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• Oxidative potential (OP) is as a new 
metric for air quality.

• We develop and describe a new method 
to model OP (for AA and DTT assays).

• The simulation of particulate matter and 
OP is evaluated against observations.

• In France, sources contributing the most 
to aerosol mass do not have the highest 
OP.

• Road traffic and biomass burning are 
often the sources with most OP.

A R T I C L E  I N F O
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A B S T R A C T

The oxidative potential (OP) of particulate matter (PM) has emerged as a promising indicator of the adverse 
effects of PM on human health. In particular, OP is an indicator for oxidative stress in biological media through 
formation of reactive oxygen species. To provide a mapping of the spatial and temporal OP variability over 
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France, we have developed a strategy to simulate the volume-normalized oxidative potential (OPv) in the state- 
of-the-art CHIMERE air quality model over the metropolitan French territory for the years 2013 and 2014. To do 
so, we combined a measurement-derived and source specific intrinsic OP (OPi) receptor modelling approach with 
Particle Source Apportionment Technology (PSAT) in CHIMERE. First, the model’s ability to reproduce PM10 
concentrations and speciation was verified using in situ observations in mainland France. Furthermore, a mostly 
satisfying correspondence between receptor model and PSAT outputs was obtained considering their source 
specific chemical profiles. Simulated versus observed OPv values showed median correlations ranging from 0.35 
to 0.60 and mean fractional biases from − 30 % to zero, depending on the OP assay considered (ascorbic acid AA, 
or dithiothreitol DTT) and the PM sources taken into account (i.e. two methods with different PM sources have 
been used, the reduced and the extended set methods). The modelled two-year average OPv fields show greater 
spatial hot spots over large urban areas (especially along roadsides) compared to those for PM10 distributions, 
due to elevated intrinsic OPi values for the primary anthropogenic sources such as traffic and biomass burning. 
These effects are stronger for the AA compared to the DTT assays, and for a method with a reduced set compared 
to an extended set of sources. Overall, through the OP apportionment, these results advocate for reinforcing 
action plans to reduce emissions from road traffic as well as biomass burning emissions.

1. Introduction

Epidemiological studies have shown that air pollution causes and 
exacerbates respiratory and cardiovascular diseases while also playing a 
role in the course of other diseases such as obesity, diabetes or psychotic 
disorders (Brook et al., 2010; Pignon et al., 2022; Weichenthal et al., 
2014). In particular, atmospheric aerosols are considered to have the 
greatest impact on human health, possibly accounting for about 90 % of 
the sanitary impact of air pollution (Lelieveld et al., 2015). For instance, 
in France, it is considered that around 40,000 people die prematurely 
every year in France because of fine particulate pollution, although 
Europe is far from the most polluted region in the world (Adélaïde et al., 
2020).

In order to reduce the health risks linked to the inhalation of airborne 
particles, the World Health Organization recommends yearly concen
tration thresholds of 15 μg m− 3 and 5 μg m− 3 for particulate matter with 
aerodynamic diameter below 10 μm (PM10) and 2,5 μm (PM2.5), 
respectively (WHO, 2021). These drastic thresholds rely solely on the 
mass concentration of particulate matter (PM), not considering their 
chemical composition or sources, which can lead to an obvious bias. 
Indeed, at equal mass concentrations, the aerosol toxicity can be very 
different, with combustion sources potentially more damaging 
compared to others (e.g., Park et al. (2018)). Increasing our knowledge 
on the sources of greater health concern would allow targeting pollutant 
emission reductions more efficiently. It is therefore vital to search for 
better indicators of aerosol toxicity rather than looking at particulate 
mass. With this objective in mind, the PM oxidative potential (OP) has 
been proposed as a new metric to be considered in air quality monitoring 
(e.g., Steenhof et al., 2011). Epidemiological studies also indicate that 
OP may be a relevant indicator of acute effects of aerosols on human 
health (Bates et al., 2019; Gao et al., 2020). OP is then a promising 
health-based metric for air quality listed as recommended in the new EU 
directive 2024/2881/CE.

OP measures the ability of particles to generate oxidative stress in the 
body induced by exogenous reactive oxygen species (ROS) such as OH, 
HONO or superoxide ions (Ayres et al., 2008; Cho et al., 2005; Li et al., 
2009; Sauvain et al., 2008). When in excess, ROS deplete the lung an
tioxidants and may lead to imbalance between oxidants and antioxi
dants. This potentially induces oxidative stress, defined as oxidative 
damage to any cell material and ultimately inflammation at the origin of 
biological health endpoints (Costabile et al., 2019; Karavalakis et al., 
2017; Steenhof et al., 2011; Weichenthal et al., 2016). The antioxidant 
depletion can now be measured by spectrophotometry after exposing 
PM filters into a simulated lung fluid according to different protocols 
using different lung antioxidants or surrogates such as ascorbic acid 
(AA) and dithiothreitol (DTT) (Calas et al., 2017). The kinetic depletion 
rate is then taken as the oxidative potential. To date, there is no clear 
consensus on which assay – or assay’s combination – should be 
considered as the more relevant indicator, but recent epidemiological 

studies show that OPv
AA appears to be associated to biomarkers of 

inflammation (Leni et al., 2020; Marsal et al., 2024) and that OPv
DTT is 

relevant for various health outcomes (Gao et al., 2020). Collective 
research efforts are still needed to harmonize protocols to ensure a better 
consistency among epidemiological studies.

As it is impossible to identify all the chemical species that make up 
PM and contribute to the OP, an alternative is to use their contributions 
from sources, which eliminates the need for such detailed knowledge. As 
previously developed in the China by Liu et al. (2014) and in the USA by 
Verma et al. (2014), attribution of the OPv to aerosol sources by a PMF 
receptor model including uncertainties was pioneered in France by 
Weber et al. (2018) allowing to extract OP per mass unit (OPi) of PM for 
given source at specific measurement sites. A more recent study of 
Weber et al. (2021) highlighted biomass burning and traffic emissions as 
the main OP sources at the national level. While more information is still 
needed from observations, one of the next steps in the research related to 
OPv is to be able to model aerosol OPv with chemistry transport models 
(CTM).

Regional CTMs are tools that are already used for operational air 
quality forecasting in France (Rouil et al., 2009) and in Europe (Marécal 
et al., 2015). They can also be used for a posteriori epidemiological 
studies (Adélaïde et al., 2020) and future projections dedicated to sup
port air quality and climate control policies (Cholakian et al., 2021; 
Fortems-Cheiney et al., 2017). Adding the oxidative potential to the list 
of simulated species and indicators in these models would be very useful, 
given its close relation to the ability of aerosols to trigger inflammatory 
processes and thus its capacity to evaluate health exposure and associ
ated pollution sources (as for example done within the EU Green Deal RI- 
URBANS project for future Copernicus applications).

The first modelling of the oxidative potential of aerosols was focused 
on PM2.5 over the Eastern US using the DTT test and the CMAQ model 
(Bates et al., 2018). Using multiple linear regressions with the measured 
OP by air volume (OPv) and the source concentrations in the model, the 
authors were able to obtain the intrinsic oxidative potential (OPi, OP per 
mass of PM) of sources. While the results show a higher OPi for com
bustion sources, these results were obtained with a relatively limited 
OPv dataset available for validation (with a total number of only 187 
samples from 4 sites). In Europe, the first OPv modelling effort used 3 
different OPv tests (among which AA and DTT assays), with a larger 
number of sites and samples compared to the United States study, and 
was performed with the CAMx model (Daellenbach et al., 2020). 
Following a similar approach to the one presented in Weber et al. 
(2021), an intrinsic OPi value per source was estimated from a multiple 
linear regression between OPv measurements and PM10 factor concen
trations obtained from PMF studies for the same sites. The PMF factors 
(mainly organic) were then matched to the simulated sources to repre
sent the oxidative potential of total PM10.

The objectives of this paper are to develop an OPv modelling tool 
based on extensive OPv observations over France, related to source 
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apportionment studies, and embedded within a chemistry-transport 
model. The aim is to simulate OP to evaluate its spatial and temporal 
variability over western Europe with a focus over France, and investi
gated the contributions of the different sectors of activity. Such an 
approach is novel for air quality models. With respect to Daellenbach 
et al. (2020), this work is based on an enhanced observational data set, 
in terms of variety of sites and chemical composition, allowing to 
address a larger and more variable set of PM sources (Weber et al., 2018, 
2021). In this study, both approaches with a reduced and an extended 
set of sources will be compared. The CHIMERE-v2020r3 model (Menut 
et al., 2021) was used, in a specific configuration allowing to quantify 
PM sources obtained by a Source Apportionment Technology (PSAT) 
method implemented into the model. Two years (2013–2014) of simu
lations have been performed to evaluate the model’s ability to reproduce 
the observed PM mass concentrations, the chemical composition and 
finally the measured PM oxidative potential. The current work focuses 
on an analysis of sources and variability of the simulated OPv.

2. Material & methods

2.1. Observations

The years 2013 and 2014 were chosen because of the largest avail
ability of sites where concurrent chemical characterizations, PMF 
studies, and OPv measurements are available over France during a 
period suitable for such modelling work.

2.1.1. PM10 concentrations measurements
The PM10 concentration datasets are derived from continuous mea

surements performed by French regional air quality monitoring net
works (AQMN). Datasets from a total number of 699 stations are 
available in metropolitan France for 2013 and 2014. Briefly, two auto
matic techniques were used at that time by AQMN depending on the site: 
tapered element oscillating microbalances equipped with filter dynamic 
measurement systems (TEOM-FDMS, Thermo Scientific), and beta ra
diation absorption analysers (Met One BAM 1020 and ENVEA 
MP101M).

2.1.2. Chemical composition
As described by Favez et al. (2021), the French air quality monitoring 

network is associated with various research projects and programs, 
converging into a unique operational system for the chemical charac
terization and subsequent source apportionment of urban aerosols at the 
national level, known as the CARA program. Additional measurements 
used in this paper also come from other research programs, like the one 
conducted at the OPE site (Borlaza et al., 2022).

For datasets used herein, organic and elemental carbon (OC, EC) 
were measured by thermo-optical analysis using the EUSAAR2 protocol 
(Cavalli et al., 2010); sugars by liquid chromatography using pulsed 
amperometric detection (Verlhac et al., 2013; Yttri et al., 2015); mea
surement protocols are detailed in Samaké et al., 2017, 2019a,b and 
Weber et al., 2021; the water-soluble inorganic fraction (NO3

− , SO4
2− , 

Cl− , Na+, NH4
+, K+, Mg2+, Ca2+) was measured by ion chromatography 

(Jaffrezo et al., 2005); Methane sulfonic acid (MSA) as well is measured 
by ion chromatography (Weber et al., 2021); trace elements (Al, Ag, As, 
Ba, Be, Br, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, La, Li, Mn, Mo, Na, Ni, Pb, Pd, Pt, 
Rb, Sb, Sc, Se, Sn, Sr, Ti, V, Zn, Zr) were determined by inductively 
coupled plasma using mass spectrometry or atomic emission spectros
copy (Alleman et al., 2010; Mbengue et al., 2014). These measurement 
protocols, including OP measurements, have been detailed in previous 
studies (Calas et al., 2017, Borlaza et al., 2021a, 2021b; Dominutti et al., 
2023; Weber et al., 2019).

The present study is benefiting from PM10 chemical speciation 
datasets obtained for 13 different sites and a total number of 2309 daily 
filter samples. The locations of these sites are illustrated in Fig. 1, while 
Table 1 provides details on the number of available samples and their 
temporality.

2.1.3. Source apportionment by a receptor model
Positive Matrix Factorization (PMF) has become the most widely 

used receptor model for identifying factors contributing to aerosol 
concentrations (Belis et al., 2020; Grange et al., 2022; Paatero and 
Tapper, 1994; Waked et al., 2014; Weber et al., 2019). In our work, PMF 
analyses have been previously conducted using off-line filter-based 
chemical composition and factor-specific tracers as input data, using a 

Fig. 1. Location and type of sites used for PM10 chemical composition, PMF factor apportionment and oxidative potential measurements from filters over the years 
2013 and 2014.
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harmonized methodology for each site (Weber et al., 2021). In this 
study, source apportionment results are obtained for a total number of 
891 daily samples collected at 8 sites from early 2013 to end of 2014 
(Table 1). Table 2 summarizes the PMF outputs factors along with the 
main chemical species considered as specific tracers for each of them.

2.1.4. Oxidative potential measurements
On most sites with available source apportionment, measurements of 

the OP were carried out, after an extraction at iso-concentration to allow 
sample comparison from different environments. The core protocols 
include extracting the aerosols from the filters in a simulated lung fluid 
(Gamble’s solution with an additional lung surfactant) at internal body 
temperature (37.4 ◦C) without further filtration, a method that allows 
both the soluble and insoluble parts of the samples to be extracted. To 
measure the OP via the production of reactive oxygen species (ROS) by 
PM, these extracts are put in contact with two lung anti-oxidants or 
surrogates: Ascorbic acid (AA) on the one hand and dithiothreitol (DTT) 
on the other. ROS production is indirectly measured through AA and 
DTT depletion over 30 min by spectrophotometry at 265 and 412 nm, 
respectively. Measurement protocols are described in Calas et al. (2017), 
Calas et al. (2019), and Dominutti et al. (2023).

The intrinsic oxidative potential (OPi) per PMF factor was deter
mined by multiple linear regression between the PM10 mass concen
trations of the factors and the volume oxidative potential (OPv) (Dinh 
Ngoc Thuy et al., 2024; Weber et al., 2018, 2019).

Finally, the dataset of OP observations comprises a total of 829 daily 
measurements obtained from 8 sites for the years 2013 and 2014. 
Table 1 provides a comprehensive breakdown of these sites used for 
source attribution, including details such as the time period covered and 
the number of data points collected at each site.

2.2. Regional modelling

2.2.1. The chemistry transport model WRF-CHIMERE
CHIMERE is a Eulerian state-of-the-art regional chemistry transport 

model (Menut et al., 2021). It is used operationally by the French plat
form PREV’AIR and the Copernicus Atmospheric Modelling System 
(CAMS) (Marécal et al., 2015) to forecast and monitor air quality. The 
v2020r3 version of CHIMERE coupled with the Weather Research 
Forecast (WRF, v3.7.1) meteorological model (Skamarock et al., 2008) 
has been used for this study.

For organic aerosol formation and gas/particle partitioning of pri
mary organic aerosol, the volatility basis set (VBS) for the organic spe
cies as described in Cholakian et al. (2018) was activated. Resuspension 
is taken into account by the model only in urban meshes and attributed 
to primary mineral particles (Loosmore, 2003). The EMEP anthropo
genic emission database with a resolution of 10 km2 provided input data 
for anthropogenic emissions (Mareckova et al., 2018). Biogenic volatile 
organic compound (VOC) emissions come from the MEGAN2.1 model 
(Guenther et al., 2012), NO from soils has been added from EMEP in
ventories, and biogenic primary organic aerosols are simulated as fungal 
spores using the Heald and Spracklen scheme (Heald and Spracklen, 
2009). The implementation of the latter source into CHIMERE and its 
evaluation is presented in Vida et al. (2024). Global CAMS reanalysis 
(Inness et al., 2019) fields are used as initial/boundary conditions with a 
3-hourly temporal resolution, providing information on chemical con
centrations outside the selected area (Marécal et al., 2015). NCEP-FNL 
1◦ × 1◦ (NCEP, 2000) resolution global fields are used as boundary/ 
initial conditions for the WRF model.

The simulation has been carried out on a western European domain 
with a 9 × 9 km2 horizontal resolution. CHIMERE was run on 9 vertical 
hybrid levels from ground to an upper height of 500 hPa, the height of 
the first layer being around 20 m. The model was run in its default 10 bin 
size configuration for PM size, starting from 0.01 μm and going up to 40 
μm in a logarithmic sectional distribution.

As mentioned above, we chose to simulate two complete years, 2013 
and 2014, with a temporal resolution 1 h for the outputs. This period 
was chosen to maximize the number of OPv observations available while 
maintaining a reasonable calculation time and having the possibility of 
carrying out a multi-annual analysis of results.

2.2.2. Sources apportionment and tagging
In our approach, incorporating the PM source information into the 

model is essential for modelling the OP accurately. The Particulate 
Source Apportionment Technology (PSAT) developed by Wagstrom 
et al. (2008) allows to track the contribution of both primary emissions 
and secondary formation processes for PM concentration. Tagging was 
preferred to other source tracking methods such as for example brute 
force simulations because of its cost-effectiveness in terms of calculation 
time (with only approximately twice the duration of a standard simu
lation). The sources used for PSAT are the sectors of activity in the 
Selected Nomenclature for Air Pollution (SNAP) obtained through a 
correspondence matrix between Nomenclature For Reporting (NFR) and 

Table 1 
Summary of the number of daily filters analysed for PM10 composition, PMF factor apportionment and oxidative potential measurements over the years 2013 and 2014 
at different French sites. The measurement period and geographical coordinates (latitude; longitude; altitude) are also indicated.

Sites Coordinates 
(lat; lon; alt)

Measurement period Composition PMF OPv

Aix-en-Provence 43.53; 5.44; 192 m 18.07.2013–13.07.2014 117 56 59
Andra-OPE 48.55; 5.46; 386 m 01.01.2013–29.12.2014 98 / /
Grenoble 45.16; 5.74; 219 m 02.01.2013–29.12.2014 243 240 240
Lens 50.44; 2.83; 47 m 05.04.2013–26.09.2014 158 167 /
Marseille 43.30; 5.39; 73 m 01.06.2014–31.12.2014 95 / /
Nice 43.70; 7.29; 11 m 04.06.2014–31.12.2014 89 77 62
Nogent-sur-Oise 49.28; 2.48; 28 m 02.01.2013–31.12.2014 220 155 135
Petit-Quevilly (Rouen) 49.43; 1.06; 9 m 01.01.2013–01.06.2014 254 / /
Port-de-Bouc 43.40; 4.98; 3 m 01.06.2014–31.12.2014 84 80 70
Revin 49.91; 4.63; 394 m 02.01.2013–26.09.2014 192 / /
Roubaix 50.71; 3.18; 31 m 20.01.2013–08.09.2014 175 / 159
Strasbourg 48.59; 7.74; 139 m 02.04.2013–31.12.2014 108 78 78
Talence (Bordeaux) 44.80; − 0.59; 20 m 03.01.2013–31.12.2014 476 38 26

Table 2 
PMF factors and associated species used as tracers from Weber et al. 
(2021).

Factors Tracers

Biomass burning Levoglucosan, OC, EC, K, Rb
Primary traffic OC, EC, Cu, Fe, Sb, Sn
Dust Al, Ti, Ca
Primary biogenic Arabitol, mannitol, OC
Aged salt Na, Mg, SO4

2− , NO3
−

Nitrate-rich NO3
− , NH4

+

Sulfate-rich SO4
2− , NH4

+, Se
MSA rich Methane Sulfonic Acid (MSA)
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SNAP. For each species represented in the model, the contribution of 
different activity sectors present in the emission inventories is obtained 
(Table 3). The model not only explicitly accounts for natural sources 
such as mineral dust, marine emissions (Na, Cl, SO4

2− ), biogenic emis
sions (BPOA, BSOA, NO), but also for boundary conditions and for 
resuspension of primary particulate matter (PPM).

2.3. Description of OPv modelling methods

To simulate OPv spatial and temporal variations, we express the 
volume OP (OPv in nmol min− 1 m− 3) as the sum, for all the PM sources, 
of the products of intrinsic OP (OPi in nmol min− 1 μg− 1) and source mass 
contribution for each source (μg m− 3) (Eq. (1)). OPv varies as a function 
of time (t) and the antioxidant/reducer used (a), OPi varies as a function 
of the sources considered (s). 

OPa
v(t) =

∑

s

(
OPs,a

i *Cs(t)
)

(1) 

Since the intrinsic oxidative potential OPi of all individual chemical 
species contributing to the PM mass is not known, the general idea 
behind this method is to use the OPi obtained for the different PM 
sources composing the PM, as observed from ambient concentrations 
field studies (Daellenbach et al., 2020; Weber et al., 2021). OPi values 
will be combined with simulated source concentrations Ct,s obtained by 
PSAT corresponding in a best possible way to the initial sources (from 
PMF) used to determine OPi. Using Eq. (1), we can thus simulate the 
volumetric OPv.

2.3.1. OPv modelling method based on a reduced set of sources
This first method to obtain the source contribution to OP is based on 

the work of Daellenbach et al. (2020) and is also using Eq. (1). For this 
method, Cs in the equation is the concentration of PM sources for a 
specific time (t) derived by PMF. OPi

s represents the corresponding 
intrinsic oxidative potential (nmol min− 1 μg− 1), obtained by multiple 
linear regression between OPv measurements and PMF factor concen
trations Cs, as obtained by Daellenbach et al. (2020). The method is 
specific for a set of sources restricted to different organic aerosol frac
tions (see Table 4) that have been obtained from Aerosol Mass Spec
trometer (AMS) measurements and PMF analysis at 5 sites in 
Switzerland, together with OP measurements also performed at IGE 
(Institut des Géosciences de l’Environnement) according to the same 
protocols used for our French samples. In addition, the authors added a 
vehicular-wear source constrained by transition metal filter-based 
measurements. Based on specific OP measurements from synthetic so
lutions of reference compounds, the authors made the hypothesis that 
other aerosol species (especially inorganic salts such as ammonium 
sulfate and ammonium nitrate) were not contributing significantly to 
OPv.

One objective for our work is then to simulate the sources used in 

Daellenbach et al. (2020) with the CHIMERE model, in order to obtain 
the terms Ct,s, and to combine them with their intrinsic OPi values in Eq. 
(1) to obtain OPv. A correspondence table was therefore established 
between the initial sources in Daellenbach et al. (2020) and their 
calculation in CHIMERE based on the tagging of EMEP SNAP sectors 
with the PSAT method. Table 4 displays the correspondence between the 
PMF factors and the combination of sources tagged in the CHIMERE 
model as well as the values of the OPi for AA and DTT assays from 
Daellenbach et al. (2020). We assume that the “vehicular wear” factor 
directly corresponds to the simulated primary particulate matter (PPM) 
associated to the road transport SNAP and the resuspension. HOA 
(Hydrocarbonlike Organic Aerosol) represents organic aerosols origi
nating from fossil fuel combustion sources. In our simulation, we 
represent it as a combination of primary organic aerosols (POA) from 
main combustion sources (SNAP 1, 3, 7 and 8 described in Table 3). 
BBOA, the biomass burning organic aerosols factor from wood and plant 
burning is simulated by summing primary organic aerosol concentra
tions from SNAP 2 and 9 (Table 3). For ASOA (Anthropogenic Secondary 
Organic Aerosol) and BSOA (Biogenic Secondary Organic Aerosols) 
factors, we use the secondary organic aerosol concentrations directly 
simulated by the model which are attributed to explicit model species. 
ASOA correlates with the oxidation products of aromatic precursors 
from incomplete combustion and pyrolysis of lignin (Daellenbach et al., 
2019).

2.3.2. OPv modelling method with an extended set of sources
In addition to the first approach described in Section 2.3.1, a new 

method has been established and tested, directly based on the work of 
Weber et al. (2021). This second method enables the consideration of an 
extended set of aerosol sources when modelling the OP, as opposed to 
the reduced set of the first method. In this approach, intrinsic OPi is 
again obtained from multi-linear regression between observed OPv and 
aerosol sources obtained by PMF, but this time from 15 sites in France. 
In this study by Weber et al. (2021), the authors were careful to check, as 
much as possible, that the factors chosen were common to the different 
sites. This homogeneity of factors means that they can be extrapolated to 
the whole of France with greater confidence. The PMF results were not 
restricted to particular sources like in the reduced set approach for 
which factors associated to inorganic species were excluded.

In order to calculate OPi from Eq. (1), the challenge lies again in 
establishing a correspondence between the observation-based sources 
resulting from the PMF factors and the simulation-based sources derived 
from PSAT analysis (see Section 2.2.2), but in this case for an extended 
list of sources corresponding less directly to modelled species compared 
to the first approach (but much more to the phenomenology of the field 
measurements). The approach adopted to resolve this issue is explained 

Table 3 
Emission sources in the CHIMERE model.

SNAP Source name

1 Energy production
2 Residential combustion
3 Industrial combustion (manufacturing)
4 Industrial processes (manufacturing)
5 Extraction & distribution of fossil fuels
6 Solvents
7 Road transport
8 Other transports
9 Waste treatment
10 Agriculture
/ Resuspension
/ Boundary conditions
/ Mineral dust
/ Marine
/ Biogenic

Table 4 
Correspondence between PMF factors and CHIMERE sources for the reduced set 
method and their intrinsic oxidative potential (OPi) for DDT and AA tests with 
median interquartile range in nmol min− 1 μg− 1 in Daellenbach et al. (2020). 
SNAP numbers are indicated with “S number”.

PMF factors 
Daellenbach 
et al. (2020)

PSAT CHIMERE OPi
DTT OPi

AA

Vehicular wear
PPM road transport (S7) +
resuspension

3.51 
[3.29–3.76]

3.16 
[2.56–3.38]

HOA

POA energy production (S1) +
industrial combustion (S3) +
road transport (S7) + other 
transports (S8)

0.94 
[0.79–1.10]

0.00 
[0.–0.]

BBOA POA residential combustion (S2) 
+ waste treatment (S9)

0.08 
[0.01–0.14]

0.06 
[0.03–0.23]

ASOA
ASOA all anthropogenic sources 
(S1 to S10)

0.44 
[0.35–0.43]

0.42 
[0.36–0.48]

BSOA BSOA
0.15 
[0.11–0.20]

0.00 
[0.–0.]

M. Vida et al.                                                                                                                                                                                                                                    



Science of the Total Environment 967 (2025) 178813

6

hereafter first in a general way and then source by source.
At first glance, and from common geophysical expertise, some 

sources can be easily reconciled like the PMF biomass combustion factor 
with the PSAT residential combustion source, for which the majority of 
carbonaceous aerosol stem from wood burning. For aged salt, secondary 
species from the “other transports” sector were included, because they 
are often located on water surfaces. The traffic emissions from road 
transport are identified from both PMF and PSAT as a mainly primary 
source. Other PMF factors are more difficult to associate directly to one 
specific SNAP such as nitrate-rich, sulfate-rich, or MSA-rich and it is not 
obvious how to directly reconcile them with emission sectors used 
within the CHIMERE model. For all these sources, several tests between 
PMF factors and combinations of PSAT sources were conducted to finally 
propose the matches shown in Table 5 and described in more details 
below. To achieve this, we performed here a comparison between the 
observed source chemical profiles and the model-generated profiles. 
Additionally, we combined specific PSAT sources and compared their 
temporal patterns with those obtained through PMF factors. This com
parison allows for a comprehensive evaluation of the similarities and 
differences in the temporal behaviour of the identified sources. Even
tually, the final choice was validated through a statistical analysis 
(correlations, biases, errors).

2.3.2.1. Biomass burning. The chemical profile of the biomass com
bustion factor from PMF is mainly composed of organic matter with a 
median value of about 95 % over all sites, with very few elemental 
carbon and secondary inorganic aerosols contributing to this source 
(Fig. 2). In the PMF method, levoglucosan is a tracer for primary organic 
aerosol from this factor, but secondary organic aerosol formation from 
this source is probably included as well as long as it remains correlated 
with levoglucosan. It was therefore decided to create an equivalence in 
the model with the SNAP 2 residential combustion source, and to 
include both the primary and the secondary fractions. Fig. 2 illustrates 
the major contribution of OM to the PSAT SNAP 2 source (>50 %), as for 
the PMF outputs. However, there is also a significant fraction of NO3

− in 
PSAT due to NOx emissions from various combustion sources in the 
residential sector; this could not be distinguished from wood burning in 
the available emission data. A specific SO2 source from oil fuel use was 

excluded and attributed to sulfate-rich PMF factor.

2.3.2.2. Primary traffic. The corresponding PMF chemical profile 
(Fig. 2) indicates an EC contribution to this source of about 20 %. Metals, 
some of which -such as Cu - being commonly considered as tracers of 
road traffic emissions, contribute to about 10 % (grouped into PPM - 
inorganic primary particulate matter). Fig. 2 shows that, as for biomass 
burning, OM is the major fraction (~55 %), and can be both primary and 
secondary, as long as secondary OM from this source is correlated with 
the specific primary tracers. Therefore, the road transport source (SNAP 
7) was used, excluding nitrates from traffic related NOx emissions which 
were affected to the nitrate-rich PMF factor. In this way, the modelled 
chemical profile is similar to the observed one; OM being the major 
species followed by EC and PPM.

2.3.2.3. Aged salt. This factor concerns mainly aerosols with a marine 
origin including sodium, magnesium, chloride, as specific tracers in the 
PMF (Fig. S1). The chemical profile of this source shows a major 
contribution of sodium and chloride, but also shows a contribution of 
nitrate (about 15 %) pointing to ageing of sea-salt (replacement of 
chloride by nitrate). The sulfate contribution (~10 %) could be due to 
secondary aerosols from ship emissions together with sea-salt-sulfate. 
The PSAT modelling of this source therefore takes into account the 
entire marine salt source as well as the SNAP 8 including sources of 
emissions linked to transport other than road traffic. It also includes PM 
from the boundary conditions, because they are often advected by 
westerlies from the Atlantic Ocean, and could therefore be included with 
the marine “aged salt” source. In the PSAT source profiles, Na+ and Cl−

are still important contributors (respectively ~15 % and 20 %) albeit 
lower than in PMF, while NO3

− makes up about 30 % indicating the 
secondary character of aged sea-salt.

2.3.2.4. Nitrate-rich. The nitrate-rich factor is a secondary aerosol 
source consisting of a large fraction of ammonium nitrate as well as 
gathering some fractions of other secondary aerosol species. As nitrate is 
derived from NOx emissions in fossil fuel combustion processes, espe
cially from transport, the link with the road transport source in the 
model is direct. Ammonium is considered as mainly originating from 
agricultural activities and the associated ammonia emissions, so the 
agricultural source of the PSAT has been used to simulate the Nitrate 
rich factor of the PMF, but only partially (50 %), as both nitrate and 
ammonium sulfate are secondary (Fig. S1). Both PMF and PSAT chem
ical profiles are in rather good agreement, NH4

+ and NO3
− being the major 

contributors (~ 65 % in PMF, ~85 % in PSAT). In the PMF, OM con
tributes to nearly 20 %. This is probably secondary organic aerosol 
formed at a time scale of about a day compatible with that of nitrate 
formation. In our PSAT approach, this SOA is attributed to the corre
sponding primary sources, and especially BSOA is attributed to the 
sulfate rich source. Minor contributions are also coming from sulfate 
(~15 % in PMF, ~10 % in PSAT).

2.3.2.5. Sulfate-rich. The sulfate-rich factor is a secondary aerosol 
source including a large fraction of ammonium sulfate or bisulfate, also 
including other secondary aerosol species (Fig. S1). It is probably 
representative of more aged secondary aerosol, as the conversion of SO2 
into SO4

2− in the gas phase takes several days or requires the presence of 
cloud water. It contains a specific metallic tracer, selenium, that may 
arise from industrial activities such as glass, cement, fertilizer or met
allurgy production, but also from natural sources. The presence of sec
ondary organic matter in this factor comes mainly from biogenic 
secondary organic aerosols (BSOA), as identified with a specific 
α-pinene tracer, the 3-MBTCA, in a study performed on some of the same 
sites as ours (Borlaza et al., 2021a, 2021b). In the PSAT approach, BSOA 
has been attributed to this factor. Furthermore, concentrations of sulfate 
and oxalate (the most important organic acid by mass, indicative of aged 

Table 5 
Correspondence between PMF factors and CHIMERE sources for the extended set 
method. For some sources, only primary (PRIM) or secondary (SEC) species have 
been taken into account. SNAP numbers are indicated with “S number”. The two 
last columns indicate the intrinsic OP values for both DTT and AA assays in nmol 
min− 1 μg− 1 from Weber et al., 2021. Within the table PRIM stand for primary 
and SEC for secondary.

PMF factors 
Weber 
et al., 2021

PSAT CHIMERE OPi
DTT OPi

AA

Biomass 
burning

Residential combustion (S2) without 
SO4

0.13 
[0.10–0.18]

0.17 
[0.13–0.26]

Primary 
traffic

Road transport (S7) without NO3
0.21 
[0.17–0.27]

0.14 
[0.07–0.23]

Dust

PRIM industries (S1 + S3 + S4 + S5+
S6 + S9) 
+ Agriculture (S10) + Mineral dust +
Resuspension

0.11 
[0.08–0.15]

0.01 
[0.00–0.04]

Primary 
biogenic

PRIM Biogenic + Other transports 
(S8)

0.13 
[0.05–0.18]

0.02 
[0.00–0.04]

Aged salt
Boundary conditions + Marine + SEC 
Other transports (S8)

0.04 
[0.03–0.12]

0.02 
[0.00–0.05]

Nitrate-rich
SEC Agriculture (50 % S10) + SO4 

(Residential, S2) + NO3 (Road 
transport, S7)

0.04 
[0.03–0.18]

0.01 
[0.01–0.03]

Sulfate-rich
SEC Industries (S1 + S3 + S4 + S5 +
S6 + S9) + Agriculture (50 % S10) +
Biogenic

0.09 
[0.04–0.12]

0.01 
[0.01–0.02]

MSA rich Not modelled
0.12 
[0.02–0.29]

0.00 
[0.03–0.07]
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organic matter) are always well correlated in many studies. Both PMF 
and PSAT chemical profiles are rather similar, the sum of SO4

2− and NH4
+

accounting for respectively ~45 and ~40 % and OM for respectively 
~45 and ~50 % for each case.

2.3.2.6. Dust. In the PMF analysis, this factor contains metal-rich par
ticles with aluminium, titanium and calcium as tracers. However, the 
major contributor is actually OM, with a smaller fraction of EC (Fig. S2). 
This could be due to the difficulty of the PMF analysis to fully resolve 
different sources, or to the fact that road dust resuspension is also 
strongly contributing to this PMF factor, with all the sites where this 
factor appears being urban ones. The chemical composition of resus
pended road dust is not fully elucidated (Rienda and Alves, 2021) and 
probably not totally homogeneous spatially, but it can be expected that 
it contains organic aerosol and EC from anthropogenic sources (Charron 
et al., 2019), as urban aerosol generally does. In addition, important 
fractions of plant debris have been found in resuspended aerosol 
(Brighty et al., 2022). We then have simulated the PMF dust factor as 
mineral dust, resuspension as well as adding the primary mineral 
emissions from industrial and agriculture sectors (Table 5). However, as 
the chemical composition of resuspended aerosol is not fully known, it is 
uniquely affected to the PPM species in CHIMERE, even if it certainly 
contains a large fraction of carbonaceous aerosol. This partly explains 
the missing OM fraction in the PSAT chemical profile.

2.3.2.7. Primary biogenic. The primary biogenic factor is composed of 
biogenic organic aerosols directly from vegetation. Polyols are used as 
tracers of this primary biogenic organic matter, which is mainly emitted 
from fungal spores in the PM10 fraction (Samaké et al., 2019a, 2019b). 
Thus, OM is the major contributor (about 90 %) to this chemical profile, 
with a small contribution from EC (around 5 %) that could partly be 
associated with agricultural machinery (Fig. S2) or some soil dust 
resuspension. With PSAT, we combined both primary biogenic organic 
aerosol emissions and primary emissions from other transport. This 

results in a major OM contribution (about 80 %) and a minor EC 
contribution (~10 %).

2.3.2.8. MSA-rich. This PMF factor is composed exclusively of biogenic 
secondary species linked to the biological activities of marine and 
(possibly) lacustrine plankton or algae. It should be noted that marine 
aerosol or precursor sources have not been included in the CHIMERE 
simulation, except the gaseous DMS (Dimethyl Sulfide). As this PMF 
factor is only available at some of the sites and it is always a minor of PM 
mass (<5 % PM10), omitting this factor will only have a very limited 
effect on the modelling of the oxidative potential of aerosols.

In conclusion, the major chemical contributors to pairs of PMF fac
tors and PSAT sources are in general at least in qualitative agreement but 
for the case of dust for which the fraction in PM10 is similar between 
PMF and PSAT combination of sources but the contribution of different 
species if significantly different. Overall, these correspondences allow 
the use of intrinsic oxidative potential values obtained for PMF factors to 
the corresponding PSAT sources. However, this procedure still bears 
some uncertainty; nonetheless this uncertainty seems acceptable in light 
of other existing uncertainties (e.g. the uncertainty to quantitatively 
model the different PMF factors (evaluated in Section 3.2), or the un
certainty in the OPi values themselves, derived as the median of a 
limited number of sites (Weber et al., 2021)).

In addition to the median OPi values per source, we have indicated, 
for the DTT and AA tests, the interquartile ranges of these values ob
tained by Daellenbach et al. (2020) (Table 4) and Weber et al. (2021)
(Table 5), which reflect the inter-site variability of these values. This 
gives an idea of the robustness of the median values we use. We can see 
that for the sources with the highest OP values for the two tests, primary 
traffic and biomass burning, the interquartile variability is not too high 
compared to the median. However, for the DTT test, the primary 
biogenic and especially the MSA-rich sources show greater variability, 
which raises questions about the representativeness of the median 
values chosen.

Fig. 2. Comparison of chemical profiles of biomass combustion sources (top) and primary traffic (bottom) from MFP (red) and CHIMERE simulation with PSAT 
(blue). Model mean values are calculated over 2013 and 2014. The ordinate represents the relative contribution of the species included in the source. The PM10 
column shows the source’s contribution to PM10. Values for individual sites are shown only where variability is significant. For other sources, the figures can be 
found in the supplement (Figs. S1 and S2).
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3. Evaluation of the simulation with observations

In this section, we evaluate and analyze the ability of the CHIMERE 
model to reproduce daily observed PM10 concentrations, PM composi
tion, PMF factors and OPv measurements. For this performance evalu
ation of the model, from a technical point of view, we compared the 
simulated daily mean values to the observations since this is what was 
available for the OPv. The simulated PM10 and species concentrations at 
the sites are obtained by bilinear interpolation of the results from the 4 
grid cells adjacent to the site in the model.

3.1. Particulate matter

3.1.1. PM10 concentrations
Fig. 3a and b displays the maps of the correlation coefficients 

(Pearson R) calculated for PM10 mass for the whole simulation period 
(2013–2014) and all days (when available) on all PM10 stations in 
France. It shows the overall ability of the CHIMERE model to reproduce 
variations of daily PM10 concentrations. Indeed, we get correlations 
higher than 0.60 for most sites. This is quite satisfactory compared to the 
CAMS ensemble (Marécal et al., 2015). However, simulations for sites in 
mountainous areas (e.g., alpine region) exhibit lower correlations. This 
is partly explained by the fact that the model resolution of 9 × 9 km2 

does not resolve orography and related dynamical processes, such as 
thermal winds and inversion layers (Bessagnet et al., 2020).

Concerning the mean fractional bias (MFB) visible on Fig. 3 for the 
same period, the average on all sites is 2.61 % for 2013 and 4.08 % for 
2014 which is low. For the majority of the sites, the bias is in a range of 
±30 % which can be considered as satisfactory according to the 

recommendations of Boylan and Russell (2006). On the other hand, 
there is a North/South disparity, with overestimations that can be 
important for the sites in the North East of France and underestimations 
in the South East. Fig. 3 shows that the results are very similar from one 
year (2013) to another (2014). The RMSE maps (Fig. S3) show an error 
structure similar to that shown for the biases (Fig. 3).

The type of site (urban, suburban, rural) does not seem to impact the 
simulation of daily average PM10 concentrations that much as opposed 
to the geographical situation (e.g., mountainous regions vs. flat lands 
and north vs. south location).

3.1.2. Chemical composition of PM10
Since we are interested in a health impact indicator that integrates 

both the chemical composition of particles and OPi by PM source, it is 
important to assess how well the model reproduces this chemical 
composition. We carried out a rather complete comparison of the sim
ulations and daily observations available for the French sites over the 
period of the study. Nevertheless, in the framework of this paper, we do 
not have the objective to go too deep in the analysis of model’s capa
bilities but rather to be able to further analyze the potential weaknesses 
in the OPv modelling.

From observations at the sites mentioned in Section 2.1.2, the 
following species concentrations have been used in the analysis: Organic 
carbon (OC), elemental carbon (EC), nitrate (NO3

− ), sulfate (SO4
2− ), 

ammonium (NH4
+), sodium (Na+) calcium (Ca2+) and “dust”. For the 

comparisons with simulated concentrations, we had to propose some 
conversions to fit the measured species with the simulated ones. 
Measured OC were multiplied by a factor 1.80 to obtain the organic 
matter (OM) concentrations (Favez et al., 2010; Petit et al., 2015). To 

Fig. 3. Scores between PM10 daily mean mass concentrations measured and modelled by CHIMERE. Pearson correlation (R) is visible on the left from bottom to top 
respectively for 2013 and 2014. The same goes for mean fractional bias (MFB) on the right.
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obtain dust concentrations, a factor of 8 was applied to measured Ca2+

concentrations (Favez et al., 2008).
Fig. 4 shows that for these latter two PM components, the correlation 

values between simulation and observations are lower than for the other 
components with a median of about 0.35 for OM and about 0.30 for dust. 
In addition, there is a very large disparity in scores depending on the 
site, with R ~ 0 for Aix-en-Provence, Nice or Roubaix, and R ~ 0.58 for 
Lens and Revin in the case of OM. Correlations are in the same ranges for 
dust. We note much better performances for reproducing EC and SO4

2− , 
with median values for R respectively of 0.58 and 0.59, and more ho
mogeneous behaviour for different sites. For NO3

− , NH4
+ and Na+ the 

scores are even better with respective median R values of 0.60, 0.62 and 
0.60. These scores are in a good agreement, for the inorganic fraction, 
with those presented in Couvidat et al. (2018). Overall, these compari
sons indicate that there are certain difficulties in reproducing OM and 
dust for which sources are apparently not yet well reproduced by the 
model according to the sites. For organic matter, we can see that the 
main difficulties seem to be associated with sites in the south of France 
(Nice, Aix, Port-de-Bouc) and mid latitude (Talence and Grenoble), 
which may reflect the difficulty in simulating some sources or some 
transport / dynamic processes in the atmosphere of these areas. In 
addition, a single OM/OC conversion factor may not reflect the vari
ability in this ratio, lower for primary and higher for aged secondary 
aerosol. We can note that this is also consistent with the fact that it is 
more difficult for the model to reproduce PM10 concentrations in the 
southeastern part of France, where OM represents a larger fraction of the 
PM10 (Font et al., 2024).

We also note that the chemistry at some specific sites is more difficult 
to reproduce by the model. This is particularly the case for the Roubaix 
traffic site, which is perhaps influenced by sources that are too local for 
the current model spatial resolution, even if conversely, the chemistry at 
the Strasbourg traffic site is very well simulated. There also seems to be 
some difficulty in reproducing the PM chemistry at the ANDRA-OPE site; 
it is however a remote rural site and therefore it should not suffer from 
problems of representativeness which can penalize sites near point 
sources, or valley sites such as Grenoble where sources and dynamics are 
difficult to represent at the scale of 9 × 9 km2. In the following 

discussion concerning modelling of OPv, it will be necessary to be 
cautious in the interpretation of the simulated values, particularly 
depending upon the sites considered.

The bias analysis (here the mean fractional bias) is also considered 
and provides another aspect to take into account. Biases are in general 
reasonable (in the sense of the criteria by Boylan and Russell (2006)), 
with values largely between ±50 % for OM, EC, SO4

2− and dust. 
Conversely, there is a strong tendency of the model to overestimate NO3

−

and NH4
+ concentrations (i.e. ammonium nitrate), particularly for the 

sites in the North of France with bias values between 50 and 100 %. This 
is consistent with the strong biases observed on the simulation of PM10 
concentrations in the North East of France, where nitrate is a major PM10 
component. This type of bias has also been observed at European level 
by Couvidat et al. (2018), albeit in lower proportions. A hypothesis may 
be considered that the issue comes from biases in the representation of 
ammonia emissions of the agricultural origin or in the inorganic 
chemistry associated with the formation of nitric acid and then the 
neutralization of this acid by ammonia. This is also suggested in the 
comparisons between NH3 emission inventories and IASI satellite ob
servations (Fortems-Cheiney et al., 2020). Note also that there is no 
specific bias in the representation of NO2 emissions and its concentra
tions compared to NO2 measurements on French sites (not shown). We 
also must note that negative sampling artefacts are also possible (Schaap 
et al., 2004), potentially leading to significant underestimations of 
ammonium nitrate from filter-based analysis. To complete the analysis, 
RMSEs are displayed in Fig. S4 and show that species with higher biases 
(but good correlations) such as nitrate and ammonium have the highest 
errors, as do species with lower biases but poorer correlations such as 
OM and dust. Moreover, it is interesting to see that there is a greater 
dispersion for nitrate in terms of RMSE.

3.2. Source modelling

As extensively underlined in Section 2.3.2, one of the key points of 
the OP simulation methods is the simulation of the PMF factors from the 
PSAT sources of the model. For the so-called extended method which 
takes into account all the factors of the PMF, we have established a 

Fig. 4. Statistical scores of the chemical composition of PM10 between daily mean concentrations measured and those modelled by CHIMERE. Pearson correlation 
(R) on the top graph and mean fractional bias (MFB) on the bottom one for 2013 and 2014.
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correspondence between PMF factors, PSAT sources and model species 
(Table 5) and compared their chemical profiles (Fig. 2). Here, we 
perform a statistical analysis (Fig. 5) (correlations and biases) of daily 
time series from the PMF factors and their simulation by CHIMERE with 
the correspondences proposed in Table 5.

The median correlations of the daily mean source specific concen
trations at all sites are in the range of 0.30 to 0.70. Correlation is on the 
lower end for the dust factor, which is consistent with the model’s dif
ficulties in simulating soluble calcium (Section 3.1.2). The high vari
ability, particularly the low and even negative correlations at Aix-en- 
Provence and Port-de-Bouc, could be partially explained by the identi
fication of an industrial PMF factor, which was not taken into account in 
the final harmonized PMF because it was identified at only two sites; for 
these two sites, this factor was then integrated into the dust factor. For 
Strasbourg, the difficulty lies probably in modelling the resuspension of 
aerosols at a traffic site. The PSAT and PMF factors of aged salt correlate 
at around 0.40 on average, being not well simulated at 3 sites (Lens, 
Nogent-sur-Oise and Strasbourg) all located in the northern eastern part 
of France. The opposite is seen for the primary biogenic PMF factor, with 
clear difficulties for the sites of the Mediterranean coast (Aix-en-Pro
vence, Nice, Port-de-Bouc). As for the other factors (Biomass burning, 
Nitrate-rich, Primary traffic and Sulfate-rich), the median correlations 
are >0.40 with less variability among sites than for the sources previ
ously mentioned, reflecting a certain homogeneity in the results.

As far as biases are concerned, the differences are particularly 
marked for very local and mainly primary sources such as primary traffic 
and biomass burning. Conversely, secondary inorganic sources such as 
nitrates are generally overestimated; this feature is also observed on 
RMSE (Fig. S4). Such results are commonly observed in regional models, 
where accurate representation of source contributions from localized 
influences at specific sites remains challenging (Marécal et al., 2015). As 
mentioned above, underestimations from filter-based measurements 
due to negative sampling artefacts of semi-volatile species, such as 
ammonium nitrate, cannot not be excluded either. The site typology 
does not seem to affect the results. In addition, some PMF factors 
observed at specific sites only were not considered in our work as our 
approach needs to be general for France. This could lead to biases, as 

these sources in return are affected by other sources that are represented 
in our PSAT approach, and then not taken into account in the PMF 
approach. Nevertheless, the (MFB) biases are fairly low for all the 
sources, within ±50 %, except sulfate-rich with a positive bias of +65 %.

Finally, PMF and simulated concentrations for the primary biogenic 
source show a median correlation of about 0.30 and a median MFB of 
about − 20 %. The modelling of primary biogenic aerosols, in particular 
the organic fraction, by simulating fungal spores is discussed in detail in 
a separate paper (Vida et al., 2024).

For the method using a reduced set of sources, this correspondence is 
based on the one carried out in another regional transport chemistry 
model (CAMx) as part of the modelling of the oxidative potential of 
aerosols in Switzerland and Europe (Daellenbach et al., 2020). No 
comparisons of the time series were made due to the complexity of 
accessing the data. However, the source contribution maps for PM10 and 
oxidative potential are similar between the original work of Daellenbach 
et al. (2020) and our application.

3.3. Oxidative potential modelling

The last stage of the evaluation of the model performance concerns 
the simulation of the OPv itself. We simulated the volume OPv for the 
two complementary tests, AA and DTT, as described in Section 2.3. We 
then compared these simulated OPv values to the daily values observed 
at different sites, for the two methods developed, i.e. the “reduced set” 
method and the “extended set” method. The overall results are presented 
in Fig. 6 which show the correlations and the biases between simulations 
and observations and Fig. S4 for the RMSE.

The medians of daily correlation values are around 0.35 and 0.50 for 
the reduced source set method for AA and DTT respectively. Median 
correlations are better for the method using a larger number of sources, 
approximately 0.50 for AA and 0.60 for DTT. Time series are hardly 
reproduced at Aix-en-Provence, where the correlations are systemati
cally below 0.20 for AA and DTT, whatever the method (Figs. S3 and 
S5). The same applies to the Nice site, but with slightly better correla
tions for DTT. We also note that the correlation for the Grenoble site is 
lower than the general median in all cases. For all these sites, the results 

Fig. 5. Statistical scores of the modelled sources between daily mean concentrations of sources from PMF extended set method and those modelled by CHIMERE. 
Pearson correlation (R) on the top and mean fractional bias (MFB) on the bottom for 2013 and 2014.

M. Vida et al.                                                                                                                                                                                                                                    



Science of the Total Environment 967 (2025) 178813

11

align with the low correlations in simulating the composition of PM 
sources and especially OM. Conversely, for sites with less complex 
orography, correlations are in general much better, as for Talence, with 
correlation about 0.60 and 0.70 for the reduced set of sources and about 
0.70 and 0.80 for the extended set, respectively for the AA and the DTT 
assays.

Median biases in simulated OPv are in general small, between about 
zero and − 30 % for MFB. Particularly, for the reduced set MFB values 
are about zero for AA and about − 10 % for DTT. For the extended set the 
corresponding values are a bit larger at about − 30 %, both for AA and 
DTT, albeit with large regional differences. These small biases are an 
important result of this study given the various uncertainty factors 
contributing to simulated OPv. Negative biases can often be related to 
underestimations of primary sources of PM10 from biomass combustion 
and primary traffic. These sources both have a very high intrinsic OPi, 
this may explain the underestimation of the OPv for the extended set 
method. As for PM10, biases are highly variable for different sites.

An important difference can be observed between the results ob
tained with the two OP assays (Fig. 6). For the AA test, it is striking to see 
the significant bias at the Nogent-sur-Oise site (MFB around − 80 %). It is 
likely explained by the very low contribution of the primary traffic 
source at this site in the simulations, a source with one of the highest 
OPi. For Nogent again, but also for Talence and Aix-en-Provence, the 
important negative bias of the biomass burning source can also explain 
the important biases observed for OPv

DTT (Fig. 6). It should be noted that 
RMSE (Fig. S4) exhibit very similar feature than bias in terms of ranking 
of the two methods and tests.

In addition, to support this analysis, we have plotted station time 
series for AA (Figs. S5 and S6) and for DTT (Figs. S7 and S8). Each time 
skill scores (MFB, R and RMSE are indicated.

As a conclusion, in comparing the reduced and the extended set 
methods, we can note a better correlation for the latter one, and 

acceptable bias for both methods. In addition, the extended method has 
a broader acceptance of all kinds of sources and not excluding them a 
priori.

Although this study is based on a large number of OP data compared 
with what exists in the literature, it should be noted that the number of 
OP data available per station is sometimes low and does not allow a 
complete assessment of seasonal cycles. The number of data by type of 
site is sometimes unbalanced, with a lot of data for alpine sites, which 
limit a bit the conclusions on the performance of the methods developed. 
This calls for further studies based on larger volumes of data. To improve 
the method’s representativeness, more OP and intrinsic OP data from 
more sources will be needed in the future, and harmonized if possible.

4. OP spatial distribution over France

4.1. Spatialization of OPv

Here we present 2D maps of simulated OPv over France as an annual 
average for 2013 and 2014 (Fig. 7). Globally, they show, as expected, 
higher oxidative burden exposure related to aerosols in large agglom
erations and densely populated areas leading to higher exposure for the 
urban French population. Also, major roads such as motorways are 
prominently identifiable in the spatial distribution of OPv. However, 
there are differences depending on the test used (DTT or AA) and the 
method used (reduced or extended set).

When the same method is used (e.g. reduced or extended set), we can 
see that OPv

AA and OPv
DTT show similar patterns overall, but with dif

ferences in the intensity of certain sources and in spatial gradients. This 
can be attributed to differences in OPi between the same PMF factors for 
both tests. We know that OPi values are relatively larger for the AA than 
for the DTT assay (Tables 4 and 5) for mainly primary sources (primary 
traffic, primary biomass burning) as compared to secondary sources 

Fig. 6. Statistical scores of the modelled oxidative potential between daily mean measurements and those modelled by CHIMERE. Pearson correlation (R) on the top 
and mean fractional bias (MFB) on the bottom for 2013 and 2014. Station time series for AA are available in the supplement (Figs. S5 and S6), as are those for DTT 
(Figs. S7 and S8).
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(nitrate-rich, sulfate-rich). This leads to relatively higher values of OPv
AA 

over larger and more urbanized areas compared to OPv
DTT.

In addition, OPv intensities differ between the two simulation 
methods using a reduced (OPv

AA,red, OPv
DTT,red) or extended (OPv

AA,ext, 

OPv
DTT,ext) set of sources. Indeed, the background intensity is higher 

when using the extended set due to taking into account inorganic species 
in the analysis by including OPi values for factors such as nitrate-rich 
and sulfate-rich. On the contrary, OPv values for urban agglomerations 

Fig. 7. Volume oxidative potential (OPv) modelled with the reduced set method on the top and extended set on the bottom depending on the OP assay, OPv
AA on the 

left and OPv
DTT on the right. Biannual mean oxidative potential (2013–2014) in the first layer of the CHIMERE model. The black circles represent the OPv mea

surement sites in France.

Fig. 8. Mass oxidative potential (OPm) modelled with the reduced (top) and extended set methods (bottom) depending on the OPm
AA (left) and OPm

DTT (right). Biannual 
mean oxidative potential (2013–2014) in the first layer of the CHIMERE model. The black circles represent the OPv measurement sites in France. Maps for seasonal 
variations of OPm are in the supplement (Fig. S12 and S13).
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are larger for the reduced set method, because of the large intrinsic OPi 
value of primary traffic emissions. For example, in the Paris region 
where the differences between methods are greatest, the maps shows an 
OPv

AA,red approximately 2.5 times higher than the OPv
AA,ext with 5.00 and 

2.00 nmolAA min− 1 m− 3 respectively. The same ratio is found between 
the OPv

DTT,red and the OPv
DTT,ext (respectively 8.00 and 3.00 nmolDTT 

min− 1 m− 3). However, current measurements at the Paris centre station 
in 2023 show that the orders of magnitude of the OP values are more like 
1 nmolAA min− 1 m− 3 and 2 nmolDTT min− 1 m− 3, which is closer to the 
extended set method (Internal data upon request).

As a note of caution, the very “metallic” nature of non-exhaust PM, 
especially regarding copper is partly responsible for its high OPi value. It 
is very likely that we overestimate the impact of this fraction within our 

model, where we consider PPM from resuspension instead of only spe
cific concentration of copper.

Finally, the largest OPv values are observed outside of France, but 
still within the domain of the study, as for example over the Po valley or 
the Benelux, corresponding also to large PM10 values simulated in these 
regions. In these areas, the OPv

DTT,red is around 8.00 nmolDTT min− 1 m− 3, 
which is a high value rarely measured in Europe (Tassel et al., in prep, 
Grange et al., 2022).

The mass normalized oxidative potential (OPm) results from nor
malising the OPv by the PM10 mass concentrations. Its analysis allows 
highlighting regions where OPv is not only due to higher concentrations, 
but also due to an increased average OPi of its components. Fig. 8 shows 
the spatialization of OPm

AA and OPm
DTT according to the two modelling 

Fig. 9. Contribution of major extended set sources to PM10 (left), OPv
AA (middle) and OPv

DTT (right) spatialized over France as a two-year average (2013–2014). Only 
the first vertical level of the CHIMERE model is shown. Other sources contributions are in the supplement (Fig. S9).
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methods.
With the reduced source set method, the OPm

AA and OPm
DTT are highest 

in densely populated areas such as the Paris region, and along major 
roads. In dense cities, both OPm can be >0.10 nmol min− 1 μg− 1, 
reflecting the fact that the potential toxicity of urban aerosols is signif
icantly larger than in rural areas. Also, the OPm

DTT,red is larger overall 
than the AA counterpart, which can be explained by the larger and non- 
zero OPi

DTT value for the HOA and BSOA sources.
For the extended set of sources, OPm is still larger over urban areas 

with respect to rural background, but the overall distribution is more 
homogeneous. This is due (i) to the much lower intrinsic OPi used for the 
traffic source which affects the urban agglomerations and highways, and 
(ii) due to a larger number of secondary sources, which are relative to 
the primary ones more important for rural background. As a conclusion, 
this analysis shows especially for the reduced set but to a lesser extent 
with the extended set, that urban OPv is enhanced not only due to 
increased PM10 concentrations, but also due to increased OPi values of 
urban type PM sources. OPm appears as a good integrative metric to 
illustrate these effects.

4.2. Source contribution to PM and OPv

Fig. 9 shows the contributions of the main sources to OPv
AA and OPv

DTT 

for the extended source set method averaged over two years (other 
sources are displayed in Fig. S9). The contribution of sources to PM10 
concentrations appears to be different for OPv

AA and OPv
DTT. These maps 

clearly show that biomass combustion and primary traffic sources drive 
the levels of OPv

AA and OPv
DTT, especially in large cities. For OPv

AA, the 
contribution of the other sources is negligible, while they do contribute 
more for OPv

DTT. This is due to different intrinsic OPi values for OPv
AA and 

OPv
DTT as pointed out in Section 2.3.
Strong differences in source contribution do appear between PM10 

and the two tests of OPv. These differences are particularly evident for 
biomass combustion and primary traffic sources, which contribute 
relatively less to annual total aerosol mass but significantly influence the 
OPv. This observation highlights the kind of information provided by the 
OPv, which could be crucial in the future to help guiding policies aimed 
at mitigating health impacts caused by aerosols.

The contributions per source for the method based on the reduced 
source set have also been analysed (Fig. 10). In this approach, the 
abrasion source associated with road transport emerges as the most 
significant contributor to the oxidative potential of both AA and DTT in 
our study, as already shown by Daellenbach et al. (2020) with the CAMx 
model. By addressing and minimizing these emissions, there is a po
tential to substantially decrease the oxidative potential of aerosols. The 
disparity in the contributions of sources to PM10 over the French terri
tory is even more pronounced as these sources exhibit relatively low 
mass contributions but high OPv. On the contrary, the biomass com
bustion source is not a major contributor in this approach. Similarly, the 
secondary biogenic source contributes much to the PM mass, but very 
little to oxidative potential.

The use of these two methods, based on different PMF, introduces 
greater complexity into the modelling of the OP, but also illustrates the 
potential for refining the sources taken into account. Indeed, we see the 
possibility of separating exhaust and non-exhaust contributions from 
traffic, but also of better characterization of certain PMF factors such as 
nitrate and especially sulfate-rich using organic matter speciation.

5. Conclusions

This study, one of the first attempts to model Oxidative Potential on a 
large spatial scale, developed and tested two methods for simulating 
oxidative potential (OP) in a chemistry-transport model, incorporating 
unprecedented numerous sources and measurements. The methods 
complement each other: one is species-oriented, particularly for organic 
aerosol, and the other is source-oriented, based on chemical tracers. The 

study used a unique database of PM10 composition, source attribution, 
and OPv measurements to identify uncertainties at each stage of the 
modelling framework. Over two years, the CHIMERE model accurately 
simulated PM10 concentrations, though with limitations in areas with 
complex terrain like the Alps.

The methods’ ability to simulate sources obtained by PMF analysis, 
combined with the PSAT method (adhoc approach finding the corre
spondence between PMF and PSAT using the chemical profiles and then 
testing the correlation and the biases obtained by comparing the con
centrations of PM linked to these sources), shows promising results. The 
models’ OPv simulations are encouraging but complex, especially in 
Mediterranean and Alpine regions. The method using a larger panel of 
sources correlates better with observations despite a slight bias. While 
the volume of data is unprecedented for this type of assessment, more 
data is needed in the future to cover the geographical areas investigated 
and the typology of sites. It will also be necessary to investigate the finer 
fractions of PM in terms of OP (e.g. PM2.5, PM1).

Key findings for both methods include higher OPv values in urban 
areas, major roads, and valleys due to traffic emissions, while densely 
vegetated areas contribute little to OPv. The study emphasizes the sig
nificant impact of anthropogenic sources on OPv, suggesting that public 
health policies should prioritize urban areas. Road transport and 
biomass combustion are major contributors to OPv, particularly in urban 
centers and along major roads. Extending this study to a larger European 
dataset of OPi with additional sites and years could validate the methods 
in different environments and improve understanding of OPv across 
Europe.

Finally, by focusing on reducing sources that contribute significantly 
to the oxidative potential in addition to PM10 mass, policymakers can 
develop more targeted and efficient mitigation measures that prioritize 
public health protection while accounting for regional complexities.

Acronyms

OPv Volume oxidative potential
OPv

AA Volume oxidative potential with ascorbic acid
OPv

DTT Volume oxidative potential with dithiothreitol
OPi Intrinsic oxidative potential of sources
OPm Mass normalized oxidative potential (OPv/PM10)
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Fig. 10. Contribution of sources for the reduced set method to PM10 (left), OPv
AA (middle) and OPv

DTT (right) spatialized over France as a two-year average 
(2013–2014) for the reduced set of sources method. Only the first vertical level of the CHIMERE model is shown.
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