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Abstract

Soil moisture content (SMC) is a critical parameter for agricultural productivity, particularly
in semi-arid regions, where irrigation practices are extensively used to offset water deficits
and ensure decent yields. Yet, the socio-economic and remote context of these regions
prevents sufficiently dense SMC monitoring in space and time to support farmers in their
work to avoid unsustainable irrigation practices and preserve water resource availability.
In this context, our study addresses the challenge of high spatial resolution (i.e., 20 m)
SMC estimation by integrating remote sensing datasets in machine learning models. For
this purpose, a dataset made of 166 soil samples’ SMC along with corresponding SMC,
precipitation, and radar signal derived from Soil Moisture Active Passive (SMAP), Inte-
grated Multi-satellitE Retrievals for GPM (IMERG), and Sentinel-1 (S1), respectively, was
used to assess four machine learning models” (Decision Tree—DT, Random Forest—RF,
Gradient Boosting—GB, Extreme Gradient Boosting—XGB) reliability for SMC mapping.
First, each model was trained /validated using only the coarse spatial resolution (i.e., 10 km)
SMAP SMC and IMERG precipitation estimates as independent features, and, second, S1
information (i.e., 20 m) derived from single scenes and/or composite images was added as
independent features to highlight the benefit of information (i.e., S1 information) for SMC
mapping at high spatial resolution (i.e., 20 m). Results show that integrating S1 information
from both single scenes and composite images to SMAP SMC and IMERG precipitation
data significantly improves model reliability, as R? increased by 12% to 16%, while RMSE
decreased by 10% to 18%, depending on the considered model (i.e., RE, XGB, DT, GB).
Overall, all models provided reliable SMC estimates at 20 m spatial resolution, with the GB
model performing the best (R? = 0.86, RMSE = 2.55%).
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1. Introduction

Soil moisture content (SMC) in the unsaturated soil zone [1] plays a pivotal role in
agriculture, influencing seed germination, plant growth, and nutrient uptake in the root
zone [2,3]. Actually, SMC is a key indicator of soil health and agricultural productivity,
affecting both the physical and chemical properties of soil [4-6]. Understanding and ac-
curately monitoring SMC is essential for optimizing irrigation practices, improving crop
management, mitigating the impacts of droughts, and minimizing water stress on plants to
achieve agriculture resilient to the effects of climate change, especially in arid and semi-arid
regions [7-9].

Conventionally, SMC is monitored through direct measurements such as the gravimet-
ric method, which determines SMC by weighing a soil sample and calculating the water
fraction relative to its total weight [10]. Despite its high reliability, this method relies on
soil sample collection from the field prior to laboratory analysis, which results in labor-
intensive and cost-prohibitive monitoring [3,8]. In consequence, this method is not adapted
to intensive SMC, yet is required to adequately capture SMC variation in space and time
related to complex interactions among multiple factors such as (i) soil texture and structure,
(ii) topographic characteristics, (iii) land cover patterns, (iv) vegetation properties, and
(v) meteorological forcing [11-13]. To overcome this issue (i.e., large scale and intensive
monitoring in space and time), an alternative measurement consists in the use of a TDR
(Time Domain Reflectometer) [14], a device that rapidly measures soil moisture using
electromagnetic waves, but its accuracy is affected by salinity [15,16]. It is useful for point
measurements but not for large-scale monitoring, as it requires physical displacement and
does not offer continuous coverage in space and time.

In recent decades, remote sensing technology has transformed the way we observe
and analyze the Earth’s surface, providing continuous, large-scale, and non-invasive data
acquisition capabilities. Active microwave sensors in low frequencies (X, C, and L-bands)
are well suited for SMC retrieval because the backscatter is very sensitive to soil dielectric
properties, a proxy to soil water content [3,17,18]. As SMC increases, the dielectric constant
of the soil-water mixture also rises, a variation that can be detected using microwave sen-
sors [17,19]. In comparison to higher-frequency bands (i.e., C and X), L-bands have a greater
penetration depth into the soil and are less sensitive to soil roughness, vegetation, and
atmospheric conditions [20,21]. In this context, two dedicated satellite missions equipped
with L-band microwave radiometers have been deployed for monitoring earth’s surface
SMC: ESA’s Soil Moisture and Ocean Salinity (SMOS), launched in 2009, and NASA'’s Soil
Moisture Active Passive (SMAP), launched in 2015 [20]. However, because of their limited
spatial resolution (35 km and 10 km for SMOS and SMAP, respectively), SMOS and SMAP
SMC estimates are limited to regional studies [20,22-24], and their use for local applications
is challenging [9].

In this context, many studies have proposed the use of optical and/or thermal passive
sensors data to obtain SMC estimates at a finer spatial resolution. Two main methods stand
out. One links SMC to land surface temperature (LST) and vegetation indices [25], while the
other links SMC to red and near-infrared (NIR) reflectances [26]. It is worth mentioning that
an adaptation of the first method consists in replacing LST data with short-wave infrared
(SWIR) data [27]. Continuously improved, these techniques have been successively applied
to MODIS, Landsat, and Sentinel-2 data to enable soil SMC monitoring at increasingly finer
spatial resolutions. However, due to cloud cover, LST, along with red, NIR, and SWIR data,
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remains prone to considerable gaps in both space and time, limiting SMC retrieval to clear
sky conditions.

To overcome cloud cover difficulties, Sentinel-1 (51) C-band SAR images offer an
interesting alternative, as C-band signal is not altered by cloud cover. Various techniques
have been successfully adapted to S1 data to retrieve SMC at high spatial resolution, such as
the use of the Water Cloud Model (WCM) [28], Change Detection (CD) technique [29,30],
and machine learning approaches [31-33]. While S1 images provide high spatial resolution
(10 m), the C-band wavelength (approximately 5.5 cm) is more affected by soil roughness
and vegetation cover than the L-band wavelength (approximately 30 cm) [18,34,35]. In
consequence, S1-based SMC estimates are expected to be less accurate than SMOS and SMAP
SMC estimates. Still, some authors have taken advantage of S1’s high spatial resolution (i.e.,
10 m) to improve low-resolution SMAP SMC estimates (i.e., 10 km) [9,36-38]. To date, these
spatial resolution improvements have been limited to 1 km [36,38], which is not adapted to
monitor SMC at the agriculture plot level to support farmers in their decision-making.

In the above-described context, this study aims at integrating several C-band (S1) and
L-band (SMAP) features with satellite-based precipitation estimates (IMERG) in a machine-
learning model. In doing so, this approach allows capitalizing on the L-band (SMAP) ability
to monitor SMC in time and on the C-band (S1) ability to monitor SMC variation in space
to provide high-resolution SMC estimates (i.e., 20 m) for all sky conditions (cloudy or
not). Due to its socio-economic context and the importance of agriculture in maintaining
economic activity, the Bolivian Altiplano region is selected as the study area to support
agriculture planning.

2. Materials
2.1. Study Area

The research was conducted in two plots of approximately 6500 and 2540 m? lo-
cated at the Patacamaya experimental station from Universidad Mayor de San Andrés
(UMSA) (Figure 1), located in the central Bolivian Altiplano region, at an average altitude
of 3800 m.a.s.l. with a flat topography [39]. The region is semiarid with (i) an average

rainfall of less than 400 mm-year !

, concentrated in the austral summer [40], (ii) an av-
erage temperature that varies from 4 °C to 8 °C [41], and (iii) a high evapotranspiration
rate of approximately 1300 mm-year~!. Agriculture is the main economic activity, which
increasingly depends on irrigation to cope with the water deficit [42]. According to World
Reference Base for Soil (WRB) System guidelines, the soils are classified as Association of

Leptosols—Durisols—Regosols [43].

2.2. Reference Soil Moisture Data

A total of 166 soil samples were collected within the agricultural plots during twelve
field visits starting on 4 September 2023 and ending on 14 January 2024. The visits (n = 12)
were realized with a 12-day frequency to match with the S1 satellite observation dates and
time (approximately 10 h local time) (Figure 1c). Twelve to fifteen soil samples were collected
during each field visits. Each soil sample consists of a composite of 3 subsamples taken
diagonally (upper left, center, lower right) from a 10 m x 10 m square area at 10 cm depth.
Prior to soil sample collection, SMC was also measured using a TDR-150 Field Scout made
by the Spectrum Technologies, Inc. (Aurora, CO, USA). Finally, two SMC measurement
were obtained from each composite soil sample, one in the soil laboratory of the Faculty
of Chemistry at Universidad Mayor de San Andrés (UMSA) by averaging the three soil
samples’ information [10] and the other one from the TDR-150 Field Scout measurements.
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Figure 1. The study area in Bolivia (a), along with the location of 166 soil sample sites within agricultural
plots (b) and Boxplot of the volumetric soil moisture measurements obtained during the study period
(c). White circle represent the outlier SMC measurements.

2.3. Sentinel-1 Images and Pre-Processing

Sentinel-1 (S1) satellite images provide polarization values in VV (vertical /vertical)
and VH (vertical /horizontal) in interferometry mode, with a center frequency of 5.405 GHz.
51 images are available as a Single Look Complex (SLC) product, which provides both
phase and amplitude information, and as a post-processed Ground Range Detected (GRD)
product, which provides direct surface backscatter in the form of intensity and amplitude
images. Due to its dual-polarization antenna that can discriminate subtle changes in SMC,
the GRD product has emerged as an essential tool for mapping soil moisture and is therefore
being considered for the current study. S1 images are available from both ascending and
descending orbits. To maintain consistency in S1 observations across space and time, only
the descending orbit is used. All S1 images acquired during field soil sample collection were
preprocessed according to four successive steps: (i) border noise removal, (ii) radiometric
calibration, (iii) topographic correction, and (iv) focal mean filter to reduce the speckle
effect. S1 preprocessing (i.e., downloading, preprocessing, and compositing) was carried
out via GEE [44] on the free cloud platform Google Colab (retrieved from https://colab.
research.google.com/, accessed on 20 October 2024). Finally, for each soil sampling date a
composite image is obtained by averaging the value of two S1 images: the one acquired
during the sampling date and the one obtained 12 days before.
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2.4. Soil Moisture Active Passive (SMAP)

The SMAP mission is an orbiting satellite launched in January 2015 to measure soil
moisture globally using an L-band radiometer. SMAP Level-4 (L4) soil moisture product
provides global observations of SMC at different depths (e.g., 0-5 cm, 0-100 cm), along with
other research outputs, such as soil temperature and evapotranspiration at high temporal
resolution (every 3 h) and low spatial resolution (11 km) [45]. SMAP L4 ensures continuous
data availability, even during instrument outages, by relying on land model simulations
when necessary [46]. For this study we used SMAP L4 SMC of the top (0-5 cm) and root
zone (0-100 cm) layers, both available on GEE.

2.5. Integrated Multi-Satellite Retrievals for GPM (IMERG)

The Global Precipitation Measurement (GPM) mission was launched in February 2014
as the successor to the Tropical Rainfall Measuring Mission (TRMM) [47]. Compared to the
TRMM, the GPM enhances spatial resolution (from 0.25° to 0.1°) and temporal resolution
(from 3 h to 30 min), expands coverage (from 50°N-50°S to 60°N-60°S), and improves
sensitivity for detecting light and solid precipitation [48]. The Integrated Multi-satellitE
Retrievals for GPM (IMERG) is the precipitation product derived from the GPM mission.
IMERG reliability was previously assessed across the Altiplano region, and results show
that IMERG precipitation estimates are reliable for daily total amount monitoring and
hydrological modelling [41,49]. For this study, we used the last released version (v.07)
available at the hourly time-step in GEE [50].

2.6. Machine Learning Models

Four supervised machine learning (ML) models based on decision trees were evalu-
ated: (i) Random Forest (RF) [51], (ii) Extreme Gradient Boosting (XGB) [52], (iii) Decision
Tree (DT) [53], and (iv) Gradient Boosting (GB) [54]. Decision trees are non-parametric
supervised learning models commonly used for regression and classification tasks. These
models represent decisions and their potential outcomes in a hierarchical structure anal-
ogous to a tree, allowing the derivation of simple decision rules from dataset features to
predict a target variable (e.g., soil moisture) [55].

In the DT model, a single decision tree is built by recursively dividing the dataset into
smaller subsets, using features that maximize information gain or reduce impurity [53,55].
The RF model employs an ensemble of decision trees, each trained on different subsets of
the dataset using bagging (bootstrap aggregation). The final prediction is derived as the
average of all tree predictions, enhancing model robustness and reducing overfitting [51].
The GB model builds decision trees sequentially, with each tree aiming to correct the errors
of its predecessor by minimizing a defined loss function. This iterative process leverages the
residuals of the prior tree to guide subsequent tree construction [54]. XGB is an advanced
implementation of GB that incorporates parallel computing and regularization techniques,
improving computational efficiency and mitigating overfitting [52].

All models were implemented using default hyper-parameters provided by a Python
library [52,56], as these default configurations yielded satisfactory performance in the ML
models [56]. Default hyper-parameter values are presented in Table 1.

Table 1. Hyper-parameters considered for the machine learning models’ set-up.

Hyper-Parameter Set-Up Model Explanation
RF * GB* DT * XGB **
n_estimators 100 100 - 100 The number of trees in the forest/boosting stages.
max_features None None None - Features considered for splitting. None = n_feature.
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Table 1. Cont.

Hyper-Parameter Set-Up Model Explanation
RF * GB* DT * XGB **

mcpth  Nee 3 Nee o yelsopmiuillee sopueoronan o
min_samples_split 2 2 2 - Minimum samples required to split a node.
min_samples_leaf 1 1 1 - Minimum samples required in a leaf node.

learning_rate - 0.1 - 0.3 Step size shrinkage to prevent overfitting.

subsample - 1 - 1 Fraction of training samples used per tree.
criterion/objective  squarederror = Friedman_mse  squarederror squarederror ~ The function to measure the quality of a split.

eval_metric - - - rmse The function of monitoring the performance model.

Where * scikit learn library, ** xgb library, and “-” is used when the considered models do not include this

hyper-parameter.

3. Methods
3.1. Laboratory SMC Measurement

SMC was computed using both the gravimetric and volumetric methods. To do so,
each soil sample was collected with a metal cylinder directly pushed all the way in from
the surface before being removed. Then, the soil sample trapped in the metal cylinder was
extracted into a polypropylene plastic container (150 mL), hermetically sealed, and directly
brought to the laboratory for analysis. Each soil sample was (i) weighed to obtain humid
mass (My,), (ii) dried during 24 h at 105 °C, (iii) left to cool in a desiccant capsule to avoid
absorption of moisture from the environment, and (iv) weighed again to obtain the dry
mass (My). Finally, gravimetric humidity was computed (Equation (1)) and converted to
volumetric humidity (Equation (2)) to compare with TDR Field Scout SMC measurements.
Hereafter, the volumetric humidity is considered as the reference SMC values.

My, — My
0 =~y x 100 (1)
8, = 0g x -2 )

Pw

where 0g and 0y represent the gravimetric and volumetric humidity, respectively, and
Pa and py represents the bulk density of soil (1.48 g-cm’3 [57]) and the water density
(1 g-em™3), respectively.

3.2. TDR Measurement Assessment

SMC obtained through the TDR-150 Field Scout was compared to the SMC obtained
in laboratory to assess TDR-150 Field Scout SMC reliability. The comparison is based on R?
and RMSE.

3.3. Learning Database Elaboration

Eight polarization indices (PIs) and 36 texture indices (TIs) were derived from all S1
single scenes and composite images (Table 2). Note that S1 TIs were derived from the
Gray Level Co-occurrence Matrix (GLCM) available in GEE [58]. All these indices were
selected because they have shown strong correlation with soil moisture [37,59-61]. SMAP
top layer (0-5 cm) and root zone (0-100 cm) SMC obtained from the nearest time of the
field measurement (13-14 h UTC-0), along with IMERG total precipitation amount for the
5-day period preceding the soil moisture measurements date, were considered.
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Table 2. Sentinel-1 features. Note that all indices were computed from both the S1 images acquired
during field soil sampling (i.e., single scene) and the corresponding composite image.

N Index/Acronym

Formula * or Description Reference

Sentinel-1 polarization (dB)

VV, VH

1 Polarization index 1 (PI1) PI1 = VV 4+ VH
2 Polarization index 2 (P12) PI2 = VV? + VH
3 Polarization index 3 (PI3) PI3 = VH? — VV [62]
4 Polarization index 4 (PI4) P4 = VV? + VH?
5 Polarization index 5 (PI5) PI5 = %
6 Polarization index 6 (PI6) PI6 = Log(VV) x 10
7 Polarization index 7 (PI7) PI7 = Log(VH) x 10
8 Polarization index 8 (PI8) PI8 = (Log(VV) + Log(VH)) x 10
Textural index (extracted from VV and VH band)
Angular second moment (asm) VV asm, VH asm
Contrast (contrast) VV contrast, VH contrast
Correlation (corr) VV corr, VH corr
Variance (var) VV var, VH var
Inverse difference moment (idm) VVidm, VH idm
Sum average (savg) VV savg, VH savg
Sum variance (savr) VV svar, VH svar
Sum entropy (sent) VV sent, VH sent
9 Entropy (ent) VV ent, VH ent [58,59,63]
Difference variance (dvar) VV dvar, VH dvar
Difference entropy (dent) VV dent, VH dent

Information measure of correlation 1 (imcorr1)
Information measure of correlation 2 (imcorr2)
Maximum correlation coefficient (maxcorr)
Dissimilarity (diss)

Inertia (inertia)

Shade (shade)

Cluster prominence (prom)

VV imcorrl, VH imcorrl
VV imcorr2, VH imcorr2
VV maxcorr, VH maxcorr
VV diss, VH diss
VV inertia, VH inertia
VV shade, VH shade
VV prom, VH prom

* Where VV = vertical transmission/vertical reception; VH = vertical transmission/horizontal reception.

Following this process, the learning database included 166 soil moisture observations

with corresponding S1 features obtained from the single scenes (n = 46) and the composite
images (n = 46), SMAP SMC (n = 2), and IMERG precipitation amount (n = 1) (Tables 2
and 3).

Table 3. Hydrological features.

N Feature Reference
1 Total precipitation (5 days) [50]

2 Top layer SMC (0-5 cm) [46]

3 Root zone SMC (0-100 cm)

3.4. Machine Learning Modelling Set-Up

First, SMAP and IMERG features (i.e., top layer SMC, root zone SMC, and total
precipitation) were considered as independent features to assess their potential for SMC
mapping across agriculture field (scenario-1). Then, S1 features were aggregated to the
independent features to assess the potential improvement in SMC estimates brought by S1
features. To assess the potential of S1 features obtained from single scenes and composite
images, different scenarios were considered. First, only S1 features obtained from the single
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scenes were considered (scenario-2); second, only S1 features obtained from the composite
images were considered (scenario-3); and finally, S1 features obtained from both the single
scenes and the composite images were considered (scenario-4) (Figure 2).

2
Qo>

Y
| RF [ XGB| DT | GB |

Figure 2. SMC modeling framework flow chart. Note that the 8 PIs and 36 TIs were computed from
both the S1 images acquire during field soil sampling and the corresponding composite image.

Multi-collinearity is a common issue in machine learning that reduces the robustness
of models because of redundancy in the chosen independent features. To mitigate this, the
Recursive Feature Elimination Cross Validation (RFEcv) algorithm was employed to identify
the subset of independent features that provides the best performance [64]. As a model-
specific feature selection technique (a wrapping method), RFEcv is executed independently
for each model. The model undergoes iterative runs, eliminating one redundant feature
at a time until the model’s performance experiences the smallest decline. In this process,
the 10-fold cross-validation is used, with the Root Mean Square Error (RMSE, Equation (1))
serving as the objective function. Afterward, the Variance Inflation Factor (VIF) is applied
to the subset of independent features selected by RFEcv to further reduce multi-collinearity.
Only independent features with a VIF lower than 10 are retained [65]. This two-step feature
selection process (RFEcv, VIF) was selected, as it considerably improved machine learning
outputs [35]. It is worth mentioning that, due to the low number of independent features in
scenario-1 (n = 3), no multi-collinearity issue was expected for this scenario, and therefore,
the above-described two-step feature selection was only applied to scenario-2, -3, and -4.

Finally, each machine-learning model (RF, GT, GB, and XGB) was trained using 70%
(n = 116) of the total learning database observations (n = 166) and validated using the
remaining 30% of the observations (n = 50) not used during the training. The 70-30%
splitting was based on a random selection among all available observations (n = 166). To
ensure consistent comparisons among all the considered model and scenario combinations,
the same splitting was used for all considered set-ups, so that each model and scenario
combination was trained and validated with the exact same observations.

The models’ output reliability was assessed using the coefficient of determination (R?,
Equation (3)) and the Root Mean Square Error (RMSE, Equation (4)).

n —\2
R2 — ie1(Pi —0) 3
" (0 —0) o

1
RMSE = \/ SODHET(CES 0)* @)
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where n represents the number of samples, and P; and O; represent the predicted and
observed values of SMC at the site i, respectively, and 0 represents the average of the
observed values.

4. Results
4.1. TDR-150 Field Scout Reliability

Figure 3 shows the correlation between SMCs obtained (i) with the TDR-150 Field
Scout and (ii) in laboratory (gravimetric method). With an R? and an RMSE of 0.98 and
2.8%, respectively, the TDR-150 Field Scout provides reliable SMC estimates across the
considered region. It is worth mentioning that laboratory SMC measurements are also
subject to uncertainties because of the loss of humidity during the transport from the
sampling site to the laboratory. In consequence, SMCs obtained through the TDR tend to be
slightly superior to the SMCs obtained in the laboratory (Bias = 2.6%, Figure 3). According
to this result, the SMCs obtained through the TDR-150 Field Scout are used as a reference
(i.e., target) in this study.

Figure 3. Scatter plot of SMCs obtained in the laboratory and with TDR-150 Field Scout.

4.2. Feature Selection and Importance

Figure 4 shows the feature importance (FI) of the selected independent features for each
model and scenario-2, -3, and -4 (SMAP + IMERG + S1). FI was obtained from the models
during the training step. It quantifies the respective contribution of each independent
variable in the output prediction. For all scenarios (-2, -3, and -4), “total precipitation”
(IMERG) and “top layer soil moisture” (SMAP) were identified as the most relevant features,
together accounting for more than 60% of the FI for all considered models and scenarios.
Precipitation is of particular importance, because it is the main driver of SMC variations for
the studied soils. Moreover, “root zone soil” SMC has a very low FI value (close to 0) for all
scenarios and models, as (i) target observations are superficial, so not necessarily correlated
to deeper SMC (i.e., “root zone soil” SMC), and (ii) “root zone soil” SMC, through the
assimilation of SMAP observation, turns into a land surface model with its own uncertainties.
It can be explained with the difference between “root zone soil” depth (0-100 cm) and SMC'’s
use as a target (0-10 cm). Actually, no clear relationship between top layer (0-10 cm) and
in-depth layer (0-100 cm) SMC is observed across semi-arid regions, as the top layer SMC is
expected to dry faster than the in-depth layer.

Even if S1 had been previously used to retrieve SMCs across different regions [9,36-38],
only three (four) were selected for the modelling using scenario-2 (scenario-3 and -4). Ac-
cording to their equations (Table 2), all PIs are quite comparable, and therefore combining
them is unlikely to offer any additional benefits.
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Similarly, 11 (15) TIs were selected for the modelling using scenario-2 and -3 (scenario-
4), with a majority of TIs based on VV. The dominance of VV TlIs is in line with previous
studies highlighting a higher SMC sensitivity to VV than to VH polarization [31,34,66]. It is
worth mentioning that same TIs are selected for all scenarios, with some TIs (VH imcorr1,
VH imcorr2, VV corr) considered twice in scenario-4 (i.e., derived from both the single
scenes and composite images).

Finally, even if S1 independent features present low FI values (Figure 4), put together,
they contribute approximately 7% to 39% in the modelling process (Figure 4). This indicates
that S1 improves SMC estimates at higher spatial resolution (i.e., 20 m). Actually, IMERG
and SMAP bring relevant information for the SMC temporal dynamic, whereas S1 brings
relevant information for the SMC spatial dynamic.
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Figure 4. Feature importance values for selected independent features and scenario-2, -3, and -4 (a,b,c,
respectively), along with cumulative feature importance for IMERG, SMAP, and S1 independent
features. Note that S1 features are computed with the composite images ending with “_mean”.

4.3. Soil Moisture Estimates Evaluation

The comparison of scenario-1 with scenario-2, -3, and -4 shows that the integration of
S1 features quite substantially improves the SMC estimates. Indeed, for each model, higher
R? and lower RMSE are obtained with scenario-2, -3, and -4.

Except for the DT model, the consideration of S1 features (scenario-2, -3, and -4) sys-
tematically improves the SMC estimates (Table 4). Even if composite images are generally
recommended to minimize local noise [35,67,68], the results show that more reliable SMC
estimates are obtained when considering the single scenes (scenario-2) rather than the com-
posite images (scenario-3) (Table 4). Yet, the combination of the two (scenario-4) provides
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the most reliable SMC estimates for all considered models showing the complementarity of
single scenes and composite images.

Table 4. Performance of ML models with (SF) and without (TF) feature selection.

Model Metric Scenario-1 Scenario-2 Scenario-3 Scenario-4
(Training/Validation) (Training/Validation) (Training/Validation) (Training/Validation)

RE R? 0.56/0.73 0.90/0.82 0.90/0.79 0.90/0.84
RMSE (%) 4.96/3.49 2.35/2.86 2.36/3.09 2.35/2.67

XGB R? 0.57/0.73 0.95/0.79 0.96/0.73 0.96/0.84
RMSE (%) 4.96/3.47 1.52/3.05 1.49/3.49 1.49/2.67

CB R? 0.57/0.73 0.95/0.81 0.95/0.79 0.95/0.86
RMSE (%) 4.96/3.47 1.70/2.92 1.77/3.05 1.63/2.55

DT R? 0.57/0.73 0.96/0.64 0.96/0.64 0.96/0.83
RMSE (%) 4.96/3.47 1.49/4 1.49/4 1.49/2.80

Where TF = all features; SF = selected features with RFEcv and VIE.

When comparing scenario-1 with scenario-4, an R? increase of approximately 15%,
13.5%, 16%, and 12% is observed at the validation step for the RF, XGB, GB, and DT model,
respectively. Similarly, an RMSE decrease of 15%, 14%, 18%, and 10% is observed at the
validation step for the RF, XGB, GB, and DT model, respectively. These results underline
the effectiveness of the S1 integration in the SMC mapping at high spatial resolution.
Overall, based on scenario-4, all models provide reliable SMC estimates (RZ > 0.83 and
RMSE < 3.15%), with GB performing the best (R = 0.86 and RMSE = 2.55%).

Scenario-1's good fit (R? > 0.73) is due to an outlier compensation effect (Figure 5a,c,e,g)
because the low spatial resolution of SMAP and IMERG (11 x 11 km) does not allow captur-
ing SMC spatial variation occurring at the agriculture field level, as both considered plot fall
in the same pixel. This is clearly observable through the horizontal line that corresponds
to the same field sample collection date, for which SMAP and IMERG attribute the same
value to all collected soil sample, whereas all these samples present very contrasted SMC
values (Figure 5a,c,e,g). This aspect is considerably attenuated with the integration of S1
features (scenario-2, -3, and -4) (Figure 5). Actually, the high spatial resolution of S1 features
(20 x 20 m) allows capturing SMC variation occurring for the same date at the agriculture
field scale level and therefore the removal of the horizontal line (especially between 10%
and 17.5% SMC, Figure 5b,d,f,h).

This spatial discrepancy in between scenario-1 and scenario-2, -3, and -4 explains the
overfitting issue observed in scenario-1 with lower (higher) R? (RMSE) scores observed
during the training step than during the validation step. Actually, the coarse spatial resolu-
tion of scenario-1 features (11 x 11 km) cannot capture the SMC spatial variability across
the studied area. As a result, for each field visit, a unique combination of “root zone SMC”,
“top layer SMC”, and “total precipitation” is attributed to all the SMCs observed that day
at the different sampled points. As a result, when testing the models, the targeted SMC
to predict has high probability to be included in the SMC range used in the training step,
leading to an overfitting issue. This problem is avoided in scenario-2, -3, and -4 due to the
consideration of the 20 m spatial resolution feature (S1), insuring a better discretization of
the SMC spatial variability.
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Figure 5. Scatter plot comparing reference and prediction SMCs obtained with scenario-1, -2, -3, and
-4 for the validation step with (a-d) RF, (e-h) XGB, (i-1) GB, and (m-p) DT.

4.4. Soil Moisture Mapping

Figure 6 shows SMC maps derived from scenario-1 and -4 for 4 September 2023. It is

worth mentioning that, as SMC maps derived from scenario-1 are similar for all considered

models, Figure 6 only shows SMC maps obtained with the RF model. Similarly, as scenario-

4 is more reliable than scenario-2 and -3 (Table 4, Figure 5), Figure 6 only shows maps

obtained with scenario-4.
Due to SMAP’s and IMERG’s low spatial resolution (11 x 11 km), SMC maps based on
scenario-1 show a uniformity in the study area (Figure 6a). Conversely, SMC maps based

on scenario-4 present SMC variability in space that confirms the benefit of S1 features’” high

spatial resolution (20 x 20 m) for the redistribution of SMAP SMC estimates (i.e., top layer

soil moisture) at the sub-grid scale.

Although the models generated comparable metrics during the validation step

(Table 4), significant differences are observed in the spatial distribution of the predicted

SMCs. XGB and DT produced a more homogeneous SMC mapping in the agricultural plots,

with values ranging between 6 and 8%. In contrast, RF shows a more marked variability in

SMC, identifying sectors with up to 11% moisture. GB, on the other hand, reports a more

balanced SMC distribution and greater agreement with reference SMC (Figure 6).
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Figure 6. 4 September 2023 SMC maps derived from (a) RF with scenario-1, and using scenario-4
with (b) RE (c) XGB, (d) GB, and (e) DT.

5. Discussion

Despite S1’s opportunity to substantially increase SMC estimates spatial resolution and
accuracy (Figures 5 and 6, Table 4), its 12-day revisit time does not allow daily monitoring.
In this context, several studies combine daily MODIS optical/infrared and/or land surface
temperature (LST) estimates to achieve continuous SMC estimates [18,25-27]. However,
these MODIS datasets are available at coarse spatial resolution (i.e., 500 m) and for clear
sky conditions. Therefore, high spatial (i.e., 20 m) and temporal (i.e., daily) resolution SMC
mapping from satellite still represents a challenge to investigate.

Despite its low spatial resolution (11 km), IMERG precipitation estimates play a funda-
mental role in SMC mapping (Figure 3). Therefore, satellite-based precipitation estimates
available at higher spatial resolution should considerably improve SMC mapping. As avail-
able satellite-based precipitation estimates across the region are only available at kilometric
spatial resolution [69,70], a spatial downscaling procedure should be considered to obtaina
precipitation estimates at high spatial resolution. In this line, the method proposed by [47]
that integrates MODIS cloud optical and microphysical properties to improve IMERG spatial
resolution from 11 km to 1 km could be used as a guideline. On the other hand, evapo-
transpiration (ET) is highly correlated with SMC in areas with poor vegetation cover [71].
Therefore, the integration of satellite-based ET estimates in the presented modelling ap-
proach should improve SMC estimates. Yet, satellite-based ET estimates rely on optical /IR
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data (i.e., SEBAL [72,73], SSEBop [74], METRIC [75]) that are only available for clear sky
conditions, preventing daily monitoring.

Topography plays a crucial role in SMC dynamics [76], as it provides essential infor-
mation for identifying depressions and areas prone to water accumulation, which in turn
influence soil moisture levels. Numerous studies have demonstrated the benefits of incorpo-
rating topographic data as an independent variable in machine learning (ML) models for soil
moisture mapping [77-79]. A study conducted in the UK found that using a high-resolution
digital elevation model (DEM) derived from drone imagery significantly improved the relia-
bility of ML models for predicting soil organic carbon in plowed fields [80]. Considering
that microtopography in plowed areas is recognized as a key factor influencing the spatial
distribution of soil moisture [81,82], incorporating such a detailed DEM could substantially
enhance the performance and reliability of SMC predictions. It is worth mentioning here
that freely available DEMs (i.e., SRTM) are not suitable for such a purpose. Indeed, these
DEMSs were retrieved from a single date, so the topography at that time might differ from
the present one, especially across agriculture plots where plough practices considerably
change microtopographic features.

In this study, the RFE wrapper features selection has been selected based on previous
studies reporting on its efficiency [35,64]. However, other wrapper features selection such
as the Genetic Algorithm (GA) or Sequential Feature Selector (SFS) have also proven their
efficiency. Actually, the reliability of machine learning models (e.g., RF and Support Vector
Machine (SVM)) significantly increases when using the GA or SFS with GA, being more
suitable than SFS for SVM models [67,83]. Similarly, by default, hyper-parameter values
have been used in this study for all the considered models (i.e., RE, XGB, GB, DT). However,
hyper-parameters tuning techniques such as the grid-search function could be used to
increase model performance and prevent model overfitting or underfitting [83-87]. In this
context, future studies should consider combining hyper-parameter tuning with different
feature-selection processes (i.e., RFE, GA, and SFS) to ensure an as efficient as possible
modelling set-up.

Finally, this study relies on the consideration of single models. However, recently,
machine learning model stacking strategies have been successfully applied to downscale
SMAP SMC estimates to 1 km [38] and to estimated SMC at 30 m spatial resolution [88].
Both studies show that the stacking modelling approach outperforms the single modelling
approach [38,88]. In this context, a stacking modelling approach integrating the above-
mentioned datasets (i.e., high spatial resolution satellite-based precipitation, evapotranspira-
tion, and digital elevation models) constitutes a very promising approach to substantially
improve SMC mapping.

It is worth mentioning that S1 polarizations are not only sensitive to SMC but also to
soil roughness and vegetation cover [89,90]. As the models were calibrated and validated
across two agriculture plots with intrinsic soil roughness and vegetation cover, these models
can only be used to estimate SMC across areas with similar features (i.e., soil roughness,
vegetation cover). Indeed, different soil roughness and/or vegetation cover will result in
different S1 polarization, even for a similar SMC range as the one considered in this study.
As these models were not trained for such combinations, they will inevitably fail to retrieve
SMC in different areas. To minimize such inconsistency, additional observations from areas
with different soil roughness and vegetation cover should be added to the learning database.

6. Conclusions

This study assesses the integration of several remote sensing datasets (i.e., SMAP,
IMERG and S1) in advanced machine learning techniques for Soil Moisture Content (SMC)
mapping at high spatial resolution (20 m). For this task, different machine learning models
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(Random Forest—REF, Extreme Gradient Boosting—XGB, Gradient Boosting—GB, and
Decision Tree—DT) are considered. The key findings can be summarized as follows:

- Top-layer SMC derived from L-band sensors (i.e., SMAP) and precipitation (i.e.,
IMERG) are predominant factors in SMC monitoring.

- Even if accurate SMC (R? > 0.73; RMSE < 3.15%) can be obtained considering only
precipitation and top-layer SMC, the coarse spatial resolution (i.e., 10 km) of these
datasets cannot capture SMC spatial variation at the agriculture plot scale.

- Adding Sl-based features to IMERG precipitation and SMAP top-layer SMC sub-
stantially improved SMC estimates derived from all considered models, with an R?
(RMSE) increase (decrease) ranging from 12% to 16% (10% to 18%) depending on the
considered model (with scenario-4).

- Sl-based features allow the spatial downscaling of SMC estimates obtained through
SMAP and IMERG from 10 km to 20 m. In this process, S1 features derived from single
scenes alone lead to more reliable SMC estimates than the consideration of S1 features
derived from composite images alone, and the combination of the two provides the
most reliable SMC estimates for all considered models.

- Among the considered models, the GB model (with scenario-4) achieved the highest
reliability, with an R? and RMSE of 0.86 and 2.55%, respectively.

The significance of this research lies in its innovative application of remote sensing data
and machine learning to address the challenges of SMC estimation at the agriculture plot
level to provide a valuable tool for precision agriculture. By effectively downscaling SMAP
data using Sentinel-1 (from 10 km to 20 m), our approach not only enhances spatial resolu-
tion but also improves the reliability of SMC estimates. The practical applications of these
findings may support stakeholders and policymakers to make informed decisions about
water resource management (i.e., irrigation) towards sustainable agriculture management
strategies. The proposed framework can serve to assess the impacts of climate variability on
SMC dynamics to provide complementary insights to support climate-resilient agricultural
practices. Even if this study can serve as a blueprint for similar applications in different
regions, further research should focus on refining this method by considering (i) the same
independent features (i.e., precipitation, top layer SMC) at a higher spatial resolution,
(ii) additional independent features, controlling SMC variability in space and time (e.g.,
evapotranspiration, soil properties), and (iii) more complex machine-learning approaches
(e.g., stacking).
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