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Abstract

Agriculture plays an important role in Senegalese economy and annual early

warning predictions of crop yields are highly relevant in the context of climate

change. In this study, we used three main machine learning methods (support

vector machine, random forest, neural network) and one multiple linear

regression method, namely Least Absolute Shrinkage and Selection Operator

(LASSO), to predict yields of the main food staple crops (peanut, maize, millet

and sorghum) in 24 departments of Senegal. Three combination of predictors

(climate data, vegetation data or a combination of both) are used to compare

the respective contribution of statistical methods and inputs in the predictive

skill. Our results showed that the combination of climate and vegetation with

the machine learning methods gives the best performance. The best prediction

skill is obtained for peanut yield likely due to its high sensitivity to interannual

climate variability. Although more research is needed to integrate the results

of this study into an operational framework, this paper provides evidence of

the promising performance machine learning methods. The development and

operationalization of such prediction and their integration into operational

early warning systems could increase resilience of Senegal to climate change

and contribute to food security.

KEYWORD S

climate change scenario, crop yield prediction, machine learning, Senegal

1 | INTRODUCTION

Senegalese agriculture occupies 12% of the national terri-
tory and constitutes the economic base of the country
(Rapport National sur le Développement Humain au
Sénégal, 2009). The agriculture sector is one of the pillars
of the long-term economic development strategy called
the Emerging Senegal Plan (Plan Sénégal �Emergent)
whose objectives are aligned with climate policies (e.g.,

NDC, sectoral National Determined Contributions).
However, despite an increase of crop yields over the last
decades, year-to-year production remains heavily depen-
dent on climate variability. Indeed, the severity of climate
impacts in this part of the world is particularly strong
since rainfed agriculture is the main source of food and
income and since the means to control the crop environ-
ment (irrigation, mechanization, fertilizers and other off-
farm inputs) are largely unavailable to small-scale farmers
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(Ingram et al., 2002; Sultan et al., 2010). The anthropic
global warming has the potential to aggravate the severity
of these impacts with a warmer and drier climate expected
in the country under climate change scenarios (Sultan
et al., 2014). Indeed, numerous studies have found that
such climate change leads to crop production losses of
cereals (millet, sorghum, maize) in West Africa and more
variable yields which indicate a greater risk of crop failures
under a warmer climate (Jones and Thornton, 2003;
Schlenker and Lobell, 2010; Sultan et al., 2013; 2014;
Sultan and Gaetani, 2016).

In this context, the development of operational,
timely and accurate early warning systems to assist
decision-making are needed more than ever to build
resilience and save lives by allowing communities to pre-
pare and, if necessary, accelerates international food aids
or to take advantage of favourable climate conditions.
Numerous national and international early warning sys-
tems (Funk et al., 2019) support the early identification
of emerging droughts and food crises: Famine Early
Warning Systems Network (FEWS NET), World Food
Programme (WFP) Food Security Analysis, European
Commission Monitoring Agriculture Resources (MARS)
among others. In the Sahel, the unprecedented droughts
of the early 1970s and their severe impacts on population
(thousands to millions of inhabitants affected) initiated
the emergence of several early warning systems in
the region (Traoré et al., 2010). Among them, the
CILSS/AGRHYMET (French acronym for Permanent
Inter-state Committee for Drought Control in the Sahel/
Regional Center for training and applications in opera-
tional AGRicultural METeorology and HYdrology),
which uses agrometeorological information to warn
stakeholders on the possibility of food crops failure
(Traoré et al., 2010). These early warning systems draw
from many sources of data and model outputs: remote
sensing, climate observations, agroclimatic monitoring
and hydrologic measurements. Crop models can translate
these data into crop yields using either process-based
crop models or empirical crop models (see Di Paola
et al., 2016 for a review) and can even use climate fore-
casts as inputs to provide information early enough to
adjust critical agricultural decisions and increase agricul-
tural efficiency (Hansen, 2002). Over the past 30 years,
satellite and other data, along with the improvement of
weather and climate predictions, have strongly improved
the accuracy, timeliness and affordability of such early
warning systems (WASP, 2021).

However, the ever-increasing amounts of environ-
mental data call for the use of advanced methods such as
machine learning methods that can make the best use of
various data from satellite to climate models outputs.
Along with the improvement of weather and climate

predictions, machine learning techniques have also
advanced considerably over the past several decades.
Machine learning algorithms use large historical data as
input to predict new output values. There are a lot of
widely used machine learning techniques such as multi-
ple regressions, neural networks or decision trees used.
These techniques are distinct from classical statistic
approaches by being much more focused on prediction of
outcomes rather than taking into account causal relation-
ships or mechanistic processes generating those out-
comes (Crane-Droesch, 2018). Several recent studies
demonstrated the potential of machine learning on crop
yield prediction and climate change impact assessment in
agriculture. Crane-Droesch (2018) used a variant of a
deep neural network and showed that this approach out-
performs classical statistical methods in predicting corn
yields in US Midwest. Paudel et al. (2021) combined prin-
ciples of crop modelling with machine learning for crop
yield forecasting in Europe. Cai et al. (2019) used the
LASSO regression method and three mainstream
machine learning methods (support vector machine, ran-
dom forest and neural network) to predict crop yields in
Australia. They combined climate data (precipitation,
minimum and maximum temperatures and solar radia-
tion) with satellite data such as vegetation index data
(normalized difference vegetation index [NDVI] or
enhanced vegetation index [EVI]) (Chang et al., 2007;
Wardlow et al., 2008; Holzman et al., 2014) and solar-
induced chlorophyll fluorescence (SIF) data (Li
et al., 2018; Wei et al., 2019; Yao et al., 2021) as inputs for
their advanced statistical approaches. Cai et al. (2019)
found that the best results are obtained by combining
both climate data and remote sensing data can capture
plant growth using multiple spectral bands (Guan
et al., 2017; Cai et al., 2019). Regression methods used in
machine learning seem to be well suited for crop predic-
tions (Jeong et al., 2016; Nigam et al., 2019) as they allow
for understanding and resolving the complex relation-
ships between crop data and climate and satellite vari-
ables (Kim and Lee, 2016). In the Sahel, promising
predicting skills of early and end-of-season maize yields
in Burkina Faso were found by Leroux et al. (2020) by
applying a multiple linear model and a random forest
model.

Here, this study investigates the predictability of yields
of the main staple food crops in Senegal (peanut, maize,
millet and sorghum) using four advanced regression
methods (three commonly used machine learning
methods, that is, support vector machine, random forest,
neural network and one multiple linear regression method
namely least absolute shrinkage and selection operator)
with climate and vegetation data as inputs. We closely fol-
low the approach of Cai et al. (2019) which found

1818 SARR AND BENJAMIN SULTAN



promising results from the use of machine learning
approaches to predict yields but in a different geographic
location. The skill of each method is discussed in regards
to other published studies but also in regards to the cli-
mate change scenarios in the region. Indeed, since
regional climate in Senegal is expected to change under
global warming scenarios, one can expect changes not
only in future crop yields but also in crop yields
predictability.

2 | MATERIALS AND METHODS

2.1 | The studied area

This study is focused on Senegal which is located in the
westernmost part of the African continent. It extends in lat-
itude between 12.8�N and 16.41�N and in longitude
between 11.21�W and 17.32�W with a relief generally flat.
Like most Sahelian countries, the climate in Senegal is
characterized by an unimodal rainfall regime with a single
rainy season from June to September called summer period
and a long dry season from October to May. Annual rain-
fall amounts follow a north–south gradient with a semi-
arid climate in the north and a tropical climate in the south
(Sultan and Janicot, 2003). The annual cumulative rainfall

ranges between 200 and 400 mm�year−1 in the north,
between 400 and 800 mm�year−1 in the centre and between
800 and 1,200 mm�year−1 in the south of the country
(Figure 1). The maximum average yield in peanut, maize,
millet and sorghum is generally localized in the western
centre and in the south of the country (Figure 1). Agricul-
ture in Senegal accounts for 17.5% of gross domestic prod-
uct (GDP), 36% of overall exports and is about 95% rainfed
(https://agriculture.gouv.fr/senegal) (Touré et al., 2020).
Furthermore, the agriculture sectors plays a significant role
in the livelihood and economy of the country, especially
the cultivation of peanuts, maize, millet and sorghum
(Touré et al., 2020). It contributes to feeding the rural envi-
ronment and the city by providing 60% of the foodstuffs
(Ngom, 2014; Ndiaye, 2018). The soils type of the studies
areas are generally ferruginous soils weakly leached in the
centre and ferruginous and leached in the south
(Gavaud, 1988).

2.2 | Data

To carry out this study, we used agronomic data, climate
observations and simulations and vegetation data from
satellite retrievals (Table 1). All these data have been
interpolated to 0.5� spatial resolution using a bilinear

FIGURE 1 Map of studied area.

Selected departments with crop yield

data (in green). The department in

grey were not used in this study

(no crop yield data). Shaded values

represent the 2000–2013 mean of

crop yields of maize, millet, sorghum

and peanut (kg�ha−1). Contour lines
represent the annual rainfall

(mm�year−1) based on the rain gauge

stations network of the National

Agency for Civil Aviation and

Meteorology during summer (June–
September) from 1991 to 2005

[Colour figure can be viewed at

wileyonlinelibrary.com]
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interpolation method (Kim et al., 2019) and convert at
month interval.

2.2.1 | Agronomic data

The agronomic data used in this study come from the
Direction de l'Analyse, de la Prévision et des Statistiques
Agricoles (DAPSA). They contain annual data of surface,
production and yield of peanut, maize, millet, sorghum
for 24 departments of Senegal (Figure 1). They were
selected because of their high use and availability in sev-
eral departments of Senegal. According to DAPSA, from
2013 to 2017, rice (mainly grown on the river valley in
the north) is the most important cereal production (about
771,682 tons), followed by millet (about 640,170 tons),
maize (about 293,065 tons) and sorghum (about 155,274
tons). As for legume production, peanut is the most culti-
vated (about 985,695 tons) over the period 2013–2017 fol-
lowed by cowpea (about 78,836 tons). These data cover
the period 1981–2013 with a percentage of missing values
over the period extracted (2000–2013) of 0% for peanut,
27.38% for maize, 12.50% for millet and 14.28% for sor-
ghum. Only yield data was used as a predictand for
machine learning methods.

The localization of cultivated areas in each depart-
ment was not available in the DAPSA dataset. We thus
used the MIRCA2000 dataset downloaded from http://
www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/MIRCA/
index.html (Portmann et al., 2010) which gives maps of

the cultivated areas at a resolution of 30 arc min. The
MIRCA2000 is a global dataset of monthly irrigated and
rainfed crop areas developed around the year 2000. It is
based on the assumption that the location of the different
crops remains constant from year to year because we only
have 1 year of data. It has been used in Africa on rice
crops (van Oort and Zwart, 2018), in West Africa on
cereal crops such as maize, millet and sorghum (Egbebiyi
et al., 2019). We used maps of cultivated areas of peanut,
millet, sorghum and maize as a mask (one mask per
crop) to extract climate and satellite data. Finally, we
used an administrative shapefile to aggregate climate and
satellite data at the department level so that all datasets,
predictands and predictors (climate, satellite data and
yield data) are at the same spatial scale.

2.2.2 | Vegetation data

This study used the vegetation data from MODIS
MOD13C1. These are normalized difference vegetation
index (NDVI) data that have 16-days temporal resolution
and a 0.05� spatial resolution (Heck et al., 2019). Data
were extracted from February 2000 to December 2013 at
the following link: https://modis.gsfc.nasa.gov/data/
dataprod/mod12.php. It is an important vegetation index
because it can capture plant growth using multiple spec-
tral bands (Guan et al., 2017). It has been widely used in
Africa to predict crop yield (Petersen, 2018; Gcayi
et al., 2019).

TABLE 1 Description of data used for crop yield prediction

Category Variables
Spatial
resolution

Temporal
resolution Time coverage Sources/description

Crop yield and
area for crop
yield

Crop yield (peanut, maize,
millet, sorghum)

Crop area

Department scale
0.5�

Yearly 1981–2013
2000

DAPSA (Touré
et al., 2020)

MIRCA2000 (Portmann
et al., 2010)

Satellite data for
vegetation
dynamics

NDVI 0.05� 16-day Feb 2000–Dec 2014 MODIS MODI3C1
(Heck et al., 2019)

Climate data Precipitation, temperature
and VPD related variables,
including cloud cover
percentage (Cld), potential
evapotranspiration (Pet)
and wet day frequency
(Wet), VPD is calculated
based on T and Vap

Direct/diffuse flux of
shortwave radiation
(SDr/SDf), direct/diffuse
flux of surface PAR
(PDr/PDf)

0.5�

1�
Monthly
Monthly

1901–2018
Mar 2000–Dec 2014

CRU (Harris et al., 2014)
CERES SYN1deg
(Wielicki et al., 1996)
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2.2.3 | Climate data

To study the links between crop and climate, we selected
nine climate variables from the Climatic Research Unit
(CRU; Jones and Harris, 2013): precipitation, minimum
and maximum temperature, mean temperature, cloud
cover percentage, potential evapotranspiration and wet
day frequency, vapour pressure and vapour pressure defi-
cit (VPD). All these variables, except VPD, are available
for free (https://sites.uea.ac.uk/cru/data/) at the monthly
timescale in average over a 0.5� grid. They were extracted
from 1901–2018 (Table 1).

VPD was calculated from vapour pressure (Vap) and
mean air temperature (T) according the following
formula:

VPD=esat−Vap

esat=6:108×e
17:7×T
273:3+Tð Þ

(
, ð1Þ

where esat is the saturated water vapour pressure (in hPa)
calculated from the Claussius–Clapeyron equation.

In addition, we used four radiation related variables
from SYN1deg (Wielicki et al., 1996): direct/diffuse flux
of shortwave radiation (SDr/SDf), direct/diffuse flux of
surface of photosynthetic active radiation (PAR)
(PDr/PDf). These data which come from the satellite
sensor of Clouds and the Earth's Radiant Energy Sys-
tem (CERES) is widely used to estimate crop yield
(Awad, 2019; Cai et al., 2019). Their horizontal resolu-
tion is 1� and they were extracted from March 2000 to
December 2013.

2.2.4 | Climate simulations

In order to assess the predictability of crop yield in the
future, we used outputs of 18 climate models from the
sixth Coupled Model Intercomparison Project (CMIP6;
Eyring et al., 2016). The description of these data is
presented in Table 2. Data were first bias-corrected
using CDF-t method following the protocol described
by Famien et al. (2018), then re-scaled by month. This
bias correction method is largely used in Africa and
worldwide both as a statistical downscaling model and
as a bias correction method (Vigaud et al., 2013; Vrac
and Ayar, 2016; Lanzante et al., 2019). These data are
available in netcdf format in the CICLAD platform
(https://mesocentre.ipsl.fr/). The horizontal resolution
of these data is 0.5�. They cover the period 1951–2014
for the historical and 2015–2100 for the future. The
global climate models are forced for the future by two
Shared Socioeconomic Pathways SSP2-4.5 and SSP5-8.5

which correspond respectively to the medium and pes-
simistic scenarios (Eyring et al., 2016). These data were
extracted at the departments scale using nearest neigh-
bour method.

Two periods are considered on the future: the near
future (2036–2065) and the far future (2071–2100).

Future rainfall anomalies are calculated in percentage
over the June–September period using the following
formula:

Precipitation anomaly=
Pfut_i−Pres

Pres
×100, ð2Þ

where Pfut_i is the mean rainfall of the 24 departments
over the year i during the future and Pres is the mean
rainfall over the 24 departments averaged over the pre-
sent time (2000–2013).

2.3 | Methods

2.3.1 | Preprocessing of data

Climate and vegetation datasets were first spatially inter-
polated at 0.5� spatial resolution and aggregated at

TABLE 2 CMIP6 models used in the study

Model Institute References

ACCES-CM2 CSIRO-ARCCSS Bi et al. (2013)

ACCESS-
ESM1-5

CSIRO Law et al. (2017)

CanESM5 CCCma Swart et al. (2019)

CNRM-CM6-1 CNRM-
CERFACS

Voldoire (2019a)

CNRM-CM6-
1-HR

CNRM-
CERFACS

Voldoire (2019b)

CNRM-ESM2 CNRM-
CERFACS

Séférian et al. (2019)

FGOALS-g3 CAS Li et al. (2020)

GFDL-CM4 GFDL Held et al. (2019)

GFDL-ESM4 GFDL Dunne et al. (2020)

INM-CM4-8 INM Volodin et al. (2018)

INM-CM5-0 INM Volodin et al. (2017)

IPSL-CM6A-LR IPSL Dufresne et al. (2013)

KACE-1-0-G NIMS-KMA Lee et al. (2019)

MIROC6 MIROC Tatebe et al. (2019)

MIROC-ES2L MIROC Hajima et al. (2020)

MPI-ESM1-2-HR MPI Müller et al. (2018)

NORESM2-LM NCC Bentsen et al. (2013)

UKESM1-0-LL MOHC Sellar et al. (2019)
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monthly timescale. Climate and satellite data are then
averaged for each department using nearest neighbour
method by taking into account the cultivated areas of
each crop with the crop mask from MIRCA2000.

The time series of the 24 departments of the different
data types are extracted over the common period of
14 years from 2000 to 2013. The matrixes are constructed
by associating the predictors (climate+satellite data) with
each response (peanut, maize, millet and sorghum) for
each month (June, July, August and September). This
gives us matrixes of dimensions 336 rows × 57 columns
(Figure S1, Supporting Information).

The outliers found in this data are deleted by using
the following confidence interval (CI) (Vinutha
et al., 2018):

CI= 25th percentile−1:5×IQR, 75th percentile+1:5×IQRð Þ,
ð3Þ

where IQR=75thpercentile−25thpercentile represents
the interquantile.

Values outside CI are considered as outliers and are
replaced by missing values.

The predictors data (climate and satellite data) were
then normalized to have a standard deviation of 1 and a
mean of 0. After treatment, we obtained respective per-
centages of missing values of 1.45, 2.09, 1.64 and 1.59%
for matrixes constructed with peanut, maize, millet and
sorghum. While there is no established threshold from
the literature regarding an acceptable percentage of miss-
ing data in a data set for valid statistical inferences, it is
commonly admitted that a missing rate of 5% or less has
no impacts on findings (Schafer, 1999; Bennett, 2001).

2.3.2 | Selecting predictors for regression

Reducing the number of predictors is important before
applying machine learning. There are several feature
selection methods designed to identify irrelevant and
redundant parameters that do not contribute significantly
to the accuracy of predictive models. Applying such
methods help to significantly improve accuracy, reduce
learning times and simplify learning results. Here we
used a neighbourhood component analysis (NCA;
Rasmussen et al., 1996; Lichman, 2013) which is a non-
parametric method of predictors selection with the aim of
maximizing prediction accuracy of regression and classi-
fication algorithms (Yang et al., 2012). The NCA is based
on a leave-one-out regression which enables to compute
predictors weights for minimization of an objective func-
tion that measures the average leave-one-out regression

loss. Highest values of weight are obtained by the most
relevant predictors while the weight of the irrelevant pre-
dictors is close to zero. We applied this method indepen-
dently to each type of crop we aim to predict (peanut,
maize, millet and sorghum) in order to select the best
predictors among the full list of 13 climate variables
described in section 2.2.3. Only few climate variables
were found to be irrelevant by the NCA. For instance, for
peanut the potential evapotranspiration, the diffuse flux
of surface PAR and the diffuse flux of shortwave radia-
tion were not selected. For maize, only VPD was not
selected. Concerning the millet, irrelevant predictors are
the diffuse flux of surface PAR and the direct flux of
shortwave radiation. The nonselected variables for sor-
ghum are the mean temperature and the direct flux of
surface PAR. Most of those variables presented nonsignif-
icant correlations with crop yields and/or a high correla-
tion with other variables, thus adding barely no
information in the predictive model.

2.3.3 | The relative contribution of
predictors

Although the weight of the different predictors can
hardly be interpreted in terms of physical link in
machine learning methods, we investigated the relative
contribution (expressed in %) of the different explaining
variables to the predictive model. For the Lasso regres-
sion we compute the relative F-value which is the ratio
between the mean square and mean square error. For the
neural network, the relative importance of a predictor is
computed with respect to the output neuron (see
Ibrahim, 2013 for more details). Decision trees are used
for the random forest method where the algorithm com-
putes estimate of predictor importance by summing these
estimates over all weak learners in the ensemble. Finally,
although relative contribution is not easy to determine
with the SVM parameters unless the kernel function is
linear, we estimated the features relative importance by
using the neighbourhood component analysis (the
“fscnca” function in MATLAB).

2.4 | Machine learning methods for
estimating crop yield

We use three commonly used machine learning methods,
namely support vector machine (SVM), random forest
(RF) and neural network (NN), to predict agriculture
yield (peanut, maize, millet and sorghum). In addition to
these machine learning algorithms, we used a linear
regression method called LASSO. Several studies have
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been conducted with these same methods in a similar
context (Cai et al., 2019; Abbas et al., 2020). The input
data for these models are agronomic data (predictands),
satellite and climate data (predictors).

Following the approach described by Cai et al. (2019),
we first randomly divided the whole dataset into a training
dataset (70% of the dataset) and a test dataset (the remaining
30% of the dataset) to generate one predicted R2. We then
apply a fivefold cross-validation only on the training data
to find the optimal hyperparameters for each method
from empirical candidates based on the cross-validated
R2, which were used to estimate the performance of the
different models. Hyperparameters are basically the
parameters which are related to the training or learning
of the algorithm (learning rate, regularization constant,
number of branches in a decision tree, etc.). The opti-
mized model has been applied on testing data to calculate
the predicted R2. The process was repeated 100 times as
recommended by several studies (Deist et al., 2018; Cai
et al., 2019; Wilson et al., 2019) and we got 100 values of
predicted R2 per method. As done by Cai et al., 2019, we
average the 100 predicted R2 values to present a single
average value to evaluate the performance of the predic-
tion, named predicted R2 in the rest of the paper.

2.4.1 | Least absolute shrinkage and
selection operator

Least absolute shrinkage and selection operator (LASSO)
is a type of linear regression in which the selection and
regulation of variables take place simultaneously. It was
developed by Robert Tibshirani (Tibshirani, 1996). It is
largely used in the field of agronomy (Cai et al., 2019;
Abbas et al., 2020). The LASSO model minimizes the
usual sum of squared errors, with a bound α on the sum
of the absolute values of the coefficients. The hyperpara-
meter α assigns a value of exactly 0 to regression coeffi-
cients corresponding to nonsignificant or redundant
predictors. Therefore, the main objective of LASSO
regression is to “obtain the subset of predictors that mini-
mizes prediction error for a quantitative response vari-
able.” It presents the advantage of being a simple linear
regression model with regularization easy to generalize
and powerful to extract few important features from large
datasets. However, it presents some limitations. For
instance, it needs feature scaling and adjustment of regu-
larization parameter (Pereira et al., 2016).

2.4.2 | Random forest

Random forest (RF) are one type of machine learning
algorithms. It consists of combining a large number

of decision trees for classification or regression. It is
also widely used in research, especially for crop pre-
diction (Jeong et al., 2016; Abbas et al., 2020). It is
used here for regression. RF is simply a collection of
Decision Trees that have been generated using a ran-
dom subset of data subset of data. The name “random
forest” comes from junction of the randomness that is
used to pick the subset of data with having a bunch
of decision trees, hence a forest. It includes three
hyperparameters, namely the number of trees in the
“forest,” the number of variables used to divide each
node and the maximum depth of the tree. The main
objective is to overcome the overfitting problem of
the individual decision trees. In fact, the output of
random forest is evaluated by taking average value of
the prediction of individual trees (Breiman, 2001).
Among the advantages of such a method, it also out-
puts the importance of important features in large
datasets and it is less prone to overfitting than deci-
sion trees and other algorithms. However, RF algo-
rithms present some limitations. Indeed, it may
change considerably by a small change in the data
and these computations can be much more complex
than those of other algorithms (Pathak and
Pathak, 2020).

2.4.3 | Support vector machine

Support vector machine (SVM) is a supervised machine-
learning algorithm and can be used for both classification
and regression (Vapnik, 1998). SVM uses kernel func-
tions which can be linear or polynomial in order to
obtain nonlinear function (Gunn, 1998). Kernel functions
are one of the important hyperparameters that need tun-
ing. SVM minimizes the error by adding the hyperplane
and maximizing the margin between the prediction and
the actual values (Karatzoglou et al., 2006). The goal of
SVM is to identify an optimal separating hyperplane
which maximizes the margin between different classes of
the training data. It is among the most effective machine
learning methods in various crop modelling studies for
its high accuracy (Cai et al., 2019; Abbas et al., 2020). In
fact, this model presents many advantages. It is very
effective even with high dimensional data. It also works
very well if the classes in the data are well separated
points. SVM can also work with image data. Neverthe-
less, SVM model has some disadvantages. In fact, it is not
easy to choose a good kernels function. Moreover, the
training time has to be very long for large datasets. It is
also difficult to understand and interpret the final model,
the weights of the variables and the individual impact
and to fine-tune these hyperparameters (Kirchner and
Signorino, 2018).
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2.4.4 | Neural network

Neural networks (NNs) are composed of simple elements
working in parallel. These elements are inspired by
biological neural network that constitutes human
(Agatonovic-Kustrin and Beresford, 2000). As in nature,
the connections between these elements largely determine
the network function. A neural network contains layers of
interconnected nodes (input nodes layer, hidden nodes
layers and output node layers). The nodes known as per-
ceptron are similar to a multiple linear regression. The
perceptron feeds the signal produced by a multiple linear
regression into an activation function that may be non-
linear. A neural network can be operated by performing a
particular function by adjusting the values (parameters) of
the connections (weights) between its elements. The
hyperparameters that need tuning include the number of
neurons in each layers, the number of hidden layers and
the transfers function. Like other three machine learning
techniques, NN is also widely used in various fields
(Awad, 2019). This model has some advantages. In fact, it
stores information about the whole network. In addition,
the disappearance of some information in one place does
not prevent the network from working. It can work with
incomplete knowledge. The loss of performance here
depends on the amount of missing information. The cor-
ruption of one or more cells in the ANN network does not
prevent it from generating an output. It can also do paral-
lel processing to perform several tasks at the same time.
NN has also many drawbacks. Indeed, it requires proces-
sors with parallel processing power, according to their
structure. The biggest problem is the unexplained behav-
iour of the network. When it produces a convincing solu-
tion, it does not give a clue as to why and how. This can
lead to uncertainties in the network. There is no specific
rule for determining the structure of artificial neural net-
works. The appropriate network structure is obtained
through experience and testing. The duration of the net-
work is also unknown. Indeed, the network is reduced to
a certain value of the error on the sample, which means
that the learning is finished. This value does not give us
optimal results (Mijwel, 2018).

2.4.5 | Linear regression

To study the future predictability we use a linear regres-
sion which is given by the following equation:

Y =aX+b, ð4Þ

where Y is the dependent variable which represents here
R2 of yield obtained with one of the four methods NN,

SVM, RF or LASSO, X is the independent variable which
represents here the summer annual rainfall per depart-
ment. A and B represent the regressions parameters.

3 | RESULTS

3.1 | Performance of the prediction
models

Table 3 shows the predicted R2 for each crop by using
only the selected climate variables for regression models.
The results show that the R2 value is generally greater
than 0.5 for most of the regression models except for
LASSO when we consider maize and sorghum yield and
for NN with maize yield. The results show also that R2 is
higher for peanut yield compared to others. The perfor-
mance (R2) of the four methods were computed using
three combinations of input data (NDVI only, Climate
only and NDVI+Climate) to predict peanut, maize, millet
and sorghum yields (Figure 2). Predictions using climate
variables largely outperform those using NDVI whatever
the crop and the statistical method we used for predic-
tion. Combining NDVI to climate predictors slightly
improved the performance of most models but the added
value of NDVI remains low. In addition, the prediction
obtained with the linear model (i.e., LASSO) is generally
lower than the one obtained with the other methods
(SVM, NN and RF) except for the millet where it presents
a better prediction than the RF. Indeed, as noticed by Cai
et al. (2019) who found similar results, the relationship
between the predictors and the response is not necessar-
ily linear. The NN model gives the better prediction for
peanut and sorghum yields (Figure 2a,d). For maize yield
(Figure 2b) the best prediction was obtained with RF fol-
lowed by SVM and for millet yield (Figure 2c) the SVM
gives the best performance which is the same with NN
when considering the NDVI+Climate combination.

TABLE 3 Coefficient of determination (R2) between the

predicted yields obtained from selected variables and crop yields

(peanut, maize, millet and sorghum) during the rainy season

(June–September)

Crops Peanut Maize Millet Sorghum

Number of selected
climate predictors

9 12 11 11

R2 LASSO 0.56 0.41 0.50 0.47

R2 NN 0.66 0.42 0.52 0.57

R2 SVM 0.56 0.56 0.53 0.53

R2 RF 0.65 0.64 0.51 0.55
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Although the weight of the different predictors can-
not really be interpreted in terms of physical link in
machine learning methods, we investigated the relative
contribution of the different explaining variables to the
yield prediction (Figures S2–S5). We found that the
cumulated rainfall is almost always the most important
predictive variable regardless of the considered prediction
method and crop. Cloud cover percentage and water
vapour deficit, which are highly linked to rainfall, are to
a lesser extent important predictive variables for several
crops/predictive methods. Since those four crops are
rainfed, it is not surprising that total rainfall and related
variable (cloud cover percentage and water vapour defi-
cit) explain an important part of the observed variance of
crop yields.

Producing and disseminating accurate crop yield fore-
casts with a long lead-time could enable decision-makers
to take adjustable, intervention options that can mitigate
the severity of various scenarios of food insecurity or get
benefits of forecasts of high-yield years. In order to evalu-
ate the value of the statistical models in a forecasting con-
text, we compute the temporal evolution of the skill of
the full model (considering both NDVI and Climate vari-
ables) from June which corresponds to the start of the
rainy season in the southern regions of Senegal to

September which corresponds roughly to the cessation of
the rains and the start of the harvest (Figure 3). The value
of R2 in June given in Figure 3 corresponds to the model
builds with climate indices and NDVI in June. The value
of R2 in July given in Figure 3 corresponds to the model
builds from climate indices and NDVI averaged or cumu-
lated from June to July. The value of August is built from
climate indices and NDVI averaged or cumulated from
June to August. Finally the value of September in
Figure 3 corresponds to the performance of the full
model given in Figure 2 (NDVI+Climate). If, as expected,
the skill is increasing from June to September as we inte-
grate more climate variations during the rainy season, it
is worth to notice that this increase is not linear. Indeed,
there is generally a strong increase between June and
July and a slight increase from July to August. The four
crops we studied are rainfed and depend on the unique
water supply from the monsoon season which usually
starts in June and ends in late September. The crops are
sown in early June and a late onset of the rains and/or a
water shortage after the onset can have a detrimental
effect on crop yields. This dependence of crop production
to the rains early in the season could explain the high
skill of the predictive models in June. Almost all the
models reach saturation in August for the prediction of

FIGURE 2 The models performance (mean predicted R2) of four regression models using three combination of inputs (NDVI only,

Climate only and NDVI+Climate) averaged over the rainy season (June–September) for peanut (a), maize (b), millet (c) and sorghum (d)

[Colour figure can be viewed at wileyonlinelibrary.com]
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peanut, millet and sorghum prediction except for the RF
model. It means that the models could provide skilful
forecasts of crop yields using climate and satellite infor-
mation averaged from first June to July 30th. The best
predictions are generally obtained with NN in July for
groundnut, millet and sorghum. However, the prediction
with RF exceeds the one of NN in September for sor-
ghum. For maize, the best predictions are obtained with
SVM using climate and satellite information averaged
from first June to July 30th. It is also interesting to notice
that the RF method provides the best forecasts of peanut,
maize and millet yields with early information (climate
and NDVI in June). Moreover, the methods are generally
more efficient in August or September.

3.2 | Spatiotemporal variability

In order to assess the spatial variability of the predicted
yields, we extract the predicted yields for each depart-
ment and calculate predicted R2 separately. It reveals that

the performance of the statistical models is not equal
across Senegal (Figure 4). Indeed, regarding peanut yield
prediction (Figure 4a), the highest coefficients of determi-
nation are found in the central west of the country. Con-
cerning maize yield predictions (Figure 4b), the highest
skills are obtained in the north of the peanut basin
(Kébémer) and in the south of the basin (towards Nioro)
and in the southwest of Senegal (towards Oussouye, Séd-
hiou and Kolda). Regarding millet yield predictions
(Figure 4c), the performance is generally better in Kébé-
mer and Sédhiou. As for sorghum yield (Figure 4d), the
best predictions are recorded in Gossas, Mbacké, Kaffrine
and Mbour.

Several reasons can explain the spatial variability of
the performance of the model. First, the location of the
cropped areas indicates areas where the crops are mainly
grown and where the production is likely to be more
intensive (Figure S6). In such a region, there are usually
more capital, labour and inputs such as fertilizers, insec-
ticides, pesticides and weedicides which results in more
yield of the crop per hectare and less losses due to

FIGURE 3 Temporal progression of yield prediction obtained with four regression models across the month of the rainy season (June,

July, August and September) using NDVI and climate combination as predictors for peanut (a), maize (b), millet (c) and sorghum (d). Each

predicted value is computed iteratively using NDVI–Climate of June only (the June R2 in the figure), then using NDVI–Climate of June–July
(the July R2 in the figure), June–July–August predictors (the August R2 in the figure) and finally using the NDVI–Climate of June, July,

August and September to compute the September R2 value. As we increase incrementally the inputs, the R2 values are logically increasing

from June to September and are maximal using the NDVI–Climate of June, July, August and September (the September R2 in the figure)

[Colour figure can be viewed at wileyonlinelibrary.com]
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management issues. We thus expect that climate explain
more variations of crop yields in these more intensive
regions. It is the case for peanut where the highest coeffi-
cients of determination are found in the areas where pea-
nut is mainly grown (Figure S6). Another reason that
could be given is the size of the cropped areas. Land hold-
ing in more intensive cropping systems is generally smal-
ler, expensive and in more densely populated region than
in extensive cropping systems. Small cropped surface
could be a marker of more intensive cropping areas with
a higher relationship with climate variability. This
hypothesis reveals to be true for peanut and millet where
there is a linear negative relationship between the
cropped surface and the prediction skill with the highest
skills associated to the lowest surfaces (Figure S7).

In addition to cropped areas, another element which
could explain the spatial distribution of the predictive
score of the different methods is the spatial pattern of
mean rainfall. Indeed, if crop yields in Senegal depend
crucially on summer rainfall, the relationship between

those two variables is not linear (Figure S8). Crop yields
variability is clearly driven by the rainy season when the
cumulative rain is less than roughly 800 mm per rainy
season with a positive linear relationship showing that
more or less rainfall could lead to respectively more or
less yields.

When seasonal rainfall amount is above this thresh-
old, Figure S8 shows a slightly decreasing plateau where
cumulative rainfall becomes less important to explain crop
yield variability. It depicts wet situations where water stress
is less frequent and where other factors can limit crop
yields such as radiation limitations (Baron et al., 2005),
farmers' practices or the occurrence of pest and diseases. As
cumulative rainfall is one of the most important predictors
in the four statistical models, it is likely that we could
expect higher predictive skills in departments with less
than 800 mm of rainfall per summer (Gossas, Tamba-
counda, Foundiougne, Bambey, Diourbel, Louga, Fatick,
Kaffrine, Mbour, Thiès, Kébémer, Linguère, Kaolack,
Nioro, Tivaouane, Mbacké and Bakel).

FIGURE 4 Spatial distribution of the skill of the regression models using NDVI+Climate combination from June to September for

peanut (a), maize (b), millet (c) and sorghum (d). We fit/test the four models (NN, LASSO, RF and SVM) using data from all departments

and years together. We thus have four mean predictions for each department and each year. We then extract the predictions for one

department, calculate R2 separately for each of the four methods and average the four R2 values to produce the figure [Colour figure can be

viewed at wileyonlinelibrary.com]
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The predicted values versus annual rainfall at the
departments scale are shown in Figure 5. Regarding pea-
nut predictions, as expected, the highest prediction skills
are observed in the drier departments and there is a
decreasing trend of the forecast accuracy as the depart-
ments get wetter. Figure 5b–d does not show such a clear
trend for maize, millet and sorghum even if we could sus-
pect this negative relationship between prediction accu-
racy and annual rainfall for sorghum predictions. It is
likely that those crops are more sensitive to intra-
seasonal variations of rainfall rather than cumulative
rainfall (Marteau et al., 2011; Guan et al., 2015).

Figures 6 and S9–S11 show the cumulative summer
rainfall and the performance of the regression models
using different combinations of input data (Climate only,
NDVI only and Climate+NDVI) to predict peanut, maize,
millet and sorghum yields respectively for each depart-
ment. Generally, the best predictions are obtained when
we have more input data (i.e., Climate+NDVI). If we con-
sider the different inputs data taken individually, the
results show that the best performance is obtained with
climate data in most departments except for NN with
maize, millet and sorghum crops (Figures S9–S11) where

NDVI gives on average the best predictions. Regarding
peanut prediction (Figure 6), the R2 from the two combi-
nations Climate and NDVI+Climate are the highest (low-
est) in the departments where cumulative summer
rainfall is the lowest (highest), especially for the NN and
SVM models. However, for the other crops, we do not see
such a trend, except for the prediction from the combina-
tion NDVI+Climate using NN in the case of millet.

Finally, we show the time series of observed and
mean predicted yield from the 100 simulations for pea-
nut, maize, sorghum and millet using the NN method
(Figure 7) in average over Senegal. Even if the sample is
limited to 14 years, it is clear from Figure 7 than the
observed and predicted time series of crop yield of peanut
are very close. In particular the model is able to simulate
yield losses due to abnormally dry years in 2002, 2007
and 2013 but also high yields during wet years in 2005,
2008, 2009 and 2010. Although maize, millet and sor-
ghum observations indicate a yield drop during the dry
years 2002 and 2007 which is well predicted by the NN
method, the agreement between the observed and pre-
dicted time series is less satisfying for these three crops. It
is also clear from Figure 7 than observed yield of maize,

FIGURE 5 Predicted R2 of the regression models at the department level (one colour per model) and June to September accumulated

rainfall (mm�season−1). As for Figure 4, the statistical models use NDVI+Climate combination from June to September to predict yield of

peanut (a), maize (b), millet (c) and sorghum (d). We fit/test the four models (NN, LASSO, RF and SVM) using data from all departments

and years together. We thus have four mean predictions for each department and each year. We then extract the predictions for one

department and calculate R2 separately for each of the four methods [Colour figure can be viewed at wileyonlinelibrary.com]
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millet and sorghum are less correlated with annual rain-
fall, being more sensitive to other climatic (intraseasonal
distribution of rainfall, seasonality of the rains,
radiation…) or nonclimatic factors (management, pest
and diseases…). It could explain the relatively lower per-
formances of the prediction model. Similar results can be
found using the three other approaches SVM, LASSO
and RF (Figures S12–S14).

4 | SUMMARY AND DISCUSSIONS

Our study investigates the predictability of crop yields in
Senegal using four machine learning algorithms, namely
three nonlinear models (random forest, singular vector
machine and neural network) and the linear regression
model LASSO to predict yields of peanut, maize, millet
and sorghum. Either observed climate variables and/or
vegetation data estimated from satellite retrievals were
used as explaining variables to predict crop yields.

Our results showed that the combination of climate
and vegetation with the nonlinear models (RF, SVM and
NN) gives the best performance for crop yield prediction
even if the contribution of satellite vegetation data
remains low compared to climate data. These results are

consistent with the ones of Cai et al. (2019) and Leroux
et al. (2020). Both studies showed that nonlinear models
outperform linear methods (LASSO regression in Cai
et al., 2019; multiple linear regression in Leroux
et al., 2020) and found that vegetation indices from satel-
lite data explain less crop variability compared to climate
data. However, it does not call into question the use of
satellite data for crop prediction. Indeed, promising
results for maize yield estimation in West Africa are
found using satellite indices of surface soil moisture and
temperature of canopy (Leroux et al., 2020). The integra-
tion of such satellite retrievals of climate conditions expe-
rienced by the plant (drought and heat) could be a good
way to improve the performance of the prediction models
we developed in this study. Furthermore, it is important
to highlight that the approach is still experimental since
predictor selection and model test are performed on a
very short period of data (14 years) with the use of cross-
validation which could lead to overestimate the perfor-
mance of the prediction methods. However, using a simi-
lar experimental framework, Cai et al. (2019) provided
strong evidences of the practical performance of such val-
idation to assess the out-of-sample predictions. Another
important limitation induced by the small sample of the
yield dataset is that we combined yield values from the

FIGURE 6 Predicted R2 of the regression models at the department level to predict peanut yields using June to September climate

(green), NDVI (red) and Climate+NDVI combination (purple) as inputs. Blue bars represent June to September accumulated rainfall

(mm�season−1) [Colour figure can be viewed at wileyonlinelibrary.com]
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14 years and the 24 departments to get a larger dataset to
train and validate the machine learning methods. It
implicitly assumes that the same model applies for each
department and may account for some of the spatial vari-
ation in skill.

The results also showed that the best yield predictions
are obtained between 1 and 2 months before the end of
the rainy season which is also the harvest time. Such
information before harvest could be a valuable informa-
tion to be included into an early warning system linked
to early action in case of harvest shortfalls. However, this
lead time might be too short to support decision making
of farmers who need to make critical climate-sensitive
decisions months before the rainy season starts (Roudier
et al., 2012). A skilful prediction for longer lead-time
could be reached by applying the same kind of statistical
models developed in this study but using numerical cli-
mate forecasts instead of climate observation. Even if the
use of such climate forecasts is still challenging for spe-
cific sectors or regions (Doblas-Reyes et al., 2013), there
are promising examples of crop yield predictions based
on such climate forecasts (see for instance Iizumi
et al., 2021). However, the use of such forecasts is not
straightforward for crop yield prediction. In our case, it

would require first to compare the climate observations
and climate hindcasts at different lead time to select the
best forecasted climate variables. These variables could
then be used to train a new statistical model as done in
this study to predict crop yields.

The best prediction skill is obtained for peanut with a
coefficient of determination up to 0.66 when comparing
observed and predicted yields. Indeed, peanut shows the
highest correlation between yields and summer rainfall
and several studies reported the high sensitivity of this
crop to interannual climate variability not only in Africa
(Prasad et al., 2010; Hamidou et al., 2013) but also in
India (Bhatia et al., 2009; Challinor et al., 2009; Singh
et al., 2012). The performance of statistical models to pre-
dict peanut yields has important societal implications in
Senegal since peanut is an important oil seed and food
crop grown by small-holder and resource-poor farmers,
providing the main source of income in rural areas
(Tarawali and Quee, 2014; Faye et al., 2018a). Together
with Nigeria, Senegal is one of the largest producers in
the West African region and a skilful crop yield predic-
tion system could have an important economic value.

The increase of anthropic greenhouse gases emissions
affects global surface temperatures but has also an effect

FIGURE 7 Observed (black) and predicted (green) yield using NN method (standardized anomalies) in average across Senegal. We

fit/test the NN model using data from all departments and years together. We thus have mean predictions for each department and each

year. We then averaged the predictions of the 24 departments to get predicted values in Senegal. Blue bars represent June–September

accumulated rainfall (mm�season−1). Similar comparisons between observed and predicted values have been done for the three other

machine learnings methods (Figures S12–S14) [Colour figure can be viewed at wileyonlinelibrary.com]
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on the hydrological cycle in West Africa (Sultan
et al., 2014) with regions experiencing more rainfall
under future climate scenarios such as Central Sahel and
less rain in the Western part of the Sahel (Senegal, South-
west Mali). Since rainfall is expected to change under
global warming scenarios, one can expect changes in crop
yields but also in crop yields predictability. The rainfall
projections in Senegal from the latest CMIP6 exercise
show a clear downward trend in June to September rain-
fall amount across time (Figure 8). Although this rainfall
reduction occurs in both low- and high-emission scenar-
ios (SSP2-45 and SSP5-85, respectively), the amplitude of
the rainfall deficit is more pronounced under the SSP5-85
with rainfall anomalies of −20% by the end of the cen-
tury. This trend was also depicted in the previous CMIP5
simulations (see for instance Sylla et al., 2016; Diallo
et al., 2016 who analysed rainfall trends in the Sahel).
Under the scenario SSP2-45, the multimodel mean simu-
lates a slight increase in rainfall during near future
(Figure 9a) in Bakel, but also in the centre and north of
the peanut basin (central-western part of the country)
except for the departments of Kaffrine and Nioro. Rainfall
is expected to decrease in the south of the country except
over the lower Casamance (Ziguinchor, Bignona and Ous-
souye). The decrease is much more significant with the
SSP5-85 scenario (Figure 9b) with a rainfall deficit in all
24 departments. The greatest decrease is found in Bambey,

Kaffrine, Nioro and Tambacounda. The situation is aggra-
vated by 2,100 horizon (Figure 8c,d for SSP2-45 and
SSP5-85, respectively). Indeed, under both scenarios, the
average of the CMIP6 models simulates strong decreases
in rainfall that could exceed 20% in Tambacounda,
Vélingara, Kaffrine, Louga and Nioro. Although the simu-
lations are not the same, this effect of anthropic green-
house gases on rainfall in the Sahel is consistent with the
results from Giorgi et al., 2014; Mariotti et al., 2014; Diallo
et al., 2016; Sarr and Camara, 2017.

This rainfall decrease could lead to yield losses, espe-
cially in departments where rainfall is limiting agricul-
tural yields. Such detrimental effects on crop yields have
been largely described in the literature (see for instance
Sultan et al., 2014; Faye et al., 2018b). On the other hand,
a reduction in seasonal rainfall could modify the predict-
ability of crop yields as the performance of yield predic-
tions depends on summer rainfall amount for some
regions and some crops (Figure 5a). To have a rough esti-
mate of these changes in predictability, we build on the
results from Figure 5 to develop a simple linear model
based on the relationship between the coefficient of
determination of our prediction models and cumulated
summer rainfall. Table 4 presents the correlation
between the coefficient determination of each regression
models based on climate and NDVI indices and cumu-
lated seasonal rainfall at the departmental scale over the

FIGURE 8 Temporal evolution of the mean JJAS (June–July–August–September) rainfall relatively to baseline 2000–2013 period (%) as

simulated by the ensemble mean of CMIP6 model bias-corrected under the SSP2-45 and SSP5-85 scenarios [Colour figure can be viewed at

wileyonlinelibrary.com]
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baseline period 2000–2013. As highlighted by Figure 5
there is a negative correlation between the coefficient of
determination of most statistical prediction models of
peanut (LASSO, NN and SVM) and annual rainfall
which means that the models perform better in depart-
ments where rainfall is lower. However, such relation-
ships are not significant for other crops although
similar negative correlations are found for sorghum
predictions. We will thus focus on peanut to roughly
estimate future predictability by using a simple linear

regression model (see Equation (4)) where the depen-
dent variable to predict is R2 of peanut yield obtained
with one of the four methods NN, SVM, RF or LASSO
and the independent explaining variable represents the
summer annual rainfall per department. Once the
regression parameters computed using the baseline
rainfall from 2000 to 2013, we estimate future predict-
ability by rescaling the baseline rainfall by future cli-
mate anomalies (see section 2) and replacing the
baseline rainfall by this new future rainfall. From this
estimated predictability in the future, we can compute
the relative change in predictability by department
between the future (near and far future) and the base-
line period (Figure 10). Globally, our results show that
the strongest changes are obtained with the regression
models characterized by the strongest correlation
between R2 and rainfall during the reference period
(i.e., NN model, followed by SVM and LASSO). In the
near future, changes are relatively small, especially in
the medium scenario (SSP2-45) (Figure 10a), which
shows both negative and positive changes, with a rela-
tively large decrease in the department of Oussouye

FIGURE 9 Change future (near future and far future) minus present (2000–2013) during JJAS period in % simulated by ensemble mean

of CMIP6 models bias-corrected under the SSP2-45 and SSP5-85 scenarios [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Correlation between the predicted coefficient

determination (R2) by each regression model and rainfall during

rainy season (June–September) from 2000 to 2013 at the

departmental level

Models LASSO NN RF SVM

Peanut −0.57 −0.72 −0.28 −0.69

Maize 0.19 0.24 0.34 0.12

Millet −0.10 0.45 0.13 −0.25

Sorghum −0.27 −0.33 −0.16 −0.38

Note: Significant values at 5% are highlighted in bold.
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and an upward trend in the models for the departments
of Tambacounda, Kaffrine, Kédougou, Kolda, Nioro
and Vélingara. Under the high-emission scenario
(SSP5-85) (Figure 10b), the prediction performance
could experience a small increase compared to the
SSP2-45 scenario. This increase could reach 10% in the
departments of Tambacounda, Kédougou, Oussouye,
Kolda and Sédhiou depending on the prediction
models. During the far future (Figure 10c for SSP2-45
scenario and Figure 10d for SSP5-85 scenario), an
increase in predictability is expected regardless of the
type of scenario considered. This increase remains rela-
tively low in the medium scenario and does not exceed
10%. The largest increases are recorded in the depart-
ment of Kédougou, followed by Bakel and Tamba-
counda, and the smallest (<1%) in the departments of
Foundiougne and Oussouye. A large increase could be
obtained if we consider the SSP5-85 scenario
(Figure 10d). This could exceed 40% in the department
of Oussouye and 30% in the departments of Sédhiou
and Kolda with the NN and SVM models. This estima-
tion of the changes of predictability under climate
change scenarios has some limitations like most
modelling studies. Among the most important ones, it

only considers the changes in mean rainfall as it is
likely that the frequency and/or the seasonality of rain-
fall could also change in the future and affect the crops
(Guan et al., 2015). The expected increase in mean tem-
perature can also shorten crop cycle length, modify
evapotranspiration and change the relationship
between crop yield and summer rainfall as shown in
several studies (see for instance Sultan et al., 2013;
2014). An increased of mean temperature would thus
likely corroborate the conclusions of our study on more
predictable yields under future climate. Furthermore,
even without considering temperature changes, it
remains very likely that since rainfall is expected to
decrease, water stress will increase, strengthening the
relationship between crop and rainfall.

The use of crop yield forecasts will be more and more
relevant to compensate yield losses anticipated under cli-
mate change scenarios. The need of such early forecasts
to support adaptation to climate change is well acknowl-
edged by Least Developed Countries and Small Island
Developing States who were nearly 90% to identify early
warning systems as a top priority in their Nationally
Determined Contributions on climate change (World
Meteorological Organisation, 2020).

FIGURE 10 Predictability change during rainy season (JJAS) between the future (near future and far future) with respect to the

baseline (2000–2013) for each department under the different scenarios (SSP2-45 and SSP5-85) [Colour figure can be viewed at

wileyonlinelibrary.com]

SARR AND BENJAMIN SULTAN 1833

http://wileyonlinelibrary.com


5 | CONCLUSION

This study evaluated the potential of climate and vegeta-
tion indices to predict crop yields of peanut, maize, millet
and sorghum in Senegal. The comparison of multiple sta-
tistical methods (RF, SVM, NN and LASSO) and combi-
nation of predictands show promising prediction skills
1–2 months before harvest. Overall, predictions of peanut
yields using nonlinear statistical methods give the best
results compared to the three other crops under current
climate and the performances may even increase for pea-
nut yields predictions under climate change scenarios.
Although experimental yet, this approach could be
extended to be included into an early warning system
linked to early action in case of harvest shortfalls.
Although further work is needed to implement such pre-
dictions into an operational forecast system, we believe
that such prediction and their integration into operational
early warning systems could increase resilience of Senegal
to climate change and contribute to food security.
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