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ABSTRACT
To reduce catches of juvenile bigeye and yellowfin tuna, while maintaining skipjack catches under drifting fish aggregating 
devices (dFAD), we analyzed spatiotemporal distributions of dFAD catches by European purse seiners in the Eastern Atlantic 
Ocean during 1996–2019. To detect hotspots of juvenile dFAD catches, we: identified periods of maximum abundance using a 
seasonal sub-series diagram; normalized monthly FAD catches per unit effort; and used emerging hotspots analysis on spatio-
temporal density. Two main spatiotemporal strata were identified in the Guinean Gulf, which could be used to establish morato-
ria on dFAD fishing. These spatiotemporal strata differed from the existing ICCAT moratorium, which spanned a larger part of 
the African coast. Our findings also indicated that time-area closures of dFAD-fishing lasting 3–4 months in smaller areas could 
be more effective than the current dFAD moratorium to reduce unwanted bycatch in the Eastern Atlantic region. The two met-
rics we developed for comparison provided clear and measurable evidence that demonstrated how strategic and data-informed 
moratoriums can lead to substantial improvements in conservation.

1   |   Introduction

Tropical tunas, particularly bigeye (Thunnus obesus, BET), yel-
lowfin (Thunnus albacares, YFT), and skipjack (Katsuwonus pe-
lamis, SKJ), play crucial roles in global marine ecosystems and 
are economically important for many nations (FAO 2020). These 
species are the primary targets of large-scale industrial fisheries, 
especially in tropical and subtropical waters across the Atlantic, 
Indian, and Pacific oceans (Rogers et al. 2016). The purse seine 
fishery, which encircles schools of tuna with large nets, is one 
of the most efficient methods for capturing these species, espe-
cially in the Atlantic Ocean (Miyake et  al.  2010). Purse-seine 

vessels account for about 66% of the 5.2 million tons of tuna 
caught annually worldwide (ISSF 2024). A vertical net ‘curtain’ 
is used to surround a school of fish, the bottom of which is then 
drawn together to enclose the fish, like tightening the cords of 
a drawstring purse (https://​www.​msc.​org/​what-​we-​are-​doing/​​
our-​appro​ach/​fishi​ng-​metho​ds-​and-​gear-​types/​​purse​-​seine​).

However, increasing pressure on tuna stocks has raised con-
cerns about their sustainability. Recent stock assessments of 
Atlantic tropical tunas by ICCAT indicated varying levels of 
concern. The skipjack tuna stock is generally considered to 
be in good health, with the latest assessments suggesting it is 
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neither overfished nor subject to overfishing (ICCAT  2022). 
Yellowfin tuna is also not overfished and not subject to overfish-
ing (ICCAT 2019). In contrast, the assessment results show that 
in 2021, the Atlantic bigeye tuna stock was overfished, with the 
stock below the biomass level that can produce maximum sus-
tainable yield and was not overfished at that time (ICCAT 2021).

Following the increasing use of drifting Fishing Aggregating 
Devices (dFAD) in the early 1990s, tuna Regional fisheries man-
agement organizations (RFMOs) were quickly confronted with 
the trade-off between reducing mortality on juvenile bigeye 
and yellowfin tuna, but without significantly reducing skipjack 
catches, because skipjack is the predominant species in dFAD 
catches (Ariz et al. 1999; Hallier and Parajúa 1999). Among the 
many measures included in tuna fisheries management, time-
area closures of FAD-fishing for mitigating juvenile bycatch 
have become more important over the last decades. Following 
a voluntary moratorium observed by European purse seiners in 
1997–1998 (Goujon 1998), several moratoria on dFAD were im-
plemented since 1999 in the Atlantic Ocean by the International 
Commission for the Conservation of Atlantic Tunas (ICCAT). 
However, different choices of periods and areas of closure of the 
dFAD fishery were not based on ecological or scientific knowl-
edge resulting from proposals made by the Standing Committee 
on Research and Statistics (SCRS) of ICCAT, so the effective-
ness of different dFAD moratoria was questioned (Fonteneau 
et al. 2016).

With this consideration in mind, mapping dFAD hotspots of ju-
venile tunas, or vulnerable associated pelagic species, may give 
spatially explicit solutions for effective area-based management, 
with the aim of contributing to the sustainability of the tropical 
tuna fishery as part of an ecosystem approach to fisheries man-
agement (Garcia and Cochrane 2005). Hotspots can be located 
based on catches, catch per unit effort (CPUE), or the ratio of 
catch of a species to be protected to a target species (Harley and 
Suter 2007). In the case of a multi-species fishery like the tropi-
cal tuna seine fishery, the use of self-organizing maps showing 
catch hotspots can be used as a visual aid by decision-makers 
to identify candidate areas for seasonal and spatial closure 
(Stephan et al. 2022). However, to be effective in reducing the 
mortality of juvenile tuna, time-area closures should be placed 
in strata where (1) monthly catches are historically high and (2) 
hotspots are predictable in time and space.

We aimed to identify dFAD catch hotspots for small tropical 
tunas in the eastern Atlantic Ocean and to track their evolution 
over a 24-year period (1996–2019), with the end goal of recom-
mending optimal moratorium zones. To achieve this objective, 
we examined seasonality of monthly catches and fishing effort 
to identify peak months for small tropical tuna catches. We ap-
plied the VAST (Vector Autoregressive Spatiotemporal) method, 
a specific geostatistical generalized linear mixed model (GLMM) 
to standardize catch per unit effort for each species. This al-
lowed us to forecast local monthly biomass density throughout 
the fishing domain frequented by French and Spanish purse 
seiners in the Eastern Atlantic. The VAST approach adjusted 
for factors that impact catch per unit effort to minimize biases 
by accounting for the influence of past moratoria and other el-
ements that affect catchability of tuna. Local biomass density 
extracted from VAST were used in an emerging hotspot analysis 

(EHSA) to determine monthly hotspot zones and evaluate fluc-
tuations of hotspots during the study period. A final step used 
spatial maps generated from the hotspot analysis to gauge 
overlap among species. We hoped our findings would inform 
decisions about balancing the reduction of juvenile bigeye and 
yellowfin tuna catches against maintenance of skipjack catches, 
and subsequently guide recommendations for new, more suit-
able spatiotemporal strata for dFAD moratoria.

2   |   Materials and Methods

2.1   |   Data Sources

Data were sourced from logbooks of European tropical tuna 
purse-seiners (France and Spain), the largest surface fishing 
fleet in the eastern Atlantic (48% of all tropical purse-seine 
catch during 1996–2019). Operational fishing grounds for these 
purse seiners extended between latitudes 20° S and 20° N and 
longitudes 35° W and 15° E and were representative of all purse-
seine fleets, some of which belonged to European companies 
(Figure  1). Catch and effort data were compiled and man-
aged by the Tuna Observatory (Ob7) of the French National 
Research Institute for Sustainable Development (IRD, UMR 
MARBEC) for the French fleet and by the Spanish Institute 
of Oceanography (IEO) for the Spanish fleet. Each record of a 
fishing set contained information on the date, geographical lo-
cation, school type, estimated catch, and composition of tuna 
species in size categories: 0–10, 10–30, and ≥ 30 kg. The T3 
methodology corrected raw logbook data produced by skippers 
for total catch per set and species composition (based on port 
size and species sampling, Pallarés and Hallier  1997; Duparc 
et al. 2020). These processed data were the “level 1” logbook da-
tabase used in this study. Commercial size categories were used 
to distinguish stages of tropical tuna: < 10 kg were mainly skip-
jack, with some juvenile yellowfin and bigeye, and classified as 
category 1; and ≥ 10 kg were mainly yellowfin and bigeye, and 
classified as categories 2 and 3 (Escalle et al. 2016). Due to the 
study objective, we used only data for commercial category 1 
caught by European purse seiners. Catch and effort statistics 
for each species were collected in small areas (1 × 1° squares 
for most gears, and 5 × 5° squares for longlines), gear, flag, and 
month, identified as ICCAT Task 2 data.

2.2   |   Seasonal Subseries Plots

Seasonal subseries plots (Cleveland  1993), also known as sea-
sonal plots, were used to analyze and visualize seasonal patterns 
in multi-year time-series data. By organizing data into inherent 
seasonal periods (like months or quarters), plots highlighted 
seasonal components with the response variable on the vertical 
axis and time organized by season on the horizontal axis. A ref-
erence line at the group means identified annual recurring pat-
terns to assess seasonality, within-group patterns, and outliers.

For the 24-year dataset, seasonal subseries plots used: (1) raw 
monthly catch values and (2) the percentage of monthly catches 
relative to their respective years. To discern variation in seasonal 
patterns over shorter periods, the 24-year period was divided into 
four 6-year subperiods for raw monthly catch analysis. Seasonal 
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subseries plots were developed as follows. First, for raw monthly 
catches, data were organized chronologically to ensure that 
monthly catches for each year from 1996 to 2019 were accurately 
compiled. For the percentage of monthly catch within a specific 
year, the cumulative annual catch was calculated first for every 
year in the dataset. Subsequently, the monthly catch was com-
puted as a percentage of the yearly total for each month. Data 
from Task 2 of the ICCAT were used, excluding Belize and infor-
mation on the composition (juveniles vs. others) of each species 
category for seasonal subseries plots. This approach allowed us 
to gather catch data for most flags and gears targeting tropical 
tuna associated with dFAD in the eastern Atlantic Ocean. In 
plots, the X-axis was months from January to December and the 
Y-axis was either raw monthly catches or the percentage of total
annual catch. The plotting procedure vertically aligned data for
each month over all 24 years (e.g., all January data points from
1996 to 2019 were stacked vertically, followed by February data,
etc.). Raw monthly catches were disaggregated into four sepa-
rate 6-year segments, and each segment was plotted using the
same structure to detect seasonal variation over shorter periods. 
Consistency in peaks was used to identify months of consistently 
high catches across years. Temporal trends were scrutinized to
detect increasing or declining temporal trends in catches and
within 6-year subperiods. Short-term shifts in 6-year subperi-
ods were examined to detect peak months or noticeable shifts
in seasonality.

2.3   |   Vector Autoregressive Spatiotemporal Model 
(VAST)

Fishery-dependent data provided non-random sampling of fish 
catches at specific locations that derived from a variety of un-
observed spatial and temporal factors, including fish density 
and availability, management decisions such as time-area clo-
sures, and efficiency of fishing gear. Geostatistical modeling, 

particularly suitable for fishing data, incorporates spatial depen-
dence through latent variables and spatially structured random 
effects to handle unbalanced designs (Monnahan et  al.  2021). 
By sharing information across both space and time, models 
can address spatial cells missing data due to time-area closures 
like historic dFAD moratoria, as in the Eastern Atlantic Ocean 
(Thorson 2019; Xu et al. 2019).

To account for these spatiotemporal constraints, a vector-
autoregressive spatiotemporal (VAST) delta-generalized lin-
ear mixed model was applied to catch and effort data using 
the VAST R package (Thorson  2019). VAST has superior 
performance over other standard methods, and maintains 
accuracy when data is incomplete for some areas within var-
ious combinations of years and seasons—a common problem 
with commercial catch data (Bryan and Thorson 2023; Grüss 
et al. 2019). Given these attributes, VAST is increasingly being 
used for CPUE standardization within tuna RFMOs (skipjack 
tuna in the Eastern Atlantic Ocean, Akia et al. 2022; yellowfin 
tuna in the Western Pacific Ocean, Vidal 2020; skipjack tuna 
in the Central Pacific Ocean, Vidal et al. 2020; yellowfin tuna 
in the Indian Ocean, Kitakado et  al.  2021; and bigeye tuna 
caught by the longline fishery in the eastern Pacific Ocean, 
Satoh et al. 2021). VAST was initially developed by the Pacific 
Fisheries Management Council (PFMC) that manages fisheries 
in federal waters off the US West Coast (Thorson 2019), with 
early applications in the Pacific Ocean.

The VAST model used for our study was the “Poisson-link 
delta model”, which employs a log-link function and a gamma 
distribution for its positive component (as indicated by 
ObsModel = c(2,1) in the R package VAST). The Poisson-link 
delta model used a probability distribution for catches B, with bi 
the catch for purse-seine observation i (each purse seine obser-
vation corresponded to a set). The Poisson-link delta model in-
cluded the probability pi that observation i encountered a given 

FIGURE 1    |    Distribution of average catches of Bigeye (BET), Skipjack (SKJ), and Yellowfin (YFT) tuna in the European purse-seine fleet in the 
eastern Atlantic Ocean during 2007–2011 (left panel; Delgado de Molina et al. 2014) and 2012–2016 (right panel; Pascual-Alayón et al. 2019).
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species [i.e., Pr(B > 0)], and the expected catch ri, given that the 
species was encountered, Pr(B|B > 0):

where a gamma distribution G specified the distribution of positive 
catches (i.e., successful sets with a catch greater than 1 ton). This 
delta model predicted encounter probability pi and positive catch
rate ri as a function of two linear predictors, log

(
ni
)
 and log

(
wi

)
,

for each observation i; and ni and wi were transformed to pi and ri:

In the model, ai was an offset variable that represented units of ef-
fort, expressed as the number of dFAD sets per observation. The 
expected density, di was the product of the encounter probabil-
ity, the positive catch rate, and the transformed linear predictor, 
di = pi × ri = ni × wi. The model was defined as an expected den-
sity that was influenced additively by encounter probability and 
positive catch rate through a consistent log-link transformation:

The intercept parameters representing annual variation in the 
encounter rate (βn) and positive catches (βw) for the ith obser-
vation follow a first-order autoregressive (AR1) process. For
the ith observation, spatial 

(
ωn

(
si
)
and ωw

(
si
))

 and spatio-
temporal 

(
εn
(
si, ti

)
and εw

(
si, ti

))
 random effects accounted

for residual variance not captured by fixed intercepts or co-
variates. Spatial and spatiotemporal effects were assumed 
to follow a multivariate normal distribution for encounter 
rate and positive catches. Covariance between locations was 
driven by a Matérn function, enhanced with geometric an-
isotropy, which allows decorrelation to vary between two di-
rections. Spatiotemporal effects encompassed auto-correlation 
through equations: �n(t) ∼MVN

(
ρεn�n(t − 1),Rn

)
 and 

�w(t) ∼MVN
(
ρεw�w(t − 1),Rw

)
. Here, �n(t) and �w(t) denoted 

spatial variability vectors for encounter rate and positive catches 
in year t, with Rn and Rw being covariance matrices that incor-
porated a Matérn function for spatial decorrelation. Spatial vari-
ation described static, over-time variation in biomass density of 
tropical tuna, while spatiotemporal variation described yearly 
changes in biomass density for the Eastern Atlantic tropical tuna 
population. Temporal correlation of spatiotemporal components 
was described as an AR1 process to handle data from multiple 
sources (years with and without moratorium) and avoid unreal-
istic hot spots.

Parameters λn(k) and λw(k) represented catchability covariates 
to illuminate variables that affected the measurement process, 
but did not alter fish density. Historically, French purse seiners 
mainly targeted free schools, whereas Spanish purse seiners 

mainly targeted dFAD, but both fleets expanded their use of 
dFAD more recently. In addition, the size category of vessels 
and a proxy for the modern technology introduced on board 
vessels (assuming old vessel were less equipped) likely played a 
role in choosing a fishing strategy. To account for this change, 
fleet country, vessel age, and vessel storage capacity (carrying 
capacity) were incorporated as catchability covariates (Table 1). 
Specifically, vessel age and vessel storage capacity were mod-
eled as a three-degree polynomial spline using the bs function of 
the ‘splines’ R package (R Core Team 2021). Finally, �n

(
vi
)
 and

�w

(
vi
)
described random catchability variation between groups, 

as vessel identifiers, for each overdispersion factor. By combin-
ing Equations  (3) and (4), densities for each extrapolation grid 
cell were determined by:

Overall abundance across the domain was then estimated as the 
area-weighted sum of density d(s, t) at a fine spatial resolution:

where ns was the number of extrapolation grid cell and as was 
the spatial area associated. The spatial area of each extrapola-
tion grid was defined as 10,404 (102*102) km2 and 150 knots. 
Abundance indices were estimated as a spatial average of pre-
dicted density across the model extrapolation grid. Uncertainty 
of the index was estimated using a generalization of the delta 
method (Kass and Steffey  1989). In Equation  (6), ns was the 
total number of extrapolation grid cells and as was the associ-
ated spatial area. Model convergence was assumed when the 
gradient of the marginal log-likelihood declined below 0.0001 
for all fixed effects and the Hessian matrix of second partial 
derivatives of the negative log-likelihood was positive definite 
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∑ns
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TABLE 1    |    Covariates in a model of tropical tuna catch-per-unit-
of-effort for European purse-seiners (France and Spain) in the eastern 
Atlantic Ocean during 1996–2019.

Variable in the 
model Description

Fleet country Fleet country: France and Spain

Vessel age The age of the vessel

Numbat Unique vessel identifier. Use as the 
random vessel effects variable

Vessel storage 
capacity

Vessel storage capacity in m3
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(Grüss et al. 2020). Geostatistical analyses used R version 4.1.2 
(R Core Team 2021). A model was fit for each of 12 months and 3 
species during the 24-year period, for a total of 36 models. Data 
from European purse-seine fisheries operating in the Eastern 
Atlantic Ocean were used to standardize abundance indices and 
predict local catch density for each grid.

2.4   |   Emerging Hotspot Analysis

Emerging hotspot analysis (EHSA) is a tool introduced by ArcGIS 
to detect spatiotemporal trends in data. By combining the Getis-
Ord Gi* statistic with the Mann-Kendall trend test, EHSA iden-
tifies trends in hot or cold spots over time (ESRI 2021). The goal 
of EHSA is to evaluate how hot and cold spots change over time 
to answer questions: are they becoming increasingly hotter, are 
they cooling down, or are they staying the same?

2.4.1   |   Gettis-Ord Gi* Statistic

The Getis-Ord Gi* is a prominent Local Indicator of Spatial 
Association (LISA) frequently employed in hotspot analysis 
such as crime mapping (Chainey and Ratcliffe  2013), epide-
miology (Jimenez and Wongchanapai  2022; Rahman, Islam, 
and Islam  2021), environmental studies (Danek, Weglinska, 
and Zareba  2022; Ding et  al.  2015), and real estate analysis 
(Downs 2004; Mondal 2020). Through computation of Gi* sta-
tistics for spatial features (or spatial variable), the method dis-
cerns clustering intensity in regions with high values (hotspots) 
and low values (cold spots) in relation to a specific spatial vari-
able (Chambers 2020; ESRI 2021) using the formula (Getis and 
Ord 1992; Ord and Getis 1995):

where xj is the attribute for spatial feature j,�i,j is the spatial 
weight between feature i and j,n is the total number of features, 
and

2.4.2   |   Mann–Kendall Trend Test

The Mann–Kendall trend test is widely used in various geo-
science disciplines (Mann  1945). This non-parametric test 
evaluates the correlation between two variables based on the 
sequence order of the data, thereby discerning trends in long-
term data series. The Mann–Kendall trend test statistic was cal-
culated as follows:

where n is the length of the time series, xj and xk are values in the 
time series (j > k). “sgn” is a symbolic function, and

The Mann-Kendall trend test uses a significance level of trend 
(Z) to test significance of the trend, and the slope of the trend (S) 
indicates degree and direction.

The statistic Z was calculated as follows:

If Z > 0, the time series has a monodic upward trend, and if 
Z < 0, the time series has a monodic downward trend. Absolute 
critical values of Z are 2.576 for p ≤ 0.01, 1.06 for p ≤ 0.05, and 
1.645 for p ≤ 0.1. Variance (S) was estimated as (Mann 1945):

where q is the number of sets with the same variable value, and 
tp is the data number in the pth set.

The EHSA tool requires a space–time NetCDF cube as input. 
For our analysis, we generated this by using the “Create Space-
Time Cube by Aggregating Points” tool to build the required 
space–time NetCDF cube. EHSA uses Conceptualization of 
Spatial Relationships values to compute the Getis-Ord Gi* sta-
tistic (Hot Spot Analysis) for each individual bin. Upon comple-
tion of the space–time hot-spot analysis, every bin in the input 
NetCDF cube was enriched with an associated z-score, p-value, 
and a classification of its hot-spot bin status. Following this, the 
Mann-Kendall trend test evaluated hot- and cold-spot trends. 
The outcome provided a trend z-score and p-value for each lo-
cation with data, and the hot-spot z-score and p-value for every 
bin. The EHSA tool thereby categorized each location into hot- 
and cold-spot patterns (Appendix S1).

The Getis-Ord Gi* statistic and hot-spot analysis were exe-
cuted in Python and ArcGIS. Parameters for the analysis were 
as follows: a time step interval of 1 year, a space–time bin size 
of 102 km, and a neighborhood distance interval of 104 km. 
Primary data for creating the space–time NetCDF cube were 
spatiotemporal local biomass density, derived from standardiza-
tion of catch per unit effort with VAST (Figure 2).

Before interpreting results from the EHSA, criteria for catego-
rizing a region as a hotspot were defined. Regions characterized 
as Historical, Sporadic, Persistent, Intensifying, or Diminishing 
hotspots took precedence. These designations were pivotal be-
cause they highlighted areas that maintained a consistent hotspot 
presence of > 90% throughout the study period. We focused 
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primarily on understanding clustering of tropical tunas, based on 
monthly local biomass density metrics from VAST for each tuna 
species. A specific region was pinpointed as an optimal morato-
rium zone if it persistently displayed hotspot patterns (historical, 
sporadic, persistent, intensifying, and diminishing) for either ju-
venile bigeye tuna or juvenile yellowfin tuna. This classification 
was especially pertinent during months when respective species 
demonstrated peak concentrations, as deduced from seasonal sub-
series plots.

2.5   |   Moratorium Performance Metrics: 
Evaluating Actual ICCAT Strata Versus Suggested 
Optimum

To assist fishery managers and scientists in evaluating and com-
paring effectiveness of ICCAT and proposed new moratorium 
strata, two objective metrics based on monthly biomass density 
data were developed to determine the most effective moratorium 
strata for protecting juvenile bigeye and yellowfin tuna. First, a 
standardized efficiency index was computed for each moratorium 
area by dividing the total monthly catch in the area by the number 
of squares within that area and for the entire fishing region:

2.5.1   |   Moratorium Efficiency Ratio (MER)

A Moratorium Efficiency Ratio metric was designed to iden-
tify the most effective moratorium area for protecting juvenile 
bigeye or yellowfin tuna. The metric involves a comparative 
analysis of monthly mean biomass density of these species 
within two distinct moratorium areas. The local biomass den-
sity, assessed per local square grid using the VAST method, 
was summed and divided by the total number of grids in both 
moratorium areas:

The resulting ratio of these indices was then compared to a 
benchmark value of 1. If MER > 1, the moratorium was more ef-
ficient than the ICCAT moratorium.

2.5.2   |   Moratorium Performance Index (MPI)

A Moratorium Performance Index was used to compare average 
biomass density within the moratorium zone to the entire fish-
ing area. The MPI contrasted monthly mean biomass density 
within the moratorium area to that of the larger fishing region. 
This comparison generated two indices to enable evaluation of 
the effectiveness of either the current or proposed moratorium 
stratum in terms of biomass density:

MENew_area =

∑number of grids

k=1
local biomass density in the new moratorium area∑

number of grids cover by the new moratorium area

MEActual_area =

∑number of grids

k=1
local biomass density in the actual moratorium area∑

number of grids cover by the actual moratorium area

MEFishing_area =

∑number of grids

k=1
local biomass density in the entire fishing area∑

number of grids cover by the entire fishing area

MER =
MENew_area
MEActual_area

MPIOptimum =
MENew_area
MEFishing_area

FIGURE 2    |    Flowchart detailing the step-by-step procedure for emerging hotspot analysis, illustrating sequential methodologies and decision 
points essential for accurate spatial trend identification.
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If MPIOptimum > MPIActual, the moratorium was more efficient 
than the actual moratorium.

The analysis contrasted actual ICCAT moratorium areas with 
suggested moratorium areas, based on relevant months. These 
metrics collectively provided a systematic approach to identify 
the most appropriate moratorium strata.

3   |   Results

3.1   |   Seasonal Subseries Plots

Seasonal subseries plots demonstrated pronounced seasonal-
ity in monthly catches of all three tuna species. Juvenile bigeye 
tuna mainly exhibited peaks in the first and last quarters, with 
a discernible surge beginning in September for the final quarter 
(Figure 3). Although the 5-year data showcased some variability 
in monthly patterns across most years, monthly catches clearly 
ebbed and flowed in percentages. This fluctuation suggested an 
underlying trend in the data that transcended obvious seasonality. 
This trend was also apparent for the other two tuna species, with 
juvenile yellowfin tuna peaking from August to December and 
skipjack tuna peaking from July to December (Figures 4 and 5).

3.2   |   VAST Results

The spatiotemporal models for both BET and YFT successfully 
converged, as confirmed by maximum gradient component val-
ues smaller than 0.0001 (Appendix S2, Table S1) and a positive 
definite Hessian matrix, ensuring the accurate estimation of key 
model parameters. The VAST model outputs provide log-predicted 
density estimates for each species across the study period and for 
each extrapolation grid (102 km × 102 km), representing the spa-
tiotemporal local biomass density. These spatiotemporal local 
biomass densities, as shown for some species-month combina-
tions in Appendix  S2 (Figures  S1–S4), were subsequently used 
to create the space–time NetCDF cube in the Emerging Hotspot 
Analysis. Furthermore, the residual diagnostics suggest a good 
fit to the catch and effort data. The QQ plots, which assess devia-
tions between observed and theoretical distributions, show points 
mostly falling close to the diagonal, indicating that the model re-
siduals follow a normal distribution, with minor deviations in the 
tail data (Appendix S2, Figures S5–S10). Residual plots against 
covariates, including age, storage capacity, year, and knot_ID, re-
veal no significant patterns, further supporting the robustness of 
the models (Appendix S2, Figures S5–S10).

3.3   |   Emerging Hotspot Analysis

From January to March, juvenile bigeye tuna were dis-
tinctly concentrated, with a peak in February (Figure 6). The 
February peak was encompassed by diminished hotspot areas 

in January and March. The first quarter was a prime mora-
torium period for juvenile bigeye tuna, as indicated by the 
hotspot distribution in February. The critical area of interest 
during this period extended from 6° W to 6° E longitude and 
from 9° S to 1° N latitude, a region that corresponded closely 
with prominent hotspots for skipjack tuna and juvenile yel-
lowfin tuna. Notably, yellowfin tuna did not peak during this 
period. Establishment of a moratorium in this zone during 
the first quarter could substantially reduce bigeye catches, 
particularly those associated with skipjack tuna under dFAD. 
Furthermore, a moratorium in the area would reduce juvenile 
yellowfin captures, while also reducing skipjack catches. To 
enhance effectiveness of the moratorium, another area of over-
lapping hotspots of the three tuna species could be integrated 
into the primary zone from 27° W to 15° W longitude and 1° N 
to 7° S latitude from April to August (Appendix S3, Figures S2, 
S3). However, because catches of juvenile bigeye and yellow-
fin tuna were lower in these months, these spots were not 
prioritized for protection of these young fish. Juvenile bigeye 
tuna were concentrated from September to November, when 
they overlapped with concentrations of juvenile yellowfin and 
skipjack tuna (Figures 7 and 8). Juvenile yellowfin tuna were 
concentrated in area from 25° W to 5° E longitude and 8° S to 
2° N latitude (Figure 8). The Gabonese coast was a hotspot for 
yellowfin tuna, although more localized than for the other two 
species. The Gabonese coast was particularly significant as a 
viable moratorium target area for juvenile yellowfin, although 
yellowfin were associated with skipjack under dFAD.

3.4   |   Moratorium Performance Metrics

The Moratorium Efficiency Ratio (MER) and Moratorium 
Performance Index (MPI) suggested that the newly devel-
oped moratorium would reduce catches of BET and YFT 
and outperform ICCAT recommendations during 1999–2019 
(Figures 9, 10, Tables 2 and 3). The reduction in BET catches 
was generally more significant than YFT, except for Rec11, 
where the difference in reduction was smaller. Proposed mor-
atorium zones could be unsuccessful for protecting juvenile 
BET and YFT, but still permit fishing of SKJ during morato-
rium periods.

4   |   Discussion

We identified two key zones, each optimal during distinct 
months, as the most suitable for moratorium implementation, 
which relatively closely aligned with existing ICCAT large 
spatial closures to surface gear fishing on FADs in the Gulf 
of Guinea (ICCAT Recommendations 04–01, 08–01, 11–01, 
14–01, 15–01 for the first 2 and the last 2 months of the year, 
and the entire Atlantic 19–01, 22–01 from January 1 to March 
13). However, our suggested zones were more concentrated in 
the Guinean Gulf, in contrast with the existing moratorium 
that covers a vast stretch of the African coast or all of the 
Atlantic Ocean. Another distinction was related to the rec-
ommended duration of the moratorium of 3–4 months, rather 
than 2–3 months.

MPIActual =
MEActual_area
MEFishing_area
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We introduced a dynamic method for identifying hotspot areas 
that was crucial for protecting juvenile tuna, which is essential 
for sustaining fish populations by ensuring ecological balance 

and maximizing economic returns (Vasilakopoulos, Oneill, 
and Marshall  2011). High fishing mortality of immature fish 
significantly harms stock status (Vasilakopoulos, Oneill, and 

FIGURE 3    |    Seasonal catches of bigeye tuna (BET) in European Eastern Atlantic purse seine fisheries during 1996–2019. The left and central 
panels display monthly percentages of yearly catches (MP) in four 5-year intervals. The right panel aggregates the entire period, with the top plot 
showing the MP and the bottom detailing monthly catches. Horizontal lines represent the monthly averages, and vertical lines highlight deviations 
from these averages for each year.

FIGURE 4    |    Seasonal catches of yellowfin tuna (YFT) in European Eastern Atlantic purse-seine fisheries during 1996–2019. Left and central 
panels display monthly percentages of yearly catches (MP) in four 5-year intervals. The right panel aggregates the entire period, with the top plot 
showing the MP and the bottom detailing monthly catches. Horizontal lines represent the monthly averages, and vertical lines highlight deviations 
from these averages for each year.
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Marshall 2011). A meta-analysis of 38 fish stocks across 13 spe-
cies in the Northeast Atlantic revealed that a mortality rate on 
immature fish exceeding half of mature fish caused stock sta-
tus to fall below precautionary limits (Vasilakopoulos, O'Neill, 
and Marshall 2012). This finding highlights the importance of 
allowing fish to spawn at least once before they are subjected 
to fishing, to prevent recruitment overfishing and support stock 
recovery. Real-world examples reinforce the importance of juve-
nile protection, such as the collapse of the Northern cod (Gadus 
morhua) stock in the Northwest Atlantic (Bundy 2001; Rose and 
O'Driscoll 2002). Conversely, recovery of Atlantic Bluefin Tuna 
in the Atlantic Ocean was facilitated by a ban on fishing bluefin 
tuna below spawning age and increasing the minimum size to 
30 kg (Bjørndal 2023). This measure allowed many tunas born 
in the Mediterranean, which migrate to feed in areas like the 
Bay of Biscay, to survive and return to spawn, saving over a mil-
lion fish annually (Planet Tuna 2020).

While developing the methodology for this study, we faced 
a crucial decision between two modeling approaches for es-
timating local fish density, each of which significantly af-
fected the effectiveness of our hotspot analysis. A seasonal 
VAST model aggregated data into seasonal (monthly) factors 
to account for variability within and across years (Thorson 
et  al.  2020), thereby resulting in fewer models (one per spe-
cies). In contrast, a month-by-month approach, with 12 mod-
els per species, offered finer temporal resolution, by isolating 
each month, to capture subtle, long-term changes in spatial 
distribution (Alglave et al. 2023, 2024; Pinto et al. 2019) cru-
cial for identifying emerging hotspots at a monthly scale. 

This latter approach assumed that temporal correlation be-
tween the same month in different years was stronger and 
more meaningful than between consecutive months within 
the same year, by isolating each month and focusing solely 
on yearly dynamics, due to recurring seasonal processes. In 
spatiotemporal models, using the AR1 process for annual in-
tercepts and spatiotemporal component allowed us to better 
capture recurring dynamics by modeling temporal correla-
tions (Thorson  2019). We hypothesize that consistent eco-
logical conditions in the same month across different years 
provided a more accurate explanation of fish density than 
month-to-month comparisons within the same year. This is 
particularly relevant for tropical tunas, where the identifica-
tion of monthly or seasonal moratorium periods is crucial. 
Therefore, we opted for a 12-model per species approach to 
align with our hypothesis, by focusing exclusively on intra-
annual monthly series rather than combining both intra- and 
inter-annual correlations. While our modeling choice can be 
debated, our results support a month-by-month approach with 
AR1 process that has produced more reliable and nuanced 
fish density estimates, particularly in areas with irregular 
sampling due to moratoriums. Spatial distributions of signif-
icant emerging hotspots, especially in February and January 
for BET, indicated patterns driven by consistent seasonal pro-
cesses. The strong relationship we found between January and 
February distributions shifted in March. Additionally, the ob-
served seasonality in significant hotspots may be influenced 
by factors such as seasonal recruitment, presence of specific 
juvenile habitats, or fleet behavior, including deployment of 
dFADs in the fishing area.

FIGURE 5    |    Seasonal catches of skipjack tuna (SKJ) in the European Eastern Atlantic purse seine fisheries from 1996 to 2019. Left and central 
panels display monthly percentages of yearly catches (MP) in four 5-year intervals. The right panel aggregates the entire period, with the top plot 
showing the MP and the bottom detailing monthly catches. Horizontal lines represent the monthly averages, and vertical lines highlight deviations 
from these averages for each year.
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Biological cycles, environmental conditions, and fishing prac-
tices, particularly use of FADs, all play critical roles in defin-
ing seasonal patterns we identified for catches of tuna species 
were corroborated by earlier studies. For example, bycatch 

of skipjack tuna was highest in the third and fourth quar-
ters due to intensive FAD use, with a peak in the third and 
fourth quarters (Amandè et  al.  2010). Similarly, catches of ju-
venile yellowfin tuna were highest from August to November  

FIGURE 6    |    Monthly hotspots of bigeye tuna catches, highlighting areas with significant spatial trends, in European purse-seine (France and 
Spain) fisheries in the eastern Atlantic Ocean in January, February, March–October, and November–December, during 1996–2019. The included 
legend details the main categories and patterns observed in the analysis, with accompanying numbers indicating the frequency of each pattern in 
the displayed results. Regions characterized as Historical, Sporadic, Persistent, Intensifying, or Diminishing hotspots (all categories in shades of red) 
are considered significant hotspots to be considered within this figure. Red boxes highlight the current ICCAT moratorium zone for the respective 
month.



11 of 17

(Druon et al. 2015). Seasonality in bigeye tuna catches we found 
during the first and fourth quarters aligns with spawning cycles 
and juvenile availability in the region (Schirripa 2016). Seasonal 
patterns identified in our study are supported by biological 

and environmental factors affecting tropical tuna in this area 
(Fonteneau and Marcille 1993). Increased deployment of FADs 
during specific periods significantly impacts the distribution 
and catch rates of juvenile tuna species, particularly skipjack and 

FIGURE 7    |    Monthly hotspots of skipjack tuna catches, highlighting areas with significant spatial trends, in European purse-seine (France and 
Spain) fisheries in the eastern Atlantic Ocean in January, February, March October, November and December during 1996–2019. The included 
legend details the main categories and patterns observed in the analysis, with accompanying numbers indicating the frequency of each pattern in the 
displayed results. Regions characterized as Historical, Sporadic, Persistent, Intensifying, or Diminishing hotspots (all categories in shades of red) are 
considered significant hotspots to be considered within this figure. The red boxes highlight the current ICCAT moratorium zone for the respective 
month.



12 of 17 Fisheries Management and Ecology, 2025

yellowfin tuna (Hallier and Gaertner  2008; Pérez et  al.  2020). 
Biological factors such as spawning periods and subsequent ju-
venile migration patterns are key drivers of the observed season-
ality in juvenile yellowfin and bigeye tuna catches (Fonteneau 

and Marcille 1993). Seasonal changes in oceanographic condi-
tions are crucial in defining the habitats and migration routes of 
these species (Druon et al. 2017; Fonteneau and Marcille 1993; 
Lopez et al. 2017).

FIGURE 8    |    Monthly hotspots of yellowfin tuna catches, highlighting areas with significant spatial trends, in European purse-seine (France 
and Spain) fisheries in the eastern Atlantic Ocean for January, February, March October, November and December during 1996–2019. The included 
legend details the main categories and patterns observed in the analysis, with accompanying numbers indicating the frequency of each pattern in the 
displayed results. Regions characterized as Historical, Sporadic, Persistent, Intensifying, or Diminishing hotspots (all categories in shades of red) are 
considered significant hotspots to be considered within this figure. The red boxes highlight the current ICCAT moratorium zone for the respective 
month.
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Despite different spatial structuring of habitat and temporal 
structuring of food chains, marine resource management has 
tended to rely on concepts inherited from terrestrial resource 
management, such as use of static marine protected areas 
(Maxwell et  al.  2015). While static approaches can work for 
relatively stationary marine resources, highly migratory tunas 
and great mobility of industrial fleets would seem to support 
greater flexibility in the definition of spatiotemporal strata 
used by managers to regulate fisher access or practice (e.g., 
ban of dFAD-fishing). For example, simulated closures across 
a range of spatiotemporal scales showed that coarse-scale man-
agement measures (i.e., annual time area closures and monthly 
full-fishery closures) required 100–200 times more km2-days 
of closure than dynamic measures, such as grid-based closures 
and move-on rules, to achieve similar reduction in juvenile by-
catch (Dunn et  al.  2016). Similarly, a multispecies predictive 
habitat modeling framework, combined with satellite telem-
etry and fisheries observer data, to estimate species-specific 
probabilities of occurrence, suggested that dynamic closures 
could be 2–10 times smaller than existing static closures to 
still adequately protect endangered non-target species (Hazen 
et al. 2018).

Predictions from an SDM based on probability of Southern 
Bluefin Tuna (Thunnus maccoyii) occurrence were used by 
managers to regulate fisher access to the areas where this spe-
cies is abundant (Hobday et al. 2010). A similar approach based 
on species distribution and habitat modeling was used to evalu-
ate whether an existing closed areas on U.S. Atlantic coasts was 
appropriately placed to achieve ongoing conservation and man-
agement objectives and did not unnecessarily prevent fisheries 
from attaining optimum yield from healthy fish stocks (Crear 
et  al.  2021). However, although identification of habitat pref-
erences for protecting a species or age-class is valuable, use of 
SDM may be limited by climate change, as when an explanatory 
variable changes beyond the range used in the model (Porfirio 
and Harris, 2014), by lack of model validation in no-take zones, 
as when other candidate explanatory variables not used in the 
model may have a local impact (Yates et  al., 2018), or by the 
fact that co-occurrence between species may not be extrapo-
lable (Dormann et al. 2018). Because optimal habitats for mo-
bile species can change within and between years, use of SDM 
in dynamic ocean management (DOM) is a logical next step, in 
which real-time data are used to generate spatial management 
measures that can change across space and time in response to 

FIGURE 9    |    ICCAT recommended closed areas for European tropical tuna purse-seine (France and Spain) fisheries in the eastern Atlantic Ocean 
since their introduction in 1999 to 2019 (from Stephan et al. (2022)). The figure illustrates the geographical areas in the eastern Atlantic Ocean where 
ICCAT implemented management recommendations during this period, focusing on the regulation of Fish Aggregating Devices (FADs) through 
time-area closure measures aimed at conserving juvenile of BET and YFT along with other species impacted by FAD fishing. Colored boxes represent 
specific management areas, and “Rec” numbers correspond to the relevant recommendation periods. The Blue Box (Rec11) for example highlights 
the regulation of FADs between January 2012 and February 2016.
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environmental variability (Hobday et al. 2014). However, a gap 
between choice of the optimal scientific method and feasibil-
ity of its application may hinder the decision-making process. 
The best option of DOM would be to account for environmental 
variability at the time of implementation of a moratorium (i.e., 
real-time management), but is difficult to set within the frame-
work of tuna RFMOs. For management recommendations to be 
applicable by all CPCs, the space–time closure stratum should 

be set in advance, at the time of the Annual Commission (i.e., at 
year n), on a “stable” basis that cannot be modified during the 
year when the measure is implemented (year n + 1). This limits 
implementation of a DOM approach in tuna RFMOs, but does 
not preclude establishment of smaller seasonal strata that are 
mobile from one season to the next. One challenge policymak-
ers face is comparing effectiveness of a large static area regu-
lated for a short period of time with several mobile smaller areas 
regulated for a longer time.

One criticism of the effectiveness of time and area closures is 
that tuna fleets can simply redistribute effort outside a mor-
atorium area, without significantly reducing total fishing ef-
fort (Fonteneau et al. 2016). For example, higher dFAD catches 
during the first ICCAT moratorium close to boundaries of the 
restricted area suggested a potential “fishing the line effect” 
(Torres-Irineo et al. 2011), but a similar phenomenon was not 
evident in waters adjacent to the following moratoria (Perez 
et al. 2022). Obviously, the impact of effort re-allocation must 
always be considered when planning deployment of time-area 
closures (Hilborn et  al.  2004). In addition, effective imple-
mentation of dynamic closures must account for other aspects 
linked with characteristics of the tuna resource, such as mi-
gratory patterns of each tuna species and home range size of 
individual fish relative to size of the closed area (Kaplan 
et al. 2014).

TABLE 2    |    Moratorium Efficiency Ratio (MER) for Bigeye (BET), 
Skipjack (SKJ), and Yellowfin (YFT) tuna for European purse-seine 
(France and Spain) fisheries in the eastern Atlantic Ocean during 
1996–2019. An ICCAT Recommendation (Rec) is a binding decision on 
conservation and management measures for tuna species, adopted by the 
ICCAT Commission. Rec 98 for BET refers to specific recommendations 
issued in 1998 for a BET.

BET SKJ YFT

Rec 98 1.333 1.049 1.125

Rec 08 1.220 1.030 1.038

Rec 11 1.076 1.040 1.076

Rec 15 1.295 1.098 1.058

FIGURE 10    |    Recommended Moratorium Areas for European tropical tuna purse-seine (France and Spain) fisheries in the eastern Atlantic 
Ocean. The blue zone indicates a proposed moratorium period from September to November, while the green zones represent proposed moratorium 
periods from January to March.
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5   |   Conclusions

We found that dFAD moratorium stratum should be divided into 
several smaller mobile areas spread over the last 3–4 months of the 
year, unlike the current ban on dFAD fishing in a very large area 
for only a couple of months, which does not seem to be effective 
and may not be accepted as necessary by CPCs in the development 
of management measures. This could even be used to reject any 
area-based management regulation, although spatial and temporal 
locations of the current moratoria have never been scientifically 
studied. Implementation of moratoria on dFAD is not a panacea 
and should be combined with other fisheries management mea-
sures, as in the tropical Atlantic, where the fishery is regulated by 
catch limits, limits on the number of buoys monitored by a purse 
seiner at any time, and limits on the number of support vessel per 
purse seiner. Despite the multispecies nature of the tropical tuna 
fishery, implicitly recognized in the title of the ICCAT recommen-
dations (i.e., “On a multi-annual conservation and management 
program for tropical tunas”), the bigeye tuna is the species with 
the worst stock health status, and therefore the main species tar-
geted by protection measures. Consequently, the most efficient 
management measures should control mortality on both juveniles 
and adults, through prohibition of fish aggregation devices in the 
purse-seine fishery and restrictions on longline fishing in spawning 
areas (Sibert et al. 2012). Instead of restricting use of a specific gear 
(longlines) or a specific fishing method (dFAD) over a large area 
for a short part of the year, fragmenting the regulation area into 
several smaller mobile zones over a longer part of the year would 
be an interesting alternative to protect juveniles or spawners.
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