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ABSTRACT

To reduce catches of juvenile bigeye and yellowfin tuna, while maintaining skipjack catches under drifting fish aggregating
devices (dFAD), we analyzed spatiotemporal distributions of dFAD catches by European purse seiners in the Eastern Atlantic
Ocean during 1996-2019. To detect hotspots of juvenile dFAD catches, we: identified periods of maximum abundance using a

seasonal sub-series diagram; normalized monthly FAD catches per unit effort; and used emerging hotspots analysis on spatio-

temporal density. Two main spatiotemporal strata were identified in the Guinean Gulf, which could be used to establish morato-

ria on dFAD fishing. These spatiotemporal strata differed from the existing ICCAT moratorium, which spanned a larger part of
the African coast. Our findings also indicated that time-area closures of dFAD-fishing lasting 3-4 months in smaller areas could
be more effective than the current dFAD moratorium to reduce unwanted bycatch in the Eastern Atlantic region. The two met-
rics we developed for comparison provided clear and measurable evidence that demonstrated how strategic and data-informed

moratoriums can lead to substantial improvements in conservation.

1 | Introduction

Tropical tunas, particularly bigeye (Thunnus obesus, BET), yel-
lowfin (Thunnus albacares, YFT), and skipjack (Katsuwonus pe-
lamis, SKIJ), play crucial roles in global marine ecosystems and
are economically important for many nations (FAO 2020). These
species are the primary targets of large-scale industrial fisheries,
especially in tropical and subtropical waters across the Atlantic,
Indian, and Pacific oceans (Rogers et al. 2016). The purse seine
fishery, which encircles schools of tuna with large nets, is one
of the most efficient methods for capturing these species, espe-
cially in the Atlantic Ocean (Miyake et al. 2010). Purse-seine
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vessels account for about 66% of the 5.2 million tons of tuna
caught annually worldwide (ISSF 2024). A vertical net ‘curtain’
is used to surround a school of fish, the bottom of which is then
drawn together to enclose the fish, like tightening the cords of
a drawstring purse (https://www.msc.org/what-we-are-doing/
our-approach/fishing-methods-and-gear-types/purse-seine).

However, increasing pressure on tuna stocks has raised con-
cerns about their sustainability. Recent stock assessments of
Atlantic tropical tunas by ICCAT indicated varying levels of
concern. The skipjack tuna stock is generally considered to
be in good health, with the latest assessments suggesting it is

Fisheries Management and Ecology, 2025; 32:¢12758
https://doi.org/10.1111/fme.12758

10f17


https://doi.org/10.1111/fme.12758
mailto:sosthene.akia@dfo-mpo.gc.ca
https://orcid.org/0000-0002-0662-1997
mailto:sosthene.akia@dfo-mpo.gc.ca
https://www.msc.org/what-we-are-doing/our-approach/fishing-methods-and-gear-types/purse-seine
https://www.msc.org/what-we-are-doing/our-approach/fishing-methods-and-gear-types/purse-seine
http://crossmark.crossref.org/dialog/?doi=10.1111%2Ffme.12758&domain=pdf&date_stamp=2024-11-22

neither overfished nor subject to overfishing (ICCAT 2022).
Yellowfin tuna is also not overfished and not subject to overfish-
ing (ICCAT 2019). In contrast, the assessment results show that
in 2021, the Atlantic bigeye tuna stock was overfished, with the
stock below the biomass level that can produce maximum sus-
tainable yield and was not overfished at that time (ICCAT 2021).

Following the increasing use of drifting Fishing Aggregating
Devices (dFAD) in the early 1990s, tuna Regional fisheries man-
agement organizations (RFMOs) were quickly confronted with
the trade-off between reducing mortality on juvenile bigeye
and yellowfin tuna, but without significantly reducing skipjack
catches, because skipjack is the predominant species in dFAD
catches (Ariz et al. 1999; Hallier and Parajia 1999). Among the
many measures included in tuna fisheries management, time-
area closures of FAD-fishing for mitigating juvenile bycatch
have become more important over the last decades. Following
a voluntary moratorium observed by European purse seiners in
1997-1998 (Goujon 1998), several moratoria on dFAD were im-
plemented since 1999 in the Atlantic Ocean by the International
Commission for the Conservation of Atlantic Tunas (ICCAT).
However, different choices of periods and areas of closure of the
dFAD fishery were not based on ecological or scientific knowl-
edge resulting from proposals made by the Standing Committee
on Research and Statistics (SCRS) of ICCAT, so the effective-
ness of different dFAD moratoria was questioned (Fonteneau
et al. 2016).

With this consideration in mind, mapping dFAD hotspots of ju-
venile tunas, or vulnerable associated pelagic species, may give
spatially explicit solutions for effective area-based management,
with the aim of contributing to the sustainability of the tropical
tuna fishery as part of an ecosystem approach to fisheries man-
agement (Garcia and Cochrane 2005). Hotspots can be located
based on catches, catch per unit effort (CPUE), or the ratio of
catch of a species to be protected to a target species (Harley and
Suter 2007). In the case of a multi-species fishery like the tropi-
cal tuna seine fishery, the use of self-organizing maps showing
catch hotspots can be used as a visual aid by decision-makers
to identify candidate areas for seasonal and spatial closure
(Stephan et al. 2022). However, to be effective in reducing the
mortality of juvenile tuna, time-area closures should be placed
in strata where (1) monthly catches are historically high and (2)
hotspots are predictable in time and space.

We aimed to identify dFAD catch hotspots for small tropical
tunas in the eastern Atlantic Ocean and to track their evolution
over a 24-year period (1996-2019), with the end goal of recom-
mending optimal moratorium zones. To achieve this objective,
we examined seasonality of monthly catches and fishing effort
to identify peak months for small tropical tuna catches. We ap-
plied the VAST (Vector Autoregressive Spatiotemporal) method,
a specific geostatistical generalized linear mixed model (GLMM)
to standardize catch per unit effort for each species. This al-
lowed us to forecast local monthly biomass density throughout
the fishing domain frequented by French and Spanish purse
seiners in the Eastern Atlantic. The VAST approach adjusted
for factors that impact catch per unit effort to minimize biases
by accounting for the influence of past moratoria and other el-
ements that affect catchability of tuna. Local biomass density
extracted from VAST were used in an emerging hotspot analysis

(EHSA) to determine monthly hotspot zones and evaluate fluc-
tuations of hotspots during the study period. A final step used
spatial maps generated from the hotspot analysis to gauge
overlap among species. We hoped our findings would inform
decisions about balancing the reduction of juvenile bigeye and
yellowfin tuna catches against maintenance of skipjack catches,
and subsequently guide recommendations for new, more suit-
able spatiotemporal strata for dFAD moratoria.

2 | Materials and Methods
2.1 | Data Sources

Data were sourced from logbooks of European tropical tuna
purse-seiners (France and Spain), the largest surface fishing
fleet in the eastern Atlantic (48% of all tropical purse-seine
catch during 1996-2019). Operational fishing grounds for these
purse seiners extended between latitudes 20°S and 20°N and
longitudes 35° W and 15° E and were representative of all purse-
seine fleets, some of which belonged to European companies
(Figure 1). Catch and effort data were compiled and man-
aged by the Tuna Observatory (Ob7) of the French National
Research Institute for Sustainable Development (IRD, UMR
MARBEC) for the French fleet and by the Spanish Institute
of Oceanography (IEO) for the Spanish fleet. Each record of a
fishing set contained information on the date, geographical lo-
cation, school type, estimated catch, and composition of tuna
species in size categories: 0-10, 10-30, and >30kg. The T3
methodology corrected raw logbook data produced by skippers
for total catch per set and species composition (based on port
size and species sampling, Pallarés and Hallier 1997; Duparc
et al. 2020). These processed data were the “level 1” logbook da-
tabase used in this study. Commercial size categories were used
to distinguish stages of tropical tuna: < 10kg were mainly skip-
jack, with some juvenile yellowfin and bigeye, and classified as
category 1; and >10kg were mainly yellowfin and bigeye, and
classified as categories 2 and 3 (Escalle et al. 2016). Due to the
study objective, we used only data for commercial category 1
caught by European purse seiners. Catch and effort statistics
for each species were collected in small areas (1x1° squares
for most gears, and 5 X 5° squares for longlines), gear, flag, and
month, identified as ICCAT Task 2 data.

2.2 | Seasonal Subseries Plots

Seasonal subseries plots (Cleveland 1993), also known as sea-
sonal plots, were used to analyze and visualize seasonal patterns
in multi-year time-series data. By organizing data into inherent
seasonal periods (like months or quarters), plots highlighted
seasonal components with the response variable on the vertical
axis and time organized by season on the horizontal axis. A ref-
erence line at the group means identified annual recurring pat-
terns to assess seasonality, within-group patterns, and outliers.

For the 24-year dataset, seasonal subseries plots used: (1) raw
monthly catch values and (2) the percentage of monthly catches
relative to their respective years. To discern variation in seasonal
patterns over shorter periods, the 24-year period was divided into
four 6-year subperiods for raw monthly catch analysis. Seasonal
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FIGURE1 | Distribution of average catches of Bigeye (BET), Skipjack (SKJ), and Yellowfin (YFT) tuna in the European purse-seine fleet in the
eastern Atlantic Ocean during 2007-2011 (left panel; Delgado de Molina et al. 2014) and 2012-2016 (right panel; Pascual-Alayon et al. 2019).

subseries plots were developed as follows. First, for raw monthly
catches, data were organized chronologically to ensure that
monthly catches for each year from 1996 to 2019 were accurately
compiled. For the percentage of monthly catch within a specific
year, the cumulative annual catch was calculated first for every
year in the dataset. Subsequently, the monthly catch was com-
puted as a percentage of the yearly total for each month. Data
from Task 2 of the ICCAT were used, excluding Belize and infor-
mation on the composition (juveniles vs. others) of each species
category for seasonal subseries plots. This approach allowed us
to gather catch data for most flags and gears targeting tropical
tuna associated with dFAD in the eastern Atlantic Ocean. In
plots, the X-axis was months from January to December and the
Y-axis was either raw monthly catches or the percentage of total
annual catch. The plotting procedure vertically aligned data for
each month over all 24 years (e.g., all January data points from
1996 to 2019 were stacked vertically, followed by February data,
etc.). Raw monthly catches were disaggregated into four sepa-
rate 6-year segments, and each segment was plotted using the
same structure to detect seasonal variation over shorter periods.
Consistency in peaks was used to identify months of consistently
high catches across years. Temporal trends were scrutinized to
detect increasing or declining temporal trends in catches and
within 6-year subperiods. Short-term shifts in 6-year subperi-
ods were examined to detect peak months or noticeable shifts
in seasonality.

2.3 | Vector Autoregressive Spatiotemporal Model
(VAST)

Fishery-dependent data provided non-random sampling of fish
catches at specific locations that derived from a variety of un-
observed spatial and temporal factors, including fish density
and availability, management decisions such as time-area clo-
sures, and efficiency of fishing gear. Geostatistical modeling,

particularly suitable for fishing data, incorporates spatial depen-
dence through latent variables and spatially structured random
effects to handle unbalanced designs (Monnahan et al. 2021).
By sharing information across both space and time, models
can address spatial cells missing data due to time-area closures
like historic dFAD moratoria, as in the Eastern Atlantic Ocean
(Thorson 2019; Xu et al. 2019).

To account for these spatiotemporal constraints, a vector-
autoregressive spatiotemporal (VAST) delta-generalized lin-
ear mixed model was applied to catch and effort data using
the VAST R package (Thorson 2019). VAST has superior
performance over other standard methods, and maintains
accuracy when data is incomplete for some areas within var-
ious combinations of years and seasons—a common problem
with commercial catch data (Bryan and Thorson 2023; Griiss
et al. 2019). Given these attributes, VAST is increasingly being
used for CPUE standardization within tuna RFMOs (skipjack
tuna in the Eastern Atlantic Ocean, Akia et al. 2022; yellowfin
tuna in the Western Pacific Ocean, Vidal 2020; skipjack tuna
in the Central Pacific Ocean, Vidal et al. 2020; yellowfin tuna
in the Indian Ocean, Kitakado et al. 2021; and bigeye tuna
caught by the longline fishery in the eastern Pacific Ocean,
Satoh et al. 2021). VAST was initially developed by the Pacific
Fisheries Management Council (PFMC) that manages fisheries
in federal waters off the US West Coast (Thorson 2019), with
early applications in the Pacific Ocean.

The VAST model used for our study was the “Poisson-link
delta model”, which employs a log-link function and a gamma
distribution for its positive component (as indicated by
ObsModel=c¢(2,1) in the R package VAST). The Poisson-link
delta model used a probability distribution for catches B, with b,
the catch for purse-seine observation i (each purse seine obser-
vation corresponded to a set). The Poisson-link delta model in-
cluded the probability p; that observation i encountered a given

30f17



species [i.e., Pr(B > 0)], and the expected catch r;, given that the
species was encountered, Pr(B|B > 0):

1-p; if B=0

Pr(B=b,) = { @®

piG{BIr, 02} ifB>0

where a gamma distribution G specified the distribution of positive
catches (i.e., successful sets with a catch greater than 1 ton). This
delta model predicted encounter probability p; and positive catch
rate r; as a function of two linear predictors, log(n;) and log(w;,),
for each observation i; and n; and w; were transformed to p; and r;:

a; n;

pi=1-exp(—an), rp=—Ww ©)
b;

In the model, a; was an offset variable that represented units of ef-
fort, expressed as the number of dFAD sets per observation. The
expected density, d; was the product of the encounter probabil-
ity, the positive catch rate, and the transformed linear predictor,
d; = p; X r; = n; X w;. The model was defined as an expected den-

mainly targeted dFAD, but both fleets expanded their use of
dFAD more recently. In addition, the size category of vessels
and a proxy for the modern technology introduced on board
vessels (assuming old vessel were less equipped) likely played a
role in choosing a fishing strategy. To account for this change,
fleet country, vessel age, and vessel storage capacity (carrying
capacity) were incorporated as catchability covariates (Table 1).
Specifically, vessel age and vessel storage capacity were mod-
eled as a three-degree polynomial spline using the bs function of
the ‘splines’ R package (R Core Team 2021). Finally, #, (v;) and
nw(vi )described random catchability variation between groups,
as vessel identifiers, for each overdispersion factor. By combin-
ing Equations (3) and (4), densities for each extrapolation grid
cell were determined by:

d(s, t) = n(s, Hwis, t) )

Overall abundance across the domain was then estimated as the
area-weighted sum of density d(s, ) at a fine spatial resolution:

nS
sity that was influenced additively by encounter probability and It = ZS=1 a(s)d(s, ) ©
positive catch rate through a consistent log-link transformation:
Temperal variation  spatial variation spatiotemporal variation catchability covariates  vessel effects
logit(ni) = —_—— + —_—— + —_—— + R — + —_—— ?3)
B.(t:) o, (s;) en(si 1) M (B)Q(.K) 1 (V1)
Temperal variation  spatial variation  spatiotemporal variation catchability covariates  vessel effects
logit(w;) = —_—— + —_—— + —_—— + + —— + —_—— )
Buw(t:) oy (5;) ew(siti) A ()Q(i. k) T (v:)

The intercept parameters representing annual variation in the
encounter rate (B,) and positive catches (f,,) for the ith obser-
vation follow a first-order autoregressive (AR1) process. For
the ith observation, spatial (o, (s;)and ,(s;)) and spatio-
temporal (e, (s;,t;) and e, (s;, t;)) random effects accounted
for residual variance not captured by fixed intercepts or co-
variates. Spatial and spatiotemporal effects were assumed
to follow a multivariate normal distribution for encounter
rate and positive catches. Covariance between locations was
driven by a Matérn function, enhanced with geometric an-
isotropy, which allows decorrelation to vary between two di-
rections. Spatiotemporal effects encompassed auto-correlation
through  equations:  e,(t) ~ MVN(p, &,(t—1),R,) and
g, (t) ~ MVN(pswew(t —1),R,). Here, g,(t) and e,(t) denoted
spatial variability vectors for encounter rate and positive catches
in year t, with R, and R,, being covariance matrices that incor-
porated a Matérn function for spatial decorrelation. Spatial vari-
ation described static, over-time variation in biomass density of
tropical tuna, while spatiotemporal variation described yearly
changes in biomass density for the Eastern Atlantic tropical tuna
population. Temporal correlation of spatiotemporal components
was described as an AR1 process to handle data from multiple
sources (years with and without moratorium) and avoid unreal-
istic hot spots.

Parameters A, (k) and A,,(k) represented catchability covariates
to illuminate variables that affected the measurement process,
but did not alter fish density. Historically, French purse seiners
mainly targeted free schools, whereas Spanish purse seiners

where n, was the number of extrapolation grid cell and a, was
the spatial area associated. The spatial area of each extrapola-
tion grid was defined as 10,404 (102*102) km? and 150 knots.
Abundance indices were estimated as a spatial average of pre-
dicted density across the model extrapolation grid. Uncertainty
of the index was estimated using a generalization of the delta
method (Kass and Steffey 1989). In Equation (6), n, was the
total number of extrapolation grid cells and a; was the associ-
ated spatial area. Model convergence was assumed when the
gradient of the marginal log-likelihood declined below 0.0001
for all fixed effects and the Hessian matrix of second partial
derivatives of the negative log-likelihood was positive definite

TABLE 1 | Covariates in a model of tropical tuna catch-per-unit-
of-effort for European purse-seiners (France and Spain) in the eastern
Atlantic Ocean during 1996-2019.

Variable in the

model Description

Fleet country Fleet country: France and Spain

Vessel age The age of the vessel

Numbat Unique vessel identifier. Use as the

random vessel effects variable

Vessel storage
capacity

Vessel storage capacity in m3
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(Griiss et al. 2020). Geostatistical analyses used R version 4.1.2
(R Core Team 2021). A model was fit for each of 12months and 3
species during the 24-year period, for a total of 36 models. Data
from European purse-seine fisheries operating in the Eastern
Atlantic Ocean were used to standardize abundance indices and
predict local catch density for each grid.

2.4 | Emerging Hotspot Analysis

Emerging hotspot analysis (EHSA)is a tool introduced by ArcGIS
to detect spatiotemporal trends in data. By combining the Getis-
Ord Gi* statistic with the Mann-Kendall trend test, EHSA iden-
tifies trends in hot or cold spots over time (ESRI 2021). The goal
of EHSA is to evaluate how hot and cold spots change over time
to answer questions: are they becoming increasingly hotter, are
they cooling down, or are they staying the same?

2.4.1 | Gettis-Ord Gi* Statistic

The Getis-Ord Gi* is a prominent Local Indicator of Spatial
Association (LISA) frequently employed in hotspot analysis
such as crime mapping (Chainey and Ratcliffe 2013), epide-
miology (Jimenez and Wongchanapai 2022; Rahman, Islam,
and Islam 2021), environmental studies (Danek, Weglinska,
and Zareba 2022; Ding et al. 2015), and real estate analysis
(Downs 2004; Mondal 2020). Through computation of Gi* sta-
tistics for spatial features (or spatial variable), the method dis-
cerns clustering intensity in regions with high values (hotspots)
and low values (cold spots) in relation to a specific spatial vari-
able (Chambers 2020; ESRI 2021) using the formula (Getis and
Ord 1992; Ord and Getis 1995):

XZJ 1 i‘

¢ = - (5] ”

where X; is the attribute for spatial feature j, ;; is the spatial
weight between feature i and j, n is the total number of features,
and

3o 2% ®)
n
S= Loy (X)° ©
n

2.4.2 | Mann-Kendall Trend Test

The Mann-Kendall trend test is widely used in various geo-
science disciplines (Mann 1945). This non-parametric test
evaluates the correlation between two variables based on the
sequence order of the data, thereby discerning trends in long-
term data series. The Mann-Kendall trend test statistic was cal-
culated as follows:

=T Xl

- X) (10)

where nis the length of the time series, x; and x; are values in the
time series (j > k). “sgn” is a symbolic function, and

1, X=X > 0

sgn(x—x) =9 0, X-x=0 €8))
-1, X=X < 0

The Mann-Kendall trend test uses a significance level of trend

(2) to test significance of the trend, and the slope of the trend (S)
indicates degree and direction.

The statistic Z was calculated as follows:

-

L S>0
v VAR(S)
Z=4 0 S=0 12)
L S<0
\/VAR(S)

If Z> 0, the time series has a monodic upward trend, and if
Z < 0, the time series has a monodic downward trend. Absolute
critical values of Z are 2.576 for p<0.01, 1.06 for p<0.05, and
1.645 for p <0.1. Variance (S) was estimated as (Mann 1945):

VAR(S) = —[n(n - 12n+5)] - Z t,(t, = 1)(2t, +5)13)
p=1

where q is the number of sets with the same variable value, and
t,is the data number in the p, set.

The EHSA tool requires a space-time NetCDF cube as input.
For our analysis, we generated this by using the “Create Space-
Time Cube by Aggregating Points” tool to build the required
space-time NetCDF cube. EHSA uses Conceptualization of
Spatial Relationships values to compute the Getis-Ord Gi* sta-
tistic (Hot Spot Analysis) for each individual bin. Upon comple-
tion of the space-time hot-spot analysis, every bin in the input
NetCDF cube was enriched with an associated z-score, p-value,
and a classification of its hot-spot bin status. Following this, the
Mann-Kendall trend test evaluated hot- and cold-spot trends.
The outcome provided a trend z-score and p-value for each lo-
cation with data, and the hot-spot z-score and p-value for every
bin. The EHSA tool thereby categorized each location into hot-
and cold-spot patterns (Appendix S1).

The Getis-Ord Gi* statistic and hot-spot analysis were exe-
cuted in Python and ArcGIS. Parameters for the analysis were
as follows: a time step interval of 1 year, a space-time bin size
of 102km, and a neighborhood distance interval of 104km.
Primary data for creating the space-time NetCDF cube were
spatiotemporal local biomass density, derived from standardiza-
tion of catch per unit effort with VAST (Figure 2).

Before interpreting results from the EHSA, criteria for catego-
rizing a region as a hotspot were defined. Regions characterized
as Historical, Sporadic, Persistent, Intensifying, or Diminishing
hotspots took precedence. These designations were pivotal be-
cause they highlighted areas that maintained a consistent hotspot
presence of >90% throughout the study period. We focused
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primarily on understanding clustering of tropical tunas, based on
monthly local biomass density metrics from VAST for each tuna
species. A specific region was pinpointed as an optimal morato-
rium zone if it persistently displayed hotspot patterns (historical,
sporadic, persistent, intensifying, and diminishing) for either ju-
venile bigeye tuna or juvenile yellowfin tuna. This classification
was especially pertinent during months when respective species
demonstrated peak concentrations, as deduced from seasonal sub-
series plots.

2.5 | Moratorium Performance Metrics:
Evaluating Actual ICCAT Strata Versus Suggested
Optimum

To assist fishery managers and scientists in evaluating and com-
paring effectiveness of ICCAT and proposed new moratorium
strata, two objective metrics based on monthly biomass density
data were developed to determine the most effective moratorium
strata for protecting juvenile bigeye and yellowfin tuna. First, a
standardized efficiency index was computed for each moratorium
area by dividing the total monthly catch in the area by the number
of squares within that area and for the entire fishing region:

ber of grid . o .
T ooberoten® Jocal biomass density in the new moratorium area

ME =
N - -
ew-area Y number of grids cover by the new moratorium area

number of grids

o1 local biomass density in the actual moratorium area

ME = n -
Actual area Y number of grids cover by the actual moratorium area

number of grids

o1 local biomass density in the entire fishing area

ME..... =
Fishing area Y number of grids cover by the entire fishing area

2.5.1 | Moratorium Efficiency Ratio (MER)

A Moratorium Efficiency Ratio metric was designed to iden-
tify the most effective moratorium area for protecting juvenile
bigeye or yellowfin tuna. The metric involves a comparative
analysis of monthly mean biomass density of these species
within two distinct moratorium areas. The local biomass den-
sity, assessed per local square grid using the VAST method,
was summed and divided by the total number of grids in both
moratorium areas:

ENewfarea

MER =
MEActuaLarea

The resulting ratio of these indices was then compared to a
benchmark value of 1. If MER > 1, the moratorium was more ef-
ficient than the ICCAT moratorium.

2.5.2 | Moratorium Performance Index (MPI)

A Moratorium Performance Index was used to compare average
biomass density within the moratorium zone to the entire fish-
ing area. The MPI contrasted monthly mean biomass density
within the moratorium area to that of the larger fishing region.
This comparison generated two indices to enable evaluation of
the effectiveness of either the current or proposed moratorium
stratum in terms of biomass density:

ME
MPIopﬁmum — New_area

MEFishing_area

BIN TIME SERIES

The Emerging Hot Spot Analysis tool identifies trends in the data, included

new, intensifying, diminishing, and sporadic hot and cold spots

1 Import VAST outputs at the grid level (longitude, latitude, year and
local density) for each month and species into ACGIS.

Create space-time netCDF cube using ARGIS tools, based on year,
location and biomass density value.

THEN

2.  Using the Conceptualization of Spatial Relationships values in the
netCDF to compute the Getis-Ord Gi* statistic (via Hot Spot Analysis) for
each bin, employing an FDR correction.

Upon completion of the space-time hot spot analysis, each bin in the
input netCDF cube will be enrich with an associated z-score. p-value, and
hot/cold spot bin classification.

[ st st . i

[ i st i 98 s

and p-value.

Emerging Hotspot analysis
[

3. Trend in hot and cold spots are assessed using the Mann-Kendall trend
test. Each location with available data is assigned a corresponding z-score

Based on the resulting trend z-score and p-value for each location with
data, as well as the hot spot z-scores and p-values for each bin, the Emerging
Hot Spot Analysis tool categorizes each study area location as follows:

FIGURE 2 | Flowchart detailing the step-by-step procedure for emerging hotspot analysis, illustrating sequential methodologies and decision

points essential for accurate spatial trend identification.
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MEActual_area

MPIActual = ME
Fishing .

area

If MPLopimum > MPI,, the moratorium was more efficient
than the actual moratorium.

The analysis contrasted actual ICCAT moratorium areas with
suggested moratorium areas, based on relevant months. These
metrics collectively provided a systematic approach to identify
the most appropriate moratorium strata.

3 | Results
3.1 | Seasonal Subseries Plots

Seasonal subseries plots demonstrated pronounced seasonal-
ity in monthly catches of all three tuna species. Juvenile bigeye
tuna mainly exhibited peaks in the first and last quarters, with
a discernible surge beginning in September for the final quarter
(Figure 3). Although the 5-year data showcased some variability
in monthly patterns across most years, monthly catches clearly
ebbed and flowed in percentages. This fluctuation suggested an
underlying trend in the data that transcended obvious seasonality.
This trend was also apparent for the other two tuna species, with
juvenile yellowfin tuna peaking from August to December and
skipjack tuna peaking from July to December (Figures 4 and 5).

3.2 | VAST Results

The spatiotemporal models for both BET and YFT successfully
converged, as confirmed by maximum gradient component val-
ues smaller than 0.0001 (Appendix S2, Table S1) and a positive
definite Hessian matrix, ensuring the accurate estimation of key
model parameters. The VAST model outputs provide log-predicted
density estimates for each species across the study period and for
each extrapolation grid (102kmx102km), representing the spa-
tiotemporal local biomass density. These spatiotemporal local
biomass densities, as shown for some species-month combina-
tions in Appendix S2 (Figures S1-S4), were subsequently used
to create the space-time NetCDF cube in the Emerging Hotspot
Analysis. Furthermore, the residual diagnostics suggest a good
fit to the catch and effort data. The QQ plots, which assess devia-
tions between observed and theoretical distributions, show points
mostly falling close to the diagonal, indicating that the model re-
siduals follow a normal distribution, with minor deviations in the
tail data (Appendix S2, Figures S5-S10). Residual plots against
covariates, including age, storage capacity, year, and knot_ID, re-
veal no significant patterns, further supporting the robustness of
the models (Appendix S2, Figures S5-S10).

3.3 | Emerging Hotspot Analysis
From January to March, juvenile bigeye tuna were dis-

tinctly concentrated, with a peak in February (Figure 6). The
February peak was encompassed by diminished hotspot areas

in January and March. The first quarter was a prime mora-
torium period for juvenile bigeye tuna, as indicated by the
hotspot distribution in February. The critical area of interest
during this period extended from 6°W to 6°E longitude and
from 9°S to 1°N latitude, a region that corresponded closely
with prominent hotspots for skipjack tuna and juvenile yel-
lowfin tuna. Notably, yellowfin tuna did not peak during this
period. Establishment of a moratorium in this zone during
the first quarter could substantially reduce bigeye catches,
particularly those associated with skipjack tuna under dFAD.
Furthermore, a moratorium in the area would reduce juvenile
yellowfin captures, while also reducing skipjack catches. To
enhance effectiveness of the moratorium, another area of over-
lapping hotspots of the three tuna species could be integrated
into the primary zone from 27°W to 15°W longitude and 1°N
to 7°S latitude from April to August (Appendix S3, Figures S2,
S3). However, because catches of juvenile bigeye and yellow-
fin tuna were lower in these months, these spots were not
prioritized for protection of these young fish. Juvenile bigeye
tuna were concentrated from September to November, when
they overlapped with concentrations of juvenile yellowfin and
skipjack tuna (Figures 7 and 8). Juvenile yellowfin tuna were
concentrated in area from 25°W to 5°E longitude and 8°S to
2°N latitude (Figure 8). The Gabonese coast was a hotspot for
yellowfin tuna, although more localized than for the other two
species. The Gabonese coast was particularly significant as a
viable moratorium target area for juvenile yellowfin, although
yellowfin were associated with skipjack under dFAD.

3.4 | Moratorium Performance Metrics

The Moratorium Efficiency Ratio (MER) and Moratorium
Performance Index (MPI) suggested that the newly devel-
oped moratorium would reduce catches of BET and YFT
and outperform ICCAT recommendations during 1999-2019
(Figures 9, 10, Tables 2 and 3). The reduction in BET catches
was generally more significant than YFT, except for Recll,
where the difference in reduction was smaller. Proposed mor-
atorium zones could be unsuccessful for protecting juvenile
BET and YFT, but still permit fishing of SKJ during morato-
rium periods.

4 | Discussion

We identified two key zones, each optimal during distinct
months, as the most suitable for moratorium implementation,
which relatively closely aligned with existing ICCAT large
spatial closures to surface gear fishing on FADs in the Gulf
of Guinea (ICCAT Recommendations 04-01, 08-01, 11-01,
14-01, 15-01 for the first 2 and the last 2 months of the year,
and the entire Atlantic 19-01, 22-01 from January 1 to March
13). However, our suggested zones were more concentrated in
the Guinean Gulf, in contrast with the existing moratorium
that covers a vast stretch of the African coast or all of the
Atlantic Ocean. Another distinction was related to the rec-
ommended duration of the moratorium of 3-4 months, rather
than 2-3 months.
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We introduced a dynamic method for identifying hotspot areas and maximizing economic returns (Vasilakopoulos, Oneill,
that was crucial for protecting juvenile tuna, which is essential and Marshall 2011). High fishing mortality of immature fish
for sustaining fish populations by ensuring ecological balance significantly harms stock status (Vasilakopoulos, Oneill, and
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Marshall 2011). A meta-analysis of 38 fish stocks across 13 spe-
cies in the Northeast Atlantic revealed that a mortality rate on
immature fish exceeding half of mature fish caused stock sta-
tus to fall below precautionary limits (Vasilakopoulos, O'Neill,
and Marshall 2012). This finding highlights the importance of
allowing fish to spawn at least once before they are subjected
to fishing, to prevent recruitment overfishing and support stock
recovery. Real-world examples reinforce the importance of juve-
nile protection, such as the collapse of the Northern cod (Gadus
morhua) stock in the Northwest Atlantic (Bundy 2001; Rose and
O'Driscoll 2002). Conversely, recovery of Atlantic Bluefin Tuna
in the Atlantic Ocean was facilitated by a ban on fishing bluefin
tuna below spawning age and increasing the minimum size to
30kg (Bjerndal 2023). This measure allowed many tunas born
in the Mediterranean, which migrate to feed in areas like the
Bay of Biscay, to survive and return to spawn, saving over a mil-
lion fish annually (Planet Tuna 2020).

While developing the methodology for this study, we faced
a crucial decision between two modeling approaches for es-
timating local fish density, each of which significantly af-
fected the effectiveness of our hotspot analysis. A seasonal
VAST model aggregated data into seasonal (monthly) factors
to account for variability within and across years (Thorson
et al. 2020), thereby resulting in fewer models (one per spe-
cies). In contrast, a month-by-month approach, with 12 mod-
els per species, offered finer temporal resolution, by isolating
each month, to capture subtle, long-term changes in spatial
distribution (Alglave et al. 2023, 2024; Pinto et al. 2019) cru-
cial for identifying emerging hotspots at a monthly scale.

This latter approach assumed that temporal correlation be-
tween the same month in different years was stronger and
more meaningful than between consecutive months within
the same year, by isolating each month and focusing solely
on yearly dynamics, due to recurring seasonal processes. In
spatiotemporal models, using the AR1 process for annual in-
tercepts and spatiotemporal component allowed us to better
capture recurring dynamics by modeling temporal correla-
tions (Thorson 2019). We hypothesize that consistent eco-
logical conditions in the same month across different years
provided a more accurate explanation of fish density than
month-to-month comparisons within the same year. This is
particularly relevant for tropical tunas, where the identifica-
tion of monthly or seasonal moratorium periods is crucial.
Therefore, we opted for a 12-model per species approach to
align with our hypothesis, by focusing exclusively on intra-
annual monthly series rather than combining both intra- and
inter-annual correlations. While our modeling choice can be
debated, our results support a month-by-month approach with
AR1 process that has produced more reliable and nuanced
fish density estimates, particularly in areas with irregular
sampling due to moratoriums. Spatial distributions of signif-
icant emerging hotspots, especially in February and January
for BET, indicated patterns driven by consistent seasonal pro-
cesses. The strong relationship we found between January and
February distributions shifted in March. Additionally, the ob-
served seasonality in significant hotspots may be influenced
by factors such as seasonal recruitment, presence of specific
juvenile habitats, or fleet behavior, including deployment of
dFADs in the fishing area.
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Biological cycles, environmental conditions, and fishing prac-
tices, particularly use of FADs, all play critical roles in defin-
ing seasonal patterns we identified for catches of tuna species
were corroborated by earlier studies. For example, bycatch

of skipjack tuna was highest in the third and fourth quar-
ters due to intensive FAD use, with a peak in the third and
fourth quarters (Amande et al. 2010). Similarly, catches of ju-
venile yellowfin tuna were highest from August to November
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FIGURE 7 | Monthly hotspots of skipjack tuna catches, highlighting areas with significant spatial trends, in European purse-seine (France and
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legend details the main categories and patterns observed in the analysis, with accompanying numbers indicating the frequency of each pattern in the
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month.

(Druon et al. 2015). Seasonality in bigeye tuna catches we found
during the first and fourth quarters aligns with spawning cycles
and juvenile availability in the region (Schirripa 2016). Seasonal
patterns identified in our study are supported by biological

and environmental factors affecting tropical tuna in this area
(Fonteneau and Marcille 1993). Increased deployment of FADs
during specific periods significantly impacts the distribution
and catch rates of juvenile tuna species, particularly skipjack and
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FIGURE 8 | Monthly hotspots of yellowfin tuna catches, highlighting areas with significant spatial trends, in European purse-seine (France
and Spain) fisheries in the eastern Atlantic Ocean for January, February, March October, November and December during 1996-2019. The included
legend details the main categories and patterns observed in the analysis, with accompanying numbers indicating the frequency of each pattern in the
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considered significant hotspots to be considered within this figure. The red boxes highlight the current ICCAT moratorium zone for the respective

month.

yellowfin tuna (Hallier and Gaertner 2008; Pérez et al. 2020).
Biological factors such as spawning periods and subsequent ju-
venile migration patterns are key drivers of the observed season-
ality in juvenile yellowfin and bigeye tuna catches (Fonteneau

and Marcille 1993). Seasonal changes in oceanographic condi-
tions are crucial in defining the habitats and migration routes of
these species (Druon et al. 2017; Fonteneau and Marcille 1993;
Lopez et al. 2017).
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ICCAT implemented management recommendations during this period, focusing on the regulation of Fish Aggregating Devices (FADs) through

time-area closure measures aimed at conserving juvenile of BET and YFT along with other species impacted by FAD fishing. Colored boxes represent

specific management areas, and “Rec” numbers correspond to the relevant recommendation periods. The Blue Box (Recl1) for example highlights

the regulation of FADs between January 2012 and February 2016.

Despite different spatial structuring of habitat and temporal
structuring of food chains, marine resource management has
tended to rely on concepts inherited from terrestrial resource
management, such as use of static marine protected areas
(Maxwell et al. 2015). While static approaches can work for
relatively stationary marine resources, highly migratory tunas
and great mobility of industrial fleets would seem to support
greater flexibility in the definition of spatiotemporal strata
used by managers to regulate fisher access or practice (e.g.,
ban of dFAD-fishing). For example, simulated closures across
arange of spatiotemporal scales showed that coarse-scale man-
agement measures (i.e., annual time area closures and monthly
full-fishery closures) required 100-200 times more km?-days
of closure than dynamic measures, such as grid-based closures
and move-on rules, to achieve similar reduction in juvenile by-
catch (Dunn et al. 2016). Similarly, a multispecies predictive
habitat modeling framework, combined with satellite telem-
etry and fisheries observer data, to estimate species-specific
probabilities of occurrence, suggested that dynamic closures
could be 2-10 times smaller than existing static closures to
still adequately protect endangered non-target species (Hazen
et al. 2018).

Predictions from an SDM based on probability of Southern
Bluefin Tuna (Thunnus maccoyii) occurrence were used by
managers to regulate fisher access to the areas where this spe-
cies is abundant (Hobday et al. 2010). A similar approach based
on species distribution and habitat modeling was used to evalu-
ate whether an existing closed areas on U.S. Atlantic coasts was
appropriately placed to achieve ongoing conservation and man-
agement objectives and did not unnecessarily prevent fisheries
from attaining optimum yield from healthy fish stocks (Crear
et al. 2021). However, although identification of habitat pref-
erences for protecting a species or age-class is valuable, use of
SDM may be limited by climate change, as when an explanatory
variable changes beyond the range used in the model (Porfirio
and Harris, 2014), by lack of model validation in no-take zones,
as when other candidate explanatory variables not used in the
model may have a local impact (Yates et al., 2018), or by the
fact that co-occurrence between species may not be extrapo-
lable (Dormann et al. 2018). Because optimal habitats for mo-
bile species can change within and between years, use of SDM
in dynamic ocean management (DOM) is a logical next step, in
which real-time data are used to generate spatial management
measures that can change across space and time in response to
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FIGURE 10 | Recommended Moratorium Areas for European tropical tuna purse-seine (France and Spain) fisheries in the eastern Atlantic

Ocean. The blue zone indicates a proposed moratorium period from September to November, while the green zones represent proposed moratorium

periods from January to March.

environmental variability (Hobday et al. 2014). However, a gap
between choice of the optimal scientific method and feasibil-
ity of its application may hinder the decision-making process.
The best option of DOM would be to account for environmental
variability at the time of implementation of a moratorium (i.e.,
real-time management), but is difficult to set within the frame-
work of tuna RFMOs. For management recommendations to be
applicable by all CPCs, the space-time closure stratum should

TABLE 2 | Moratorium Efficiency Ratio (MER) for Bigeye (BET),
Skipjack (SKJ), and Yellowfin (YFT) tuna for European purse-seine
(France and Spain) fisheries in the eastern Atlantic Ocean during
1996-2019. An ICCAT Recommendation (Rec) is a binding decision on
conservation and management measures for tuna species, adopted by the
ICCAT Commission. Rec 98 for BET refers to specific recommendations
issued in 1998 for a BET.

be set in advance, at the time of the Annual Commission (i.e., at
year n), on a “stable” basis that cannot be modified during the
year when the measure is implemented (year n+ 1). This limits
implementation of a DOM approach in tuna RFMOs, but does
not preclude establishment of smaller seasonal strata that are
mobile from one season to the next. One challenge policymak-
ers face is comparing effectiveness of a large static area regu-
lated for a short period of time with several mobile smaller areas
regulated for a longer time.

One criticism of the effectiveness of time and area closures is
that tuna fleets can simply redistribute effort outside a mor-
atorium area, without significantly reducing total fishing ef-
fort (Fonteneau et al. 2016). For example, higher dFAD catches
during the first ICCAT moratorium close to boundaries of the
restricted area suggested a potential “fishing the line effect”
(Torres-Irineo et al. 2011), but a similar phenomenon was not
evident in waters adjacent to the following moratoria (Perez
et al. 2022). Obviously, the impact of effort re-allocation must
always be considered when planning deployment of time-area
closures (Hilborn et al. 2004). In addition, effective imple-
mentation of dynamic closures must account for other aspects
linked with characteristics of the tuna resource, such as mi-
gratory patterns of each tuna species and home range size of
individual fish relative to size of the closed area (Kaplan
et al. 2014).

BET SKJ YFT

Rec 98 1.333 1.049 1.125

Rec 08 1.220 1.030 1.038

Rec11 1.076 1.040 1.076

Rec 15 1.295 1.098 1.058
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TABLE 3

| Moratorium Performance Index (MPI) for Bigeye (BET), Skipjack (SKJ), and Yellowfin (YFT) tuna for European purse-seine

(France and Spain) fisheries in the eastern Atlantic Ocean during 1996-2019. A comparative analysis of the moratoriums defined in various
ICCAT recommendations (1999-2019) (ICCAT Rec) versus the new proposition using spatiotemporal methods from this study (New). An ICCAT
Recommendation (Rec) is a binding decision on conservation and management measures for tuna species, adopted by the ICCAT Commission. Rec

98 for BET refers to specific recommendations issued in 1998 for a BET.

BET SKJ YFT
ICCAT Rec New ICCAT Rec New ICCAT Rec New
Rec 98 1.097 1.463 0.665 0.697 1.196 1.346
Rec 08 0.752 0.918 0.604 0.622 0.852 0.885
Rec 11 1.202 1.294 1.078 1.122 1.032 1.111
Rec 15 1.059 1.371 1.024 1.125 1.035 1.097

5 | Conclusions

We found that dFAD moratorium stratum should be divided into
several smaller mobile areas spread over the last 3-4 months of the
year, unlike the current ban on dFAD fishing in a very large area
for only a couple of months, which does not seem to be effective
and may not be accepted as necessary by CPCs in the development
of management measures. This could even be used to reject any
area-based management regulation, although spatial and temporal
locations of the current moratoria have never been scientifically
studied. Implementation of moratoria on dFAD is not a panacea
and should be combined with other fisheries management mea-
sures, as in the tropical Atlantic, where the fishery is regulated by
catch limits, limits on the number of buoys monitored by a purse
seiner at any time, and limits on the number of support vessel per
purse seiner. Despite the multispecies nature of the tropical tuna
fishery, implicitly recognized in the title of the ICCAT recommen-
dations (i.e., “On a multi-annual conservation and management
program for tropical tunas”), the bigeye tuna is the species with
the worst stock health status, and therefore the main species tar-
geted by protection measures. Consequently, the most efficient
management measures should control mortality on both juveniles
and adults, through prohibition of fish aggregation devices in the
purse-seine fishery and restrictions on longline fishing in spawning
areas (Sibert et al. 2012). Instead of restricting use of a specific gear
(longlines) or a specific fishing method (dFAD) over a large area
for a short part of the year, fragmenting the regulation area into
several smaller mobile zones over a longer part of the year would
be an interesting alternative to protect juveniles or spawners.
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