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ABSTRACT
Next-generation-sequencing has broadened perspectives regarding the estimation of the effective population size (Ne) by pro-
viding high-density genomic information. These technologies have expanded data collection and analytical tools in population 
genetics, increasing understanding of populations with high abundance, such as marine species with high commercial or conser-
vation priority. Several common methods for estimating Ne are based on allele frequency spectra or linkage disequilibrium be-
tween loci. However, their specific constraints make it difficult to apply them to large populations, especially with confounding 
factors such as migration rates, complex sampling schemes or non-independence between loci. Computer simulations have long 
represented invaluable tools to explore the influence of biological or logistical factors on Ne estimation and to assess the robust-
ness of dedicated methods. Here, we outline several Ne estimation methods and their foundational principles, requirements and 
likely caveats regarding application to populations of high abundance. Thereafter, we present a simulation framework built upon 
recent computational genomic tools that combine the possibility to generate biologically realistic data sets with realistic patterns 
of long-term neutral genetic diversity. This framework aims at reproducing and tracking the main critical features of data de-
rived from a large natural population when running a simulation-based population genetics study, for example, evaluating the 
strengths and limitations of various Ne estimation methods. We illustrate this framework by generating genotype data sets with 
varying sample sizes and locus numbers and analysing them with three software tools (NeEstimator2, GONE and GADMA). 
Detailed and annotated simulation scripts are provided to ensure reproducibility and to support future research on Ne estima-
tion. These resources can support method comparisons and validations, particularly for non-specialists, such as conservation 
practitioners and students.
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1   |   Introduction

Population genetics has heavily contributed to describing the 
structure and evolutionary trajectories of marine populations of 
conservation concern (Bierne et al. 2016; Selkoe et al. 2016), such 
as abundant and heavily exploited large pelagic species (e.g., 
tuna and other large top-predator representing the most import-
ant fisheries outcome worldwide, FAO 2022). The application of 
population genetics to fisheries management allows, for exam-
ple, better delimiting the geographical contours of the different 
stocks exploited or bycaught and thus focusing management 
measures on more relevant geographical scales (Benestan 2020; 
Nikolic et  al.  2023; Leone et  al.  2024). The advent of high-
throughput sequencing and genomic approaches has provided 
additional tools for conventional stock assessment (e.g., based on 
catch-per-unit data), the detection of selection pressures (includ-
ing those exerted by fishing) and the temporal monitoring of 
genetic diversity levels within populations (Ovenden et al. 2015; 
Casey et al. 2016). In particular, the use of population genomics 
tools to estimate stock abundance (census and effective popu-
lation size) has led to much debate in the scientific community 
regarding the relevance and prerequisites of these tools. This 
is partly due to the potential estimation biases for highly abun-
dant, vagile and fecund marine species (Ovenden et  al.  2016; 
Waples 2016). Nevertheless, the effective population size (Ne) is 
an essential indicator of genetic diversity and the adaptive po-
tential of populations, making it a key variable to estimate in 
conservation (Leroy et al. 2017; Hoban et al. 2022). The effective 
size also provides valuable information compared to the pop-
ulation census abundance Nc (Waples  2024a), although there 
lacks a clear relationship between Ne and Nc, including among 
marine species (Palstra and Fraser  2012; Delord et  al.  2024). 
Estimates of Ne that are close to actual abundance values have 
been reported for some elasmobranch species, such as the grey 
shark (Portnoy et al. 2009) and the leopard shark (Dudgeon and 
Ovenden  2015), whereas many more imbalanced ratios have 
been reported in similar species, such as the Galapagos shark 
(Pazmiño et al. 2017), the blue shark (King et al. 2015) and the 
curl ray (Chevolot et al. 2008) or in less closely related species 
such as the albacore tuna (Laconcha et al. 2015). This difficulty 
in establishing a clear relationship can be attributed to both the 
biological characteristics of the species and the biased applica-
tion of certain Ne and/or Nc estimation methods (Palstra and 
Fraser 2012) when certain underlying assumptions are not met. 
Consequently, it remains difficult to reliably deduce one param-
eter (Nc or Ne) from the other.

Genetic methods for estimating Ne and total abundance in natu-
ral populations are diverse, and each is associated with specific 
features and limitations. Systematic reviews of Ne estimation 
methods are numerous and provide extensive information about 
their ideal conditions of application (Wang and Caballero 1999; 
Wang  2005; Gilbert and Whitlock  2015; Wang et  al.  2016; 
Waples 2016, 2024b; Waples et al. 2016; Nadachowska-Brzyska 
et  al.  2022). However, their applicability to large, abundant 
populations is rarely the main topic (but see Wang  2016). In 
addition, the potential of high-throughput-sequencing data 
sets for improving Ne estimates (Waples 2016) has rarely been 
addressed with respect to Ne estimation by various classes of 
methods for large populations. Simulation tools in population 
genetics offer means of comparing the performance of various 

Ne estimation methods (Wang 2016; Marandel et al. 2019; Reid 
and Pinsky 2022). Applying those tools often requires identify-
ing the potential sources of biases inherent to each method in 
order to explicitly take them into account while running simula-
tions. The ‘ideal’ simulation software program should be able to 
incorporate those sources of biases and may not always be easy 
to apprehend, especially when simulating high-density genomic 
data, large sample and population sizes or complex evolutionary 
scenarios.

In this article, we first focus on two past and contemporary Ne 
estimation classes of methods applicable with high-density ge-
nomic data sets from non-model species, namely (1) linkage dis-
equilibrium methods and (2) allele frequency spectrum-based 
methods (Table  1). For each method, we recall the principles 
and main documented strengths and limitations of their general 
applications to estimate diploid Ne at various spatial and tempo-
ral scales. We further discuss the specific challenges associated 
with targeting populations of large abundance as well as the 
potential advantages and issues brought by high-density genetic 
data sets. Second, we present an easily reproducible simulation 
framework, in the form of several annotated scripts, which 
is based on the computational genomic simulation software 
programs SLiM (Haller and Messer  2016, 2018) and msprime 
(Kelleher et al. 2016). This framework currently enables the pro-
duction of high-density genotypic data sets for moderate sample 
and population sizes and was developed with the pedagogical 
purpose of being accessible to non-specialists. We present this 
simulation framework along with a preliminary comparative 
analysis of the results obtained with the two classes of methods 
mentioned above, with the hope that this framework can be fur-
ther developed and improved to test the relative performance of 
Ne estimation methods for populations of high abundance.

In this work, we focus on methods that do not require haplo-
type or phasing information. These other classes of methods 
(such as isolation-by-descent and SMC approaches; see Fournier 
et al. 2023) are challenging to apply to non-model species, such 
as large pelagic species, where thorough genomic information 
is generally scarce (e.g., where there is no reference genome or 
recombination map).

2   |   Effective Size Estimation Based on Linkage 
Disequilibrium

Several genetic methods for estimating Ne rely on linkage dis-
equilibrium (Palstra and Fraser  2012; Marandel et  al.  2019), 
which occurs when alleles at different loci are found together 
more often than expected by chance due to physical linkage or 
population-level processes. Linkage disequilibrium is funda-
mentally a statistical measure of alleles association, whether due 
to physical linkage on the genome or population-level processes. 
In the latter case, such as genetic drift or population structure, 
these associations arise from biases in allele transmission, rather 
than physical proximity between loci.

LD-based methods for contemporary Ne estimation origi-
nally rely mainly on decomposing linkage disequilibrium 
into three potential sources: recombination, systematic sam-
pling bias and genetic drift (see Appendix S1 for details about 
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the general principles and software implementation of those 
methods). However, numerous additional factors can affect Ne 
estimates (Figure 1), as thoroughly detailed in several reviews 
(Waples  2024b). These include overlapping generations, gene 
flow, mating systems (e.g., lifetime monogamy or partially self-
ing populations) and changes in abundance over time, selection, 
and technical artefacts such as null alleles, genotyping errors, 
missing data and user locus selection when building data sets. 
Recommendations to avoid or mitigate these biases have been 
proposed in the literature, as summarised in Appendix  S1, 
which reports key concerns raised by the scientific community 
and provides examples of studies addressing these sources of 
bias (Table A1.1: Appendix S1).

Importantly, correcting for finite sample sizes and systematic 
sampling bias (which occurs when close relatives are sampled 
at higher rates than they occur in the population as a whole, 
Waples 2024b), which influence the intensity of the genetic drift 
signal, is crucial for accurate Ne inference especially in large 
populations where the genetic drift is harder to distinguish 
from the influences of other factors and sample size is generally 
much lower than Ne. Existing corrections (Waples 2006; Sved 
et al. 2013) seem to be accepted by the scientific community, al-
though further work is needed to adapt them to phased data sets 
(Saura et al. 2015; Beaumont and Wang 2019); however, for large 
pelagic species, reference genomes are limited, and phase in-
formation is often unavailable. Another important point is that 
most methods assume full independence of loci (Waples 2006) or 
at least known recombination parameters (Hill 1981), yet phys-
ical linkage can bias Ne estimates, particularly in high-density 
data sets. Besides, although genetic and genomic methods based 
on LD are theoretically promising for estimating Ne in fisher-
ies management, LD-based methods remain rarely applied in 
fisheries and are more often discussed for their limitations than 
their benefits (Ovenden et al. 2016; Waples, Hoelzel, et al. 2018; 
Waples 2024b). The low intensity of genetic drift in large pop-
ulations makes its effect on linkage disequilibrium difficult to 
detect, often overshadowed by systematic sampling bias, partic-
ularly with small sample sizes (Figure 1). As a result, LD-based 
Ne estimates can be highly uncertain and rarely reflect true val-
ues, frequently showing a bimodal distribution with arbitrarily 
high, infinite, low or even negative—and thus unreliable—esti-
mates (Macbeth et al. 2013; Ovenden et al. 2016; Waples 2016). 
For instance, Wang et  al.  (2016) reported that LDNe perfor-
mance decreased markedly when sample size fell below 1.5% of 
the true Ne, even under ideal conditions (i.e., a Wright–Fisher 
population with Ne > 30,000 and 800 independent biallelic loci). 
Similarly, Marandel et al. (2019) recommended sampling a min-
imum of 1% of the total abundance (corresponding, in their 
study, to 0.87% of the true Ne), on the basis of simulations with 
Ne values reaching 1 million individuals and 200 biallelic loci. 
After reviewing a panel of 26 studies evaluating the effective 
sizes of marine species, the authors reported that almost all the 
studies used a sample size smaller than 1% of the assumed total 
abundance and yielded either infinite or negative Ne estimates. 
Macbeth et al. (2013) estimated that ~5000 individuals would be 
necessary to detect an Ne of ~30,000 and to accurately infer the 
lower bound of confidence interval for an Ne of ~60,000 individ-
uals, implying that precise Ne estimation may require sampling 
~16.7% of the true Ne. However, it is unclear whether this ideal 
ratio remains stable across different Ne values. This uncertainty C
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is critical, as such large sample sizes pose significant techni-
cal, financial and computational challenges for conservation 
management.

The delay (‘time lag’) of detecting temporal fluctuations in Ne 
is a well-known challenge in demography inference, especially 
for species of conservation interest (Ovenden et al. 2016). Antão 
et al. (2011) emphasised the need for sufficient samples to achieve 
unbiased estimation of contemporary Ne following a bottleneck, 
even in a simulated population with moderate Ne values (at most 
2400) that decreases to 2% of its initial size. Similarly, Nunziata 
and Weisrock  (2018) presented a simulation study of high-
throughput sequencing data, demonstrating the significant influ-
ence of the sample size on the ability of the method implemented 
in LDNe software to estimate the contemporary Ne of a declining 
population (with simulated Ne values of up to 1000). We might 
expect this time-lag to be more important for large populations, 
even if they undergo fluctuations of similar magnitude.

More generally, it remains challenging to account for the influ-
ences of other biological factors that generate linkage disequi-
librium, such as long-term Ne values (historical averages of the 
effective population size over multiple generations), introgres-
sion and genetic substructure in large populations. For example, 
it is a complex task to precisely evaluate the bias induced by a 

small unrecognized genetic structure and to determine how the 
intensity of this bias changes relative to the true Ne of the pop-
ulation. In other words, a better understanding of the interac-
tion between genetic drift and genetic substructure and its effect 
on the linkage disequilibrium signature is needed, particularly 
for large populations in cases where the substructure itself is 
difficult to detect (Bailleul et al. 2018). An exploration of these 
areas could build upon previous work. For example, Gilbert and 
Whitlock (2015) tested the influence of variable migration lev-
els on Ne estimation via the method implemented in LDNe soft-
ware, with simulated Ne values of up to 500 per sub-population. 
Their findings revealed that the method had greater difficulty 
in estimating the highest local Ne values when gene flow was 
significant (and therefore the substructure was weak) between 
sub-populations.

The use of high-density marker data sets holds promise for 
improving the estimation of Ne in large populations. The sig-
nificant increase in the number of loci studied favours their 
informativeness and a better detection of the evolutionary pro-
cesses occurring within populations (e.g., greater detectability 
of spatial genetic structure, as discussed in Bailleul et al. 2018; 
Nikolic et al. 2023; Leone et al. 2024). It has already facilitated 
the development or deepening of entirely new mathematical 
methods for estimating Ne on the basis of linkage disequilibrium 

FIGURE 1    |    Summarised relationships between the key factors mentioned in this article and their influence on Ne estimation using linkage 
disequilibrium-based methods and high-density genomic data.
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by incorporating recombination information between loci 
(Santiago et al. 2020). As such, we may wonder to which extent 
the use of a large number of loci could partially offset the techni-
cal limitations associated with collecting and processing many 
individuals. The use of such high-density marker data sets, how-
ever, has its own challenges (Figure 1).

For example, the classical linkage disequilibrium-based method 
for contemporary Ne estimation (such as that implemented in 
LDNe software, Waples and Do 2008) assumes that all loci are 
independent and consider physical linkage between loci as neg-
ligible. While this assumption may hold for data sets with tens 
to hundreds of markers, it becomes increasingly untenable with 
thousands or tens of thousands. In such cases, both the number 
of loci and their genomic arrangement influence the extent of 
physical linkage. For a given number of uniformly sampled loci, 
species with smaller genomes and/or fewer chromosomes are 
more prone to physical linkage than those with larger genomes 
or more chromosomes (although recombination rates and their 
variation along the genome also need to be considered). In such 
case, pseudo-replication may occur as the number of truly infor-
mative loci (‘effective number of loci’) is actually lower than the 
number of loci in the data set due to their finite genetic distance 
(Waples et al. 2022). This pseudo-replication results in an arti-
ficial increase in the precision of estimates (i.e., leading to nar-
rower confidence intervals than expected if the markers were 
completely independent) and also increases the likelihood that 
these intervals do not contain the true Ne value. When genomic 
data sets are applied to large populations, the risk is that link-
age disequilibrium caused by physical linkage between loci will 
become greater than that caused by genetic drift, resulting in 
negatively biased estimates of Ne. As an example, using linkage 
disequilibrium information obtained from pairwise compari-
sons of 78,636 SNPs in a passerine species with high abundance 
and a wide range, Nadachowska-Brzyska et al. (2021) obtained a 
finite Ne value exceeding 23,000, an estimate that became neg-
ative (with infinite confidence intervals) when based solely on 
comparing pairs of loci from different chromosomes (i.e., fully 
independent loci). This suggests that the effective size is too 
large to evaluate despite the large number of loci used, and it un-
derlines the potential negative bias caused by physical linkage 
between loci when all SNPs are considered. Waples et al. (2016) 
proposed a bias correction procedure in the absence of available 
recombination maps, relying on simulations with varying num-
bers of independent chromosomes (2–64) of diverse sizes (50, 
100 or 200 cM), a number of loci up to 4096, and simulated Ne 
values up to 800. This correction has the form of a fairly simple 
equation but requires knowledge of the number of chromosomes 
or the total genome size of the target species. This correction 
must be applied with caution, ideally to data sets corresponding 
to the parameter space simulated by the authors. Its effective-
ness in the case of Ne values much larger than a few hundred 
remains unknown. Indeed, although the effect of physical link-
age between loci may become predominant in large populations 
compared with the effect of genetic drift, it can also be influ-
enced antagonistically by Ne itself. Larger effective sizes accel-
erate the decline in linkage disequilibrium (LD decay) between 
loci for a given recombination distance (Waples et al. 2022).

Another source of pseudo-replication in high-density data sets 
results from overlapping pairs of loci: linkage disequilibrium 

values obtained between pairs of loci are not independent of 
each other, because each locus is involved in multiple compar-
isons. As with physical linkage between loci, this leads to an 
information gain (i.e., through the number of effective locus 
pairs, Waples et al. 2022) that does not increase as rapidly as the 
number of loci used for estimating Ne. Instead, the number of ef-
fective locus pairs as a function of the number of used loci even-
tually reaches an asymptotic value for a given combination of Ne 
and sample size (i.e., fig. 2 of Waples et al. 2022). For instance, in 
their simulations, Marandel et al. (2019) found no further infor-
mation gain beyond 200 SNPs. According to Waples et al. (2022), 
this type of pseudo-replication does not bias Ne estimates like 
physical linkage but leads to overestimated precision, with nar-
rower confidence intervals less likely to include the true Ne. The 
jackknife method by Jones et al. (2016) is widely recommended 
to correct this issue, although its performance decreases when 
the sample size is small compared to the true Ne value. Again, 
this pseudo-replication seems to diminish as Ne increases, with 
the proportion of effective locus pairs over the actual number of 
loci increasing as Ne tends towards infinity (see fig. 2 of Waples 
et al. 2022). Increasing sample size could also compensate for 
pseudo-replication resulting from overlapping pairs of loci, pro-
viding it is close enough to Ne (i.e., fig. 3 of Waples et al. 2022) 
otherwise the information gain remains limited as well.

Finally, increasing the number of loci to improve contemporary 
Ne estimation is hampered by individual sampling and the sam-
ple size per se. This is because the degree of uncertainty related 
to individual sampling within a population largely outweighs 
the degree of uncertainty related to locus sampling, especially 
for large number of loci (i.e., fig. 4 of Waples et al. 2022). In fact, 
as stated by Waples  (2024b), ‘as more SNPs are used, the esti-
mate of [a linkage disequilibrium statistic] will converge on a 
value that reflects the relationship structure of the sampled indi-
viduals and not the population as a whole’.

The considerations above underscore the high importance of 
sample size and emphasise caution against allocating significant 
financial and logistical resources to sequencing and genotyping 
thousands or tens of thousands of loci in hopes of addressing 
limited sampling. These issues have been covered in the litera-
ture (Wang 2016; Waples et al. 2016, 2022) and are likely to be 
further explored in the future to answer outstanding questions 
about whether and how locus density compensates for a limited 
sample size.

Several recently developed methods based on linkage disequi-
librium benefit from increasing genomic information. First, the 
availability of at least a draft reference genome for the species 
itself or a closely related species can provide information on the 
relative positioning of some characterized loci, enabling compar-
isons to be restricted between different chromosomes to avoid 
physical linkage. Additionally, a recombination map allows in-
formation to be gathered from physical linkages between loci 
to investigate changes in Ne over time. Such information may 
soon become increasingly available for large pelagic species. 
For example, the European Reference Genome Atlas (ERGA) 
project (https://​www.​erga-​biodi​versi​ty.​eu/​) aims to sequence 
the genomes of several European eukaryotic species, and for its 
pilot phase, among several aquatic and marine species, the blue 
shark (Prionace glauca) and the Atlantic bluefin tuna (Thunnus 

https://www.erga-biodiversity.eu/
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thynnus) have been selected. Linkage disequilibrium methods 
that integrate recombination information are undergoing con-
stant optimisation and application. Some of these (SNEP, Barbato 
et  al.  2015; LINKNE, Hollenbeck et  al.  2016; moments-LD, 
Ragsdale and Gravel 2019, 2020; Jouganous et al. 2017; GONE, 
Santiago et  al.  2020) are described in Appendix  S2. Overall, 
some methods perform better at obtaining contemporary Ne es-
timates, whereas others better detect the timing or strength of a 
recent bottleneck. Most applications of these methods seemingly 
concern vulnerable species of small abundance, but there are ex-
amples involving marine species with potentially large popula-
tions, as shown in Table A1.1: Appendix S1.

Thus, the limitations due to low genetic drift signals in large 
populations may persist even with the most recently developed 
methods. Among the applications of the methods presented here 
(see Table  A1.1: Appendix  S1), few cases result in the estima-
tion of effective sizes greater than a few thousand. The perfor-
mance of methods incorporating recombination information is 
likely influenced by relative fluctuations in the effective size be-
tween the recent past and the present, as mentioned by Lehnert 
et al. (2019) and suggested by the results of Martinez et al. (2022) 
(Appendix  S1). It is thus unclear whether methods leveraging 
recombination information enable (i) the correct and precise 
evaluation of contemporary Ne even when it is high, (ii) the 
correct and precise evaluation of both contemporary and past 
fluctuations in Ne or (iii) a simply qualitative detection of recent 
change of Ne (i.e., identifying the occurrence of a decline or an 
expansion).

Following this synthesis, in light of recent reviews (e.g., 
Waples  2024b), we outline a few questions that appear to be 
compulsory when running conservation genetic programs fo-
cusing on large marine populations:

• Which correction procedure would most effectively elimi-
nate systematic sampling bias when estimating Ne from a
large population using linkage disequilibrium methods im-
plemented in different software programs?

• In which specific ways do pseudo-replication and sampling
issues arise in populations with very large Ne when using
high-density SNP data, and which consequences are there
in the minimal sample size necessary to obtain a reliable
Ne estimation using linkage disequilibrium-based methods
(assuming the sample pedigree is representative of the full
population pedigree)?

• Does the correction for systematic bias caused by physical
linkage, as proposed by Waples et  al.  (2016, equations  1a
and 1b) for contemporary Ne, remain valid for large Ne val-
ues and/or a very large number of genetic markers, such as
those obtained through whole-genome sequencing?

• How does the influence of ‘pseudo-replication’ on the ac-
curacy and precision of contemporary Ne estimates, using
classical methods (Waples 2006) or more recently developed 
linkage disequilibrium-based methods, vary with the true
Ne value?

• How do the nature (constant vs. pulsed, symmetric vs.
asymmetric, etc.) and intensity of gene flow affect the bias
and precision of Ne estimates in large populations? What

are the implications for methods that integrate multipop-
ulation information, such as the moments-LD method de-
veloped by Ragsdale et al. (2020)? How do the nature (e.g., 
gradual vs. sudden, expansion vs. decline), timing (time lag) 
and intensity of fluctuating Ne affect the bias and precision 
of contemporary Ne estimation in large populations?

3   |   Effective Size Estimation Based on Allele 
Frequency Spectra

The allele frequency spectrum (or site-frequency spectrum, SFS) 
describes allele distributions in a population. The distribution 
of allele frequencies, and thus the characteristics of the SFS, re-
flects demographic factors such as changes in Ne, genetic differ-
entiation between populations, population speciation processes 
and gene flow that have shaped populations throughout their 
history. Using mathematical models, it is possible to predict 
the expected characteristics of the SFS (or joint SFS when more 
than one population is considered) that would theoretically be 
observed under different demographic models. Demographic 
inference can then be performed by comparing the observed 
SFS (or JSFS for joint site frequency spectrum if more than one 
population are involved) to one or more theoretical SFS via 
statistical tools for maximum likelihood estimation or approx-
imate Bayesian computation (Beaumont et  al.  2002). Salmona 
et al. (2017) and Bourgeois and Warren (2021) provided a detailed 
review of the various existing demographic inference methods, 
particularly those based on the SFS (see also Appendix S2 for de-
tails about the general principles and software implementation 
of several SFS-based methods).

The estimation of the demographic parameters of one or more 
populations primarily depends on (i) the informativeness of the 
SFS derived from empirical data, (ii) how realistic the demo-
graphic scenarios and the range of parameters tested are and 
(iii) the ability to correctly model the theoretical SFS for these
different scenarios.

Demographic inference based on the SFS is generally most ef-
fective for past or moderately ancient events; recent changes in 
population size often leave weaker signatures, as recombination 
information cannot be considered (Hayes et al. 2003; Salmona 
et al. 2017) and the signatures of recent events on the SFS are 
diluted by the cumulative footprints of older events (Gattepaille 
et al. 2013; Nunziata and Weisrock 2018; Momigliano et al. 2021; 
Reid and Pinsky 2022). In fact, Reid and Pinsky (2022) reported 
a higher efficiency of momi2 (based on a continuous-time 
Moran model) compared with that of the stairway plot (based 
on the coalescent) and two linkage disequilibrium-based meth-
ods (NeEstimator2 and GONE), provided that the demographic 
decline was fast and older than 30 generations. For more recent 
events, the linkage disequilibrium method, which integrates re-
combination information across the genome (GONE) performed 
better. The authors also suggested that SFS-based methods are 
more precise and less dependent on sample size for estimating 
long-term Ne values, whereas GONE software is more effective 
at assessing Ne values from recent timescales with quality and 
precision, although it is more affected by sample size. Beichman 
et  al.  (2018) recommend a minimum of 100 individuals for 
studying events occurring within the last 100 generations using 
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RADseq-type sequencing data. Similarly, Robinson et al. (2014) 
suggested, through simulations, that while a few individuals and 
several thousand SNPs may suffice to detect demographic trends 
since the Upper Pleistocene with the δaδi software, several tens 
or even thousands of individuals (as in the case of global human 
demographic expansion; Keinan and Clark  2012) are needed 
to date more recent abundance expansion or declining events. 
Large populations, which are characterised by slower changes 
in allele frequencies (Hare et al. 2011; Hoey et al. 2022), pres-
ent additional challenges, particularly when attempting to de-
tect recent impacts. This issue is especially relevant for species 
of management or conservation concerns due to anthropogenic 
pressures, which often occur at recent timescales, such as ex-
ploited marine species (Puncher et  al. 2018; Waples, Hoelzel, 
et al. 2018; Waples, Grewe, et al. 2018; Nikolic et al. 2023; Leone 
et  al.  2024). Consistent with these observations, skyline plot 
tools have successfully detected Pleistocene events in the large 
pelagic blue shark P. glauca using mitochondrial DNA (Leone 
et al. 2017). However, despite relying on a thousand SNPs, the 
DarTSeq data derived from several tens of individuals failed to 
identify demographic events suspected to have occurred on very 
recent timescales (< 20 generations) in both P. glauca (Nikolic 
et al. 2023) and in albacore tuna (Nikolic et al. unpublished data). 
A more recently developed method, designed specifically to de-
tect recent demographic events with relatively limited sample 
sizes, can provide valuable insights when applied to abundant 
pelagic species, provided that a recombination map is available 
(Tournebize et  al.  2022). In contrast, for populations of small 
size (Ne up to 1000), Nunziata and Weisrock  (2018) suggested 
prioritising the number of SNP markers (up to 25,000–50,000) 
over the number of samples in detecting a recent drastic (90%) 
decline using fastSimcoal2 software. However, the authors 
highlighted a systematic overestimation of Ne, which may be in-
herent to situations where the sample size is comparable to the 
effective population size under study (Bhaskar et al. 2014). This 
overestimation may be due to the underestimation of singletons 
when using the coalescent relative to estimation by simulation 
tools based on the Wright–Fisher model.

Stringent filtration, even at the expense of the number of usable 
SNPs, is required to increase the reliability and precision of in-
ferences, as it has been shown that the most informative loci in 
the context of demographic inferences (i.e., those bearing rare 
alleles) are more strongly affected by allele dropout (Nunziata 
and Weisrock  2018). Notably, null alleles are very difficult to 
avoid (Hoey et al. 2022) and tend to be more prevalent in large 
populations (Gautier et al. 2013). Some methods have been de-
veloped to reconstruct the observed SFS while accounting for 
quality variation and low sequencing coverage (Korneliussen 
et al. 2014).

Temporal sampling mitigates some biases, allowing better esti-
mation of Ne over recent generations. This was exemplified in 
Hoey et al. (2022) through the use of fastSimcoal2 on 1068 SNP 
markers and several tens of samples (26–150 genotyped larvae) 
per time step for three distinct cohorts (1994, 1997 and 2008) of 
the highly abundant demersal Summer flounder (Paralichthys 
dentatus). The results obtained were consistent with stock as-
sessments reporting a drastic decline (~98%) in the population 
less than 20 generations earlier, followed by recovery. Their 
work highlights the interest of temporal sampling to infer recent 

demographic events in highly abundant populations using a few 
tens of individuals with relatively few but very high-quality SNP 
markers (filtered through very strict data sequencing protocols) 
and a relatively simple model. Similarly, the work of Reid and 
Pinsky (2022) mentioned earlier underscores the value of tempo-
ral sampling in limiting the influence of allele dropout and the 
artefactual introduction of singletons when using momi2 and a 
stairway plot.

It is thus clear that increasing sample sizes, ideally at different 
time steps, and marker density is necessary for constructing 
empirical SFS for large pelagic populations to infer recent Ne 
fluctuations. Even with these optimal designs, logistical con-
straints remain significant, particularly owing to the increasing 
computational demands of the methods discussed here as model 
complexity and parameter ranges increase. Prior knowledge of 
the biology and recent history of target populations is therefore 
essential for constraining the parameters and testing optimal 
scenarios.

A major issue, known as ‘model identifiability’, arises from dis-
tinct evolutionary trajectories that may result in highly similar 
SFS (Myers et al. 2008; Momigliano et al. 2021). The amount of 
information contained in the SFS affects both (i) the ability to 
confidently identify the best theoretical scenarios correspond-
ing to the observed SFS and (ii) the uncertainties (confidence 
intervals) associated with the estimation of the demographic pa-
rameters themselves.

Above, we focused on the difficulty of identifying recent 
changes in Ne of an isolated population, particularly when it 
is highly abundant. Estimating other demographic parameters 
(e.g., the intensity and direction of gene flow and the divergence 
time between multiple sub-populations) can also be challenging, 
especially for complex evolutionary trajectories involving mul-
tiple populations and multiple demographic events over time. 
Accurate inference requires the testing of realistic demographic 
models that reflect the biological reality of these populations 
(Loog 2021). Limited prior knowledge can result in underfitting 
or the neglect of key scenarios. In such cases, it is necessary to 
report all selected theoretical scenarios identified through infer-
ence, noting that they are all equally likely to reflect the actual 
evolutionary trajectory of the population, which remains impos-
sible to determine.

Biological data from the literature or the study of genetic vari-
ability within the populations of interest can help identify 
the broad categories of demographic scenarios to be tested 
for inference, for example, by identifying geographically dis-
tinct sub-populations potentially resulting from a divergence 
event in their history (Nikolic et al. 2023). In the case of large 
pelagic species, a limited number of sub-populations orig-
inating from a single ancestral population are generally con-
sidered and are strongly connected to each other by gene flow 
(Nikolic et al. 2023). Although this may constrain the number 
of demographic models to consider, the typically wide distri-
bution range of these species usually leads to other challenges. 
Elucidating the phylogeographic patterns of these species may 
still require the integration of different modalities of diver-
gence, secondary contact, admixture, gene flow directions and 
variations in effective population sizes. In addition, sampling 
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may be biased because of unsampled (‘ghost’) populations. For 
example, in the case of blue shark P. glauca, Nikolic et al. (2023) 
suggested that the availability of individuals collected in the 
Pacific Ocean would have allowed for a better understanding 
of the precise gene flow patterns on a global scale. Along with 
the large number of theoretical scenarios to be tested, there 
may be an increase in their complexity and in the number of 
demographic parameters to be estimated within each scenario. 
If one is primarily interested in estimating contemporary Ne, it 
remains useful—and often important—to elucidate the past ef-
fective size variations and date them to limit parameter estima-
tion biases. For example, Momigliano et al. (2021) showed how, 
during an inference procedure, not accounting for ancient fluc-
tuations in Ne can lead to underestimating the times and modes 
of divergence between the studied populations. Demographic 
parameters (such as divergence times) of populations that 
are strongly connected to each other or show continuous ge-
netic structuring can also be more difficult to estimate inde-
pendently (Loog  2021). Lesturgie et  al.  (2022) demonstrated, 
using coalescent-based inference procedures on four shark 
species with varying degrees of vagility, that neglecting spatial 
genetic structuring, particularly when it is strong, can make it 
difficult to distinguish the signature of a recent decline in Ne 
from that of spatial genetic structuring.

Demographic inference software based on coalescent methods, 
such as fastSimcoal2, enables the development of many distinct 
demographic models with diverse parameters that can be com-
pared using statistical tools such as the Akaike information 
criterion (AIC) on independent molecular markers. However, a 
very large number of simulations is required to cover all pos-
sible combinations of the ‘parameter space’, and if the empiri-
cal SFS is too uninformative, the range of uncertainty around 
these parameters remains large. Moreover, the classic coales-
cent model assumes that multiple coalescent events are impos-
sible (only one coalescent event, between two gene copies only, 
can occur each generation). This assumption may not hold in 
several cases: (i) when the variance in reproductive success 
within the studied population is so large that multiple coales-
cent events can occur simultaneously (Montano 2016), (ii) when 
the population has undergone an extreme decline over a short 
and recent period, concentrating many coalescent events over a 
small number of generations (Lauterbur 2019) and (iii) when the 
sample size is comparable to the true Ne (Bhaskar et al. 2014). 
If any of these situations is likely, the use of dedicated coales-
cent models, known as ‘multiple mergers’, is recommended 
(Tellier and Lemaire  2014). These models are implemented in 
simulation software such as msprime (Kelleher et al. 2016) and 
MetaGeneTree (Birkner et al. 2011), but not in fastSimcoal2, for 
example, which can handle such situations only in the specific 
case of simulating an instantaneous bottleneck. In these cases, 
there is a risk that the simulated genetic variation patterns within 
the framework of inference will be biased, especially for recent 
generations (Bhaskar et al. 2014). Rare alleles are generally the 
most affected, leading to an underestimation of the number of 
singletons and an overestimation of the number of doubletons 
by classic coalescence models. Linkage disequilibrium patterns 
along the genome can also be biased when long genomic regions 
are simulated (Nelson et al. 2020), potentially influencing demo-
graphic parameter estimates based on this information.

For populations of conservation interest, the occurrence 
of strong bottlenecks and variance in reproductive success 
cannot clearly be ruled out, and multiple merging events 
must be considered. Using a classic Wright–Fisher model to 
obtain a theoretical SFS, as implemented in software such 
as δaδi and moments, circumvents this issue. However, this 
approach is more restrictive in terms of the diversity of mod-
els and the range of parameters that can be tested. GADMA 
and GADMA2 software (Noskova et  al.  2020, 2023) yields 
interesting prospects for combining the precision and accu-
racy of methods on the basis of the exact calculation of SFS 
by comparing distinct demographic models to explore a larger 
parameter space. Like GONE software, GADMA implements 
a genetic algorithm that allows the automatic generation and 
gradual refinement of different scenarios over several succes-
sive ‘generations’. GADMA is related to some of the existing 
software mentioned above (δaδi, moments, moments.LD and 
momi2) and enables the pruning of the number and range of 
demographic parameters to be tested and optimised. Such an 
approach may help limit biases and avoid underfitting demo-
graphic scenarios relative to the biological reality of the target 
populations (Momigliano et al. 2021).

To summarise, SFS-based methods can help estimate the effec-
tive population size. However, to improve their use and reliabil-
ity, particularly for highly abundant large pelagic populations, 
key questions need to be addressed, including the following:

• Can demographic inference methods based on SFS that
integrate a genetic algorithm (e.g., GADMA) optimise the
selection of demographic models and the estimation of pa-
rameters such as effective size (and its temporal variations)
for abundant, interconnected populations?

• How many samples and loci are needed for SFS to be used
to detect recent Ne declines in large populations with con-
stant, asymmetric and/or pulsed gene flow?

• What are the relative performance levels of different algo-
rithms (e.g., diffusion equations, continuous-time Moran
models, coalescents) in estimating Ne (and its temporal
variations)?

• How does Ne influence the ability to independently esti-
mate demographic parameters such as migration, diver-
gence time and past variations in effective size?

4   |   A Simulation Framework for High-Density 
Genomic Data and Large Sample Sizes

4.1   |   Preliminary Considerations for Several 
Simulation Software Programs

Based on the previous sections, we outline here some key re-
quirements a simulation framework should meet to reliably 
compare Ne estimation methods in large populations with high-
density SNP data:

• Simulate realistic populations, which requires accounting
for individual-level variation in vital rates, particularly sur-
vival and fertility, which can significantly influence Ne and
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its estimation. It is also essential to model populations over 
sufficiently long time periods to capture both short-term de-
mographic features (such as lifetime-variance in reproduc-
tive success across individuals) and long-term evolutionary 
trajectories (such as progressive growth or decline or past 
divergence events within and between populations). This 
calls for the use of individual-based simulators, which can 
incorporate these complex dynamics, as opposed to tradi-
tional coalescent-based simulators that rely on simplify-
ing assumptions, such as non-overlapping generations and 
equal reproductive probabilities across individuals.

• Simulate genomic data with at least a few thousand inde-
pendent loci, and when possible, generate complementary
information such as recombination distances between loci.

• Preserve pedigree information between individuals to de-
termine their relatedness within a simulated sample and to
determine how the number of related pairs of individuals
evolves under different conditions or sampling schema.

• Establish a diagnosis of the simulated data to ensure that
the simulated genetic and demographic features align with
theoretical expectations. For example, it is important to
confirm that the effective size of the simulated population
matches the value predicted by the set of chosen demo-
graphic parameters. If discrepancies arise, it is necessary to
determine the actual simulated effective size to compare it
with the estimates from the various methods being tested.

• Integrate both contemporary time (present and recent past)
and more ancient time to simulate populations with realis-
tic evolutionary trajectories. This is particularly important
for evaluating effective size estimation methods on the basis 
of allele frequency spectra as well as for simulating realistic
patterns of genetic diversity.

• Enable flexibility in varying multiple parameters, such as
the total abundance and effective size, on the basis of dif-
ferent vital rates (survival and fertility rates), the number
of sub-populations, the intensity of gene flow between sub-
populations, sampling strategies (including serial sampling
across multiple time steps), and genomic characteristics
(e.g., recombination rates and genome sizes).

Multiple simulation software programs and tools are available, 
each with specific advantages. Table  2 lists some of the most 
widely used and maintained software that can both simulate de-
mographic and genomic data for populations of potentially large 
abundance.

Here, we present a simulation framework based on the 
individual-based, forward-time SLiM (Haller and Messer 2016, 
2018) and coalescent (or discrete-time Wright–Fisher)-based 
msprime (Kelleher et al. 2016) software programs, along with the 
pyslim and tskit Python libraries. These population genetic sim-
ulators enable high flexibility for simulating biologically realis-
tic populations and demography over recent time periods using 
individual-based simulations, while also generating realistic 
patterns of genetic variation based on different scenarios of past 
evolutionary trajectories using coalescent models. Additionally, 
these tools implement a data encoding process that preserves 
the genealogical and genetic characteristics of individuals and 

populations in an optimized manner: tree sequence recording, 
improving simulation performance, which is particularly bene-
ficial when simulating large populations and sample sizes.

4.2   |   Simulation of Demographic and Genomic 
Data via SLiM 3.7, pyslim 0.700 and msprime 1.2.0, 
Focusing on Parameters Characterising Large 
Pelagic Fish Populations (Such as Tuna)

Our simulation procedure is summarised in Figure  2, with 
detailed information provided in Appendix  S3 and on GitHub 
(https://​github.​com/​[autho​r]/​POPSI​ZE-​Proje​ct-​SLiM_​Scripts). 
Its objective is to propose a framework to simulate biologically 
realistic populations of moderate (a few thousands) to large (ide-
ally up to millions of individuals) census size, and with vital 
rates that are to be set by the user so as to mimic any particular 
species (e.g., a tuna species). Here, as an example, we used sim-
plified vital rates inspired by Nishida and Dhurmeea (2019) who 
present a review of demographic parameters for yellowfin tuna 
in the Indian Ocean stock.

Using SLiM version 3.7, we simulated two connected sub-
populations with identical total abundances ‘K’ (equal to 17,710 
individuals in the example provided on GitHub), each generating 
the same number of newborns, ‘final_cohort_size’ (which was 
arbitrarily chosen to be of 5000 individuals and conditions the 
total number of individuals K), in each reproductive cycle. The 
simulated populations are age-structured, with mortality rates 
L′ and fertility rates ‘B’ for each age class. The age of sexual ma-
turity was set to 4 years, beyond which all individuals were capa-
ble of reproduction. Longevity was set to 15 years, beyond which 
all individuals perished. In this configuration, applying AGENE 
software (Waples et al. 2011), and assuming constant total abun-
dance and age structure over time, the population size per age 
class decreased from 5000 individuals at age 0 (newborns) to 2 
individuals at age 15. It was assumed that all newborns survived 
until age 1. This age structure parameter is integrated into the 
SLiM simulator as the parameter ‘W’. In this configuration, the 
theoretical demographic effective size, which was calculated by 
estimating the variance in reproductive success on the basis of 
fixed demographic parameters (Waples et  al.  2011), was 3314 
per generation for each sub-population. In our situation, the 
observed demographic effective size, which was calculated on 
the basis of the variance in actual reproductive success among 
the simulated individuals in each cohort from one time step to 
another, averaged 2772 per generation. We hypothesise that the 
difference between the theoretical and observed values is due 
to stochastic processes associated with the SLiM simulator. It 
would be useful to explore this question further in the future. 
At this stage, however, we consider the value of 2772 to be the 
‘true’ effective size for each sub-population, the value that in-
direct estimation methods based on genetic information should 
be able to detect. The mortality parameters of each age class ‘L’ 
were inspired by Nishida and Dhurmeea (2019), who presented 
a review of demographic parameters for yellowfin tuna in the 
Indian Ocean stock, whereas the fertility parameter ‘B’ simply 
reflected a linear increase in the fertility rate with age, as is 
often expected in teleost fish. All the demographic parameters 
considered were identical between males and females, and we 

https://github.com/[author]/POPSIZE-Project-SLiM_Scripts
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used a fixed, balanced sex ratio. Additionally, the demographic 
parameters were identical between the sub-populations. The 
vital rates of each simulated sub-population are summarised in 
Table A3.1: Appendix S3.

At each time step, breeding individuals generate a total of 5000 
descendants on average and face a mortality risk depending on 
their age and the parameter ‘L’. Moreover, at each time step, 
each individual has a probability ‘m’ (fixed at 5% by default) of 

TABLE 2    |    Commonly used demo-genetic simulation software programs listed with their main strengths and limitations in simulating genomic 
data for populations with very large effective population sizes.

Software Resources Strengths Challenges

fastSimcoal http://​cmpg.​unibe.​ch/​softw​
are/​fasts​imcoal26

https://​groups.​google.​com/g/​
fasts​imcoal?​pli=​1

Incorporates a highly flexible 
demographic inference tool 

based on site frequency spectra
Provides extensive community 

support and bibliographies

Requires scripting for 
genotype format conversion 
(no genepop or .vcf format is 
available for direct output)

Generates unexpected 
genetic diversity patterns 

beyond a certain population 
and sample size

msprime https://​tskit.​dev/​mspri​me/​
docs/​stable/​intro.​html

https://​github.​com/​tskit​-​dev/​msprime

Speed
Leverages the flexibility of 

the Python language
Implements genealogy 

storage in tree sequences
Includes numerous tools 
for analysing simulated 

data (tskit library)
Extremely active community 

support, abundant online resources

Complex software requires 
significant investment 

for proficiency
Does not integrate direct 

demographic inference tools 
(must be coupled with other 
tools for inference via ABC 
or likelihood maximisation)

SimuPOP https://​simup​op.​sourc​eforge.​net/​
https://​github.​com/​BoPeng/​simuPOP

Biologically realistic (individual-
centred), forward-time simulation

Benefits from the flexibility 
of the Python language
Widely used, examples 

available back to the 2000s

Difficult to combine with 
coalescent-based simulations 

for hybrid simulations
Long simulation times

SLiM https://​messe​rlab.​org/​slim/​
https://​groups.​google.​
com/g/​slim-​discuss

https://​tskit.​dev/​pyslim/​docs/​
stable/​intro​ducti​on.​html

Biologically realistic (individual-
centred), forward-time simulation

Implements genealogy 
storage in tree sequences

Allows coupling with coalescent for 
hybrid simulations (pyslim library)

Flexibility

Complex software requires 
significant investment 

for proficiency
Eidos programming, dedicated 

programming language
Long simulation times 

in some cases

Spip/
CKMRpop

Anderson (2022)
https://​eriqa​nde.​github.​io/​

CKMRp​op/​index.​html

Biologically realistic (individual-
centred), forward-time simulation

User-friendly R interface 
and tutorials

Users can easily set up various life 
cycles and sampling strategies

Includes tools for describing pairs of 
related individuals within simulated 

data (e.g., classification by type of 
relatedness, triad detection, etc.)
A valuable pedagogical tool for 

understanding the principles of the 
close-kin mark recapture method 
(CKMR, Bravington et al. 2016) 

and for simple study design

Performance is limited 
beyond a few dozen loci; 

thus, simulation of genomic 
data is not possible

Memory allocation issues 
when simulating multiple 

populations with migration and 
for certain population sizes
Does not implement CKMR 

demographic model tools 
and equations: solely aims to 

visualise the number of related 
pairs present (R) based on the 

life cycle and sampling strategy
Does not allow simulation of 
past evolutionary trajectories 

(contemporary time only)

http://cmpg.unibe.ch/software/fastsimcoal26
http://cmpg.unibe.ch/software/fastsimcoal26
https://groups.google.com/g/fastsimcoal?pli=1
https://groups.google.com/g/fastsimcoal?pli=1
https://tskit.dev/msprime/docs/stable/intro.html
https://tskit.dev/msprime/docs/stable/intro.html
https://github.com/tskit-dev/msprime
https://simupop.sourceforge.net/
https://github.com/BoPeng/simuPOP
https://messerlab.org/slim/
https://groups.google.com/g/slim-discuss
https://groups.google.com/g/slim-discuss
https://tskit.dev/pyslim/docs/stable/introduction.html
https://tskit.dev/pyslim/docs/stable/introduction.html
https://eriqande.github.io/CKMRpop/index.html
https://eriqande.github.io/CKMRpop/index.html
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migrating from one of the two sub-populations to the other. This 
migration parameter is constant over time and symmetrical, 
meaning that the two identically abundant populations exchange 
migrants in stable and equivalent proportions from one time step 
to the next. The simulation ran for 100 time steps. For each time 
step from 90 to 100, sampling was performed for each age class 

from 1 to 15 at a rate of 10% of the total abundance of individu-
als aged 1–15 in each class. Information regarding the age and 
location of sampling, pedigree and genetic genealogy of these 
individuals (using the tree sequence recording procedure) was 
exported for subsequent steps. Table  A3.2: Appendix  S3 sum-
marises the key parameters set in the SLiM simulation phase.

FIGURE 2    |    Overview of the procedure for simulating demographic and genomic data. This procedure is divided into two interrelated steps.
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At the end of the simulation phase conducted via SLiM software, 
we had a tree sequence file containing genealogical information 
throughout the genome of the sampled individuals between 
time steps 90 and 100. This was our starting point for the be-
ginning of the simulation phase conducted via the pyslim and 
msprime libraries and starting with a process called recapitation 
(Appendix S3). During this coalescent phase of our framework, 
we simulated a maximally simplified evolutionary trajectory 
by simply merging the two sub-populations into a single an-
cestral population (with an effective size equivalent to the sum 
of the effective sizes of the two sub-populations). Table  A3.3: 
Appendix S3 summarises the key parameters set in the coales-
cent phase of our simulation framework.

4.3   |   Examples of High-Density Simulated 
Genotype Data

This section presents a small-scale, illustrative simulation-based 
comparison of methods for Ne estimation using the software 
NeEstimator2 (Do et al. 2014), GONE (Santiago et al. 2020) and 
GADMA with the library moments (Noskova et al. 2020). These 
methods were applied to 12 data sets generated through simu-
lation and post-processing procedures (details in Appendix  S2 
and GitHub). The simulations were conducted with a total sub-
population abundance (‘K’ parameter) of 17,710 individuals. All 
parameters in the SLiM software were identical except for the 

gene flow ‘m’, which was set to 0.01, 0.05 or 0.10. For each ‘m’ 
value, three replicates were performed, resulting in nine in-
dependent simulations. Twelve subsets of data were generated 
per simulation, yielding 108 subsets of data, as summarised in 
Table A3.4: Appendix S3. Only samples from present time (time 
step 100) were kept in those subsets. Methods based on LD were 
applied to all 108 data sets, whereas GADMA software was ap-
plied only to the 36 subsets of data containing 30,000 loci. The 
parameters set for each of the three software programs are pre-
sented in Appendix S4.

The simulated sub-population Ne ranged from 2740 to 2842 due 
to demographic stochasticity, with an average of 2772 consid-
ered the target value for comparison. The sampling size was set 
to 14 individuals (0.5% of the target Ne), 56 (2.0%), 140 (5.0%) and 
a ‘typical’ number of 50 individuals as a realistic field sampling 
scenario.

The estimates varied greatly between the sub-populations and 
among the three replicates, regardless of the method used, the 
number of loci considered or the gene flow. Here, we present 
only the estimates and not their confidence intervals for better 
readability. The aim is not to draw definitive conclusions re-
garding the relative performance of the different methods; such 
a discussion requires a larger number of simulation replicates 
(ideally, replicates should be performed within each simula-
tion, i.e., for each of the 12 subsets of data generated during the 

FIGURE 3    |    Estimated values of contemporary effective population size as a function of the number of samples collected per sub-population (14, 
50, 56 or 140), obtained by two linkage disequilibrium methods implemented in the software programs NeEstimator2 (top) and GONE (bottom); 
these methods are applied to simulated data sets with gene flow between sub-populations of m = 0.01, 0.05 or 0.10 and with 1000 loci. Each point rep-
resents an estimate of the effective size of a sub-population in one of the three simulation replicates. The mean effective population sizes within each 
sample size class are indicated by red crosses. The dashed horizontal line in each graph represents the target effective size (2772).
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post-processing phase of a given simulation) and larger-scale 
simulations, including variations in the ‘K’ parameter indicating 
the abundance of each sub-population.

4.3.1   |   Influence of the Sample Size of Each 
Sub-Population

As expected, small sample sizes (14) produced unreliable and 
highly variable estimates across all methods (Figures 3–6). Only 
GADMA software yielded a small range of variation, with a mean 
value relatively close to the target value (Figure 6). Larger sample 
sizes of 50, 56 or 140 individuals increased accuracy but showed 
variability in the estimates depending on migration and method. 
NEESTIMATOR2 was more accurate at low migration rates 
(0.01) and inconsistent at higher rates. GONE software showed 
less variation between estimates beyond 50 individuals and 
10,000 loci but consistently overestimated Ne owing to sensitivity 
to gene flow even for the lowest gene flow value (0.01), for which 
NEESTIMATOR2 was generally less affected. This sensitivity 
to gene flow was previously reported by Santiago et al.  (2020), 
who indicated that beyond a certain rate, local Ne estimates tend 
towards the overall Ne of their meta-population. GADMA pro-
vided the closest estimates to the target Ne, particularly for 50+ 
individuals and 30,000 loci, although variability remained, with 
estimated values ranging from 1000 to 6000 and slight overesti-
mation of the target Ne for higher gene flow (0.05 and 0.10).

4.3.2   |   Influence of the Number of Loci

NeEstimator2 estimates seemed to be weakly influenced by 
the number of loci (Figure 7). However, higher counts (10,000 
and 30,000) slightly reduced the variability and overestima-
tion at high migration rates (0.05 and 0.10). This improvement 
was observed only for the largest sample size of 140 individu-
als (5% of the target Ne). GONE required more loci for reliable 
estimates, with 1000 loci yielding extreme values (Figure 8), in 
agreement with the recommendations of the authors (Santiago 
et al. 2020). Indeed, the use of too few loci does not provide 
sufficient information since loci need to be grouped according 
to their physical proximity on the genome (which is known in 
the context of our simulated data). A small number of loci per 
physical linkage class thus does not provide sufficient reso-
lution for the estimates. Furthermore, consistent overestima-
tion persisted, regardless of the locus count, sample size and 
gene flow.

4.3.3   |   Influence of Gene Flow Between 
Sub-Populations

Under ‘ideal’ conditions of 140 individuals per sub-population 
and 30,000 loci (Figure  9), higher gene flow (0.05, 0.10) sys-
tematically increased the mean Ne estimates. NeEstimator2 
and GADMA performed well at low migration (0.01), but both 

FIGURE 4    |    Estimated values of contemporary effective population size as a function of the number of samples collected per sub-population (14, 
50, 56 or 140), obtained by two linkage disequilibrium methods implemented in the software programs NeEstimator2 (top) and GONE (bottom); 
these methods are applied to simulated data sets with gene flow between sub-populations of m = 0.01, 0.05 or 0.10 and with 10,000 loci. Each point 
represents an estimate of the effective size of a sub-population in one of the three simulation replicates. The mean effective size values within each 
sample size class are indicated by red crosses. The dashed horizontal line in each graph represents the target effective size value (2772).
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slightly overestimated for higher gene flow (0.05 and 0.10). 
GONE consistently estimated the meta-population Ne (approx. 
5592) rather than the local Ne, which was consistent with ex-
pectations for symmetrical, constant gene flow.

The simulations demonstrate how data can be used to bench-
mark Ne estimation methods, emphasising the importance of 
sample size, locus count and gene flow considerations. Larger-
scale simulations and additional methods will further refine 

FIGURE 6    |    Estimated values of contemporary effective population size as a function of the number of samples collected per sub-population (14, 
50, 56 or 140), obtained by the allele frequency spectrum analysis method (method of moments) implemented in GADMA software, which was ap-
plied to simulated data sets with gene flow between sub-populations of m = 0.01, 0.05 or 0.10 and with 30,000 loci. Each point represents an estimate 
of the effective size of a sub-population in one of the three simulation replicates. The mean effective size values within each sample size class are 
indicated by red crosses. The dashed horizontal line in each graph represents the target effective size value (2772). For m values of 0.05 and 0.10, es-
timates were calculated only for sample sizes of 50 and 140 individuals per sub-population owing to computational time constraints.

FIGURE 5    |    Estimated values of contemporary effective population size as a function of the number of samples collected per sub-population (14, 
50, 56 or 140), obtained by two linkage disequilibrium methods implemented in the software programs NeEstimator2 (top) and GONE (bottom); 
these methods are applied to simulated data sets with gene flow between sub-populations of m = 0.01, 0.05 or 0.10 and with 30,000 loci. Each point 
represents an estimate of the effective size of a sub-population in one of the three simulation replicates. The mean effective size values within each 
sample size class are indicated by red crosses. The dashed horizontal line in each graph represents the target effective size value (2772).
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contemporary and historical Ne estimates (the latter are also 
accessible through GADMA and GONE). The integration of co-
alescent and forward-time simulation tools enables the compar-
ison of simulated and estimated historical Ne values, broadening 
applications in conservation and phylogeography.

5   |   Conclusion

5.1   |   Ne Estimation on the Basis of Linkage 
Disequilibrium

This work highlights significant advancements in the estima-
tion of effective population sizes via high-density genomic data 
sets. These data sets, however, face challenges such as pseudo-
replication caused by physical linkage or non-independent LD 
values, which lead to biased Ne estimates and overestimated 
precision. Correction methods exist, but they strongly depend 
on factors such as sample size and marker availability.

LD-based Ne estimation offers insights into temporal demo-
graphic trends. Methods have been developed for estimating Ne 
values at different temporal scales and for incorporating recom-
bination data to refine analyses. However, these approaches re-
quire many genetic markers and are sensitive to sample size and 
population structure. While high-density data sets are promis-
ing for understanding population dynamics, they must be cau-
tiously applied to address methodological challenges. The recent 
advancements in this field, however, pave the way for improved 
application conservation and genetic resource management.

5.2   |   Ne Estimation on the Basis of Allele 
Frequency Spectrum Analysis

Inference methods based on the study of allele frequency 
spectra (SFS) effectively trace the evolutionary trajectories of 
populations but are less informative regarding recent events, 
especially in high-abundance populations such as large pelagic 

FIGURE 7    |    Estimated values of contemporary effective population size as a function of the number of loci involved in the analysis (1000, 10,000 
or 30,000), obtained by the linkage disequilibrium method implemented in NeEstimator2 software, which was applied to simulated data sets with 
gene flow between sub-populations of m = 0.01, 0.05 or 0.10 and with 14, 56 or 140 individuals per sub-population. Each point represents an estimate 
of the effective size of a sub-population in one of the three simulation replicates. The mean effective size values for each locus number class are indi-
cated by red crosses. The dashed horizontal line in each graph represents the target effective size value (2772).
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species. Recombination between markers is often unaccounted 
for, complicating analyses of species that have faced recent an-
thropogenic pressures. Successful inference depends on data 
quantity and quality, including sufficient SNP markers and 
strategic temporal and/or geographic sampling to capture ge-
netic diversity. In the case of large pelagic populations, where 
sampling can be challenging because of their wide distribution 
range, temporal and geographic sampling strategies may be 
necessary to capture genetic diversity and detect recent demo-
graphic events.

Furthermore, interpreting SFS data requires the development 
of realistic demographic scenarios and parameters informed by 
biological, phylogeographic and genetic knowledge. Comparing 
theoretical scenarios helps identify the best fit for empirical 
data, although the choice of inference algorithm and demo-
graphic model can also impact the results obtained. Recent de-
velopments in this field include genetic algorithms, which can 
help optimise scenario selection and can increase the duration 

and reliability of SFS-based analyses. In conclusion, despite the 
challenges and precautions needed, SFS methods yield valuable 
insights into the evolution and conservation of large pelagic pop-
ulations and could significantly contribute to the conservation 
and sustainable management of these populations.

5.3   |   Simulation Framework

The simulation framework, which is based on recently devel-
oped tools, provides important perspectives for the generation of 
high-density demographic, individual-based and genomic data 
for model testing and comparison. The use of NeEstimator2, 
GONE and GADMA to estimate Ne from 108 simulated data 
sets with varying numbers of loci, diploid samples and symmet-
rical migration rates, as expected, revealed that higher sample 
sizes (e.g., 50+ individuals) and locus densities (up to 30,000) 
improved the Ne estimates. However, these estimates remained 
variable across replicates and sub-populations, even when using 

FIGURE 8    |    Estimated values of contemporary effective population size as a function of the number of loci involved in the analysis (1000, 10,000 
or 30,000), obtained by the linkage disequilibrium method implemented in GONE software, which was applied to simulated data sets with gene flow 
between sub-populations of m = 0.01, 0.05 or 0.10 and with 14, 56 or 140 individuals per sub-population. Each point represents an estimate of the ef-
fective size of a sub-population in one of the three simulation replicates. The mean effective size values within each locus number class are indicated 
by red cross markers. The dashed horizontal line in each graph represents the target effective size value (2772).
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the highest values for both samples and loci. Importantly, how-
ever, the simulations also highlighted the risks of slightly over-
estimating Ne with higher levels of locus density and increased 
migration rates. Although this limited simulation exercise re-
quires further improvement, it provides a pedagogical example 
of how currently developed simulation tools could help address 
questions related to Ne estimation in populations with different 
vital rates, demographic parameters, genome properties and 
effective and census sizes. Improvements to this simulation 
framework will include the ability to scale up to much larger 
populations sizes, for example, simulating biologically realistic 
populations with Ne of up to millions. In particular, this requires 
the ability to computationally handle both very large number 
of samples (1% of Ne of the order 106 representing tens of thou-
sands of individuals) and many recombination events within a 
given tree sequence, while avoiding time-prohibitive simulation 
process and memory crash. In our framework, we covered sev-
eral key capabilities offered by the software programs SLiM and 
pyslim (e.g., serial sampling and pedigree recording) which in-
creases computation time. A less generic simulation can help to 
reduce simulation time, for example, by focusing on generating 
simulated genotypes only from present time and without keep-
ing track of related individuals.
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