Porolithaceae species were clearly 
clustered together and presented more related metabolomic profiles 
than with species from other families. Phylogenetic and metabolomic 
linkages have been previously reported in birds [54], plants [55] or 
phytoplankton [14]. In marine algae, metabolomic variabilities between 
different red, brown and green seaweeds were also consistent with their 
genetic classification [13]. This correlation supports a co-evolution be
tween DNA and metabolomic profiles and the potential of the metab
olomic approach to discriminate between CCA species and follow their 
evolutionary history.

Nevertheless, some mismatches occurred in the correlation between 
the DNA and metabolomic profiles. Among the Porolithaceae, P. cf. 
onkodes and Dawsoniolithon spp. were more closely related based on 
metabolomic profiles (Fig. 3B), whereas Dawsoniolithon spp. was 
genetically closer to H. minutum, but with weak support (Fig. 3A). For 
the Lithophyllaceae, metabolomic results did not recover the close 
phylogenetic relationship of the two sister species L. insipidum and L. 
flavescens. L. insipidum appeared more similar to H. minutum, Dawso
niolithon spp. and P. cf. onkodes than to L. flavescens in the metabolome- 
based clustering. Finally, Hydrolithon spp. was phylogenetically more 
related to the two Lithophyllum species, while its metabolomic profile 
was more similar to N. cf. megalocystum. The moderate correlation be
tween phylogeny and metabolome could also be explained by poten
tially confounding factors, including but more limited to the CCA 
associated microbial communities, their physiological status or the 
presence of boring invertebrates, which could have contributed to the 

plasticity of the CCA metabolome, but which were not assessed. Addi
tionally, one limitation of this study was that genetic and metabolomic 
analyses were not conducted on the same samples. Future studies should 
aim to overcome these shortcomings.

Spatially, the CCA metabolome did not show clear differences across 
habitats or microhabitats in term of alpha diversity (Tables S4A & S5A; 
Fig. 2C & E). There was an interaction between species and habitat on 
metabolomic alpha-diversity (ANOVA, p = 0.011), but pairwise com
parisons were not significant (Tukey’s comparisons: p > 0.05; 
Table S4A). In contrast, metabolomic composition differed across hab
itats and microhabitats depending on species, as indicated by significant 
interactions species x habitat and species x microhabitat (PERMANOVA, 
p < 0.05; Tables S4B & S5B; Fig. 2D & F). Post-hoc tests on the metab
olomic composition of each species indicated significant differences 
between back and fore reef habitats for L. insipidum, N. cf. megalocystum 
and P. cf. onkodes (Benjamini-Hochberg adjusted pairwise comparisons: 
p < 0.05, Table S4B), as well as a significant difference between exposed 
and cryptic microhabitats for Hydrolithon spp. (p = 0.006, Table S5B).

Metabolomic variation has been previously observed at multiple 
spatial scales in several benthic organisms, including sponges [10,11], 
corals [12] and marine algae [4,6,9,21]. For example, the metabolome 
of the red alga Asparagopsis taxiformis vary from temperate to tropical 
regions [6,9]. Likewise, several algal species from the genus Lobophora 
showed metabolomic variation between different reef sites in New- 
Caledonia [4]. Metabolomic fluctuations in marine algae may be 
explained by abiotic and biotic factors, such as temperature [17], light 
intensity [19], nutrient availability [19] and predation [16]. Although 
not quantified in this study, herbivore pressure, nutrient concentrations, 
light intensity and UV radiation may be possible sources of spatial 
metabolomic variations in CCA. In Moorea, light intensity is higher in 
the back reef than in the fore reef, with means of 446.28 ± 20.99 (SEM) 
and 137.50 ± 6.82 μmol photons m− 2 s− 1, respectively [32]. Moreover, 
the fore reef exhibits a higher herbivore pressure and a lower nutrient 
availability than the back reef [31]. Likewise, the exposed microhabitat 
is characterized by a high exposure to light and grazers, whereas the 
cryptic microhabitat is low in light intensity and relatively protected 
from grazers [33].

Herbivore pressure, nutrient concentrations and light intensity 
typically regulate the abundance and growth of competitive algae, such 

Fig. 1. Effects of replicate types (biological vs technical) and sample types (whole fragment vs surface) on the metabolomic composition (A) and beta-dispersion (B) 
of Hydrolithon spp. and P. cf. onkodes samples. n = 5 for each sample types (whole fragment and surface) and replicates types (biological and technical). Note the 
absence of technical replicates for the surface P. cf. onkodes samples (na = not available). Beta-dispersion was analyzed by one- or two-way ANOVAs as appropriate (* 
p < 0.05, ** p < 0.01). See supplementary table 2 for detailed analyses and statistical results. Ellipses are 95 % data ellipses. R: Replicate type, S: Sample type.
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as large canopy macroalgae or algal turfs, which may overgrow and 
shade CCA, or increase their sediment load by sediment trapping 
[22,56]. In Moorea, the occurrence of epiphytes on P. cf. onkodes and N. 
cf. megalocystum was found to be higher on the back reef than on the fore 
reef [34]. This trend was coupled with reduced marginal growth rates on 
the back reef compared to the fore reef in both species, highlighting the 
importance of competition with benthic algae on CCA fitness. Likewise, 
competitive interactions with algae may alter the metabolome of CCA, 
as previously shown for corals [57]. In addition, benthic organisms, such 
as sponges and marine algae, can modulate the biosynthesis of their 
metabolites in response to UV radiation [4,10]. A weak light intensity 

may lead to a decrease in photosynthesis efficiency, while a high light 
intensity can cause an oxidative stress [4]. Therefore, marine algae may 
synthesize metabolites that protect against UV radiation, such as ca
rotenoids pigments or mycosporines like-amino acids [9]. Clearly, 
further experimental studies should investigate the separate and com
bined effects of these different factors on the CCA metabolome to allow a 
full understanding of the sources of its variability.

4. Conclusion

This study demonstrated the application of an extraction method for 
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Fig. 2. Effects of species (A-B), reef habitats (back reef vs fore reef) (C–D) and microhabitats (exposed vs cryptic) (E-F) on the metabolomic alpha-diversity (Shannon 
index) (left panels) and composition (right panels) of CCA samples. Shannon diversity data were analyzed by parametric ANOVAs, followed by Tukey post hoc 
comparisons as appropriate. Metabolomic composition was analyzed by PERMANOVAs. See supplementary tables 3 to 5 for detailed analyses and statistical results. 
Note that color codes in panels B, D and F correspond to color codes used in panels A, C and E, respectively. Ellipses are 95 % data ellipses. Sp: Species, Ha: Habitat, 
Mi: Microhabitat. For each comparison, n = 5 replicates per species.
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the study of the CCA metabolome. Technical variability was lower than 
biological variability for both whole fragment and algal surface samples, 
demonstrating the robustness and reproducibility of the method. Results 
showed a phylogenetic and metabolomic link in CCA species and 
revealed a variability in the metabolome of certain CCA species across 
reef habitats and microhabitats. Together these findings demonstrate 
that the CCA metabolome is structured by phylogeny and environmental 
factors. Future studies should aim to investigate the underlying factors 
that contribute to metabolomic variation in CCA, especially considering 
their important ecological role as reef building organisms and substrates 
for coral recruitment. This research lays the groundwork for developing 
a chemical baseline of a “healthy” CCA against which to chemically 
assess for signs of stress or disease or altered capacity to attract corals or 
repulse algal competitors. It represents a starting point to further 
investigate the ecological roles of the CCA metabolome and its potential 
use as a tool to assess species and ecosystem health, which could be 
integrated in Ecosystem or Resilience-Based Management.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.algal.2025.104146.
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