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Abstract The unprecedented hydraulic visibility of rivers surfaces deformation with SWOT satellite offers
tremendous information for improving hydrological‐hydraulic models and discharge estimations for rivers
worldwide. However, estimating the uncertain or unknown parameters of hydraulic models, such as inflow
discharges, bathymetry, and friction parameters, poses a high‐dimensional inverse problem, which is ill‐posed if
based solely on altimetry observations. To address this, we couple the hydraulic model with a semi‐distributed
hydrological model, to constrain the ill‐posed inverse problem with sufficiently accurate initial estimates of
inflows at the network upstreams. A robust variational data assimilation of water surface elevation (WSE) data
into a 1D Saint‐Venant river network model, enables the inference of inflow hydrographs, effective bathymetry,
and spatially distributed friction at network scale. The method is demonstrated on the large, complex, and poorly
gauged Maroni basin in French Guiana. The pre‐processing chain enables (a) building an effective hydraulic
model geometry from drifting ICESat‐2 WSE altimetry and Sentinel‐1 width; (b) filtering noisy SWOT Level 2
WSE data before assimilation. A systematic improvement is achieved in fitting the assimilated WSE (85% cost
improvement), and in validating discharge at 5 gauges within the network. For assimilation of SWOT data
alone, 70% of data‐model fit is in [− 0.25; 0.25 m] and the discharge NRMSE ranges between 0.05 and 0.18
(18%–71% improvement from prior). The high density of SWOTWSE enables the inferrence of detailed spatial
variability in channel bottom elevation and friction, and inflows timeseries. The approach is transferable to other
rivers networks worldwide.

1. Introduction
Improving the estimation of freshwater stocks and fluxes in surface hydrology is crucial for advancing scientific
knowledge of the earth system and addressing major socio‐economic issues such as water resource management
and forecasting extremes (floods and droughts), especially in the context of climate change and potential
intensification of the water cycle (Masson‐Delmotte et al., 2022). Developing detailed and reliable hydrological‐
hydraulic (H&H) models that can translate atmospheric signals into river flows, inundations depths, velocities,
extents, while integrating available observations, is essential for scientific research and decision support.
However, more complex modeling requires more information to constrain it effectively.

Hydrological‐hydraulic modeling typically requires data to describe (a) atmospheric forcings, (b) physical
properties of the catchment (drainage, topography, land use, soil and bedrock composition, etc) and the hydro-
graphic network (bathymetry, hydraulic friction, structures), as well as flow observations (discharge and water
depth at the very least, flow velocities, slopes, soil moisture, etc) to estimate the model parameters. Discharge
data, which are crucial to calibrate a stage‐discharge law or rainfall‐runoff hydrological models, vary in avail-
ability depending on the basins and the spatial density of their ground measurement networks. These data inte-
grate the complex signature of combined physical processes occurring in the compartments of the upstream basin
(rivers, lakes, biosphere, aquifers and unsaturated soils, cf. Milly (1994)) with significant spatio‐temporal vari-
abilities (e.g., Flipo et al. (2014); Schuite et al. (2019)), and contain uncertainty (e.g., Eggleston et al. (2024);
Horner et al. (2018); Mansanarez et al. (2016)). Bathymetry and friction data are essential for constraining hy-
draulic modeling but are often unvailable and remain unmeasurable from space. Dry bathymetry can be accurately
measured with airborne LiDAR while wet bathymetry below river surface requires in situ surveys or penetrating
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LiDAR in clear, shallow streams (cf. Lague and Feldmann (2020)). Hydraulic model friction can only be esti-
mated indirectly from flow measurements.

Complementing in situ data, new generations of Earth Observation satellites and sensors provide increasingly
accurate and spatially dense measurements of water surface (WS) variabilities in worldwide rivers, especially on
remote and hard‐to‐measure areas, including WS elevation Z, width W and slope S.

This hydraulic visibility provided by single or multi‐satellite measurements ‐ the potential to depict a hydrological
response and surface hydraulic variabilities within a river section or network via remote sensing (Garambois
et al. (2017), see also Rodríguez et al. (2020))–can offer valuable information for estimating discharge with local
laws or spatialized hydraulic models that both require calibration of their parameters. Local algebraic laws can be
stage‐discharge rating curves Q = f (Z) (Paris et al., 2016) or width‐discharge Q = f (W) (Pavelsky, 2014) or
Q = f (Z,S,W) stage‐fall‐discharge (Malou et al., 2021) or Low Froude Manning‐Strickler (Garambois &
Monnier, 2015; Larnier et al., 2020). Spatialized hydraulic models can vary in complexity and range from reach
scale to network scale (e.g., Coppo Frias et al. (2022); Garambois et al. (2017); Getirana (2010); Paiva
et al. (2013); Schneider et al. (2017)).

For instance, the MGB model (Modelo de Grandes Bacias (Collischon et al., 2007; Pontes et al., 2017)), using
simplified 1D hydraulics, has been calibrated with ENVISAT data (Getirana, 2010; Paiva et al., 2013) and multi‐
satellite data (Meyer Oliveira et al., 2021). Other models, such as a simplified 1D hydraulic model of an anas-
tomosed reach (Garambois et al., 2017), a 1D dynamic wave model (Schneider et al., 2017), a low‐parameterized
steady hydraulic model (Coppo Frias et al., 2022), have been calibrated using various nadir altimetry data. These
studies used simplified cross‐section (XS) shapes and classical global search algorithms for low‐dimensional
calibration problems. However, more advanced algorithms are required to estimate high‐dimensional, spatially
distributed parameters of complete hydraulic models, to approximate flow observations accurately while reducing
modeling errors.

Nevertheless, the estimation of hydraulic model parameters from WS observables can result in more or less
difficult and ill‐posed inverse problems. This difficulty depends on the complexity of the physical system, on the
informative content carried by observations, which is linked to their nature and spatio‐temporal distribution, on
the employed physical model's capability to reproduce partially observed signals from the physical system, and on
the sought parameters.

Starting from local physical considerations, at a section or at river reach scale, discharge Q of gradually varied
flows (cf. Chow (1959); S. Dingman (2009)) can be related to flow energy slope S f such that:

Q = κS1/2f = ∏
N

i=1
pαi

i (1)

where κ is the conveyance (S. Dingman, 2009), inversely proportional to a friction parameter ρ such that p1 = 1/ρ
and proportional to the product of the flow parameters pi raised to the corresponding exponent αi (cf. S. Ding-
man (2009); Rodríguez et al. (2020)). Common friction parametrizations include those of Chézy, Manning‐
Strickler or Darcy–Weisbach (cf. Chow (1959); S. Dingman (2009)). These power laws can be related to
rivers hydraulic‐geometry (Leopold & Maddock, 1953), see analysis in S. L. Dingman and Afshari (2018);
Eggleston et al. (2024) and references therein. Given the relatively large scales of satellite measurements,
observed flows can be considered stationary and mainly Low Froude (Fr ≤ 0.3), where the friction slope Sf

equals the surface slope S = |∂xZ| > 0. The low Froude Manning‐Strickler equation applied with slope S, in its
simplest form, (Durand et al., 2014; Garambois & Monnier, 2015) is:

Q = KAR2/3h

̅̅̅
S

√
(2)

where K is the Strickler friction coefficient, A and Rh are respectivey the wetted flow section and hydraulic radius
depending on bathymetry b and XS geometrical shape. Estimating discharge from WS observations with un-
known bathymetry b and friction K embedded in the low Froude Manning‐Strickler model, is an ill‐posed inverse
problem (Garambois & Monnier, 2015; Larnier et al., 2020).
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When reliable discharge data, from ground‐based measurements or calibrated river network models, are available
for estimating flow laws parameters, accurate discharge estimates can be achieved. The accuracy of satellite‐
based discharge estimate depends on observation errors, flow law parameters error and structural model errors
Durand et al. (2023); Larnier et al. (2020); Yoon et al. (2016). Site‐specific geomorphic and hydraulic conditions
affect both ground‐based (e.g., Le Coz et al. (2014); Mansanarez et al. (2016)) and satellite‐based river flow
monitoring (Eggleston et al., 2024; Frasson et al., 2021).

It has been shown that the discharge inverse problem, based on hydrodynamic models and WS measurements
without additional priors, is mathematically ill‐posed (Larnier et al., 2020). This crucial remark explains the bias
observed when using current algorithms for single river portions (see Durand et al. (2023); Frasson et al. (2021)
and references therein). The bias depends on the employed physical equations, initial values of iterative algo-
rithms, methodology priors, and other factors (Larnier & Monnier, 2023). The algorithms aiming at calibrating
complete space‐time dependent flow models (typically Saint‐Venant equations based system) need to infer the
inflow discharge, bathymetry and friction parameters. After calibration via DA (e.g., assimilation of synthetic
SWOT data using variational data assimilation (VDA) (Pujol et al., 2020) or Kalman filter (Wongchuig‐Correa
et al., 2020)), accurate space‐time variations of the signal can be retrieved, albeit with bias. This bias can be
removed if considering accurate mean value of discharge or even reference value of one of the two other pa-
rameters (bathymetry, friction) as shown in Larnier et al. (2020). Several studies, based on sophisticated VDA
processes (Asch et al., 2016; Monnier, 2021) have been developed, see Brisset et al. (2018); Garambois
et al. (2020); Gejadze and Malaterre (2017); Gejadze et al. (2022); Larnier et al. (2020); Malou et al. (2021);
Oubanas et al. (2018); Pujol et al. (2020) and references therein. A key aspect of these approaches, well‐suited for
inferring large parameter vectors from heterogeneous data, is starting iterative estimation algorithms with suf-
ficiently accurate initial values. Recent methods define these initial values using probabilistic priors (Gejadze
et al., 2022) (inferable from the test data sets itself) or Machine Learning (Larnier & Monnier, 2023). However,
these sophisticated strategies face bias issues when dealing with real, imperfect SWOT and/or multi‐satellite WS
observations and uncertain discharge, bathymetry, and friction. Moreover, these reach‐scale discharge estimation
approaches may not ensure coherence in inferred discharge patterns across the river network. Therefore, in the
context of discharge inversion from satellite data, a basin‐scale hydrological‐hydraulic modeling approach offers
two key advantages: (a) Spatial and temporal coherence of hydrological states and fluxes at the basin scale. (b)
Crucial closure for resolving the ill‐posed discharge inverse problem using WS observables and a hydraulic
model.

The increased spatio‐temporal density of Water Surface Elevation (WSE) measurements brought by SWOT, and
the visibility of flow lines offer new possibilities to estimate spatio‐temporal hydraulic parameters. However,
satellite altimetry measurements of WS are relatively sparse in time compared to local flow dynamics. This
important aspect of the inverse problem is investigated in Brisset et al. (2018) through identifiability maps
comparing available observations and hydraulic wave propagation in space and time, helping to determine the
inferrable discharge frequencies (Brisset et al., 2018) or inferable hydrograph time windows (Larnier et al., 2020)
at reach scale, for a long reach with several tributaries and using synthetic SWOT data in Pujol et al. (2020).
Spatial constraints are also essential, given the generally sparser observation grid compared to the model grid.
Spatial regularization is analyzed using synthetic SWOT or nadir altimetry data of different sparsity in Garambois
et al. (2020) using HiVDI algorithm (Larnier et al., 2020). Adequate regularizations and spatial scales for pa-
rameters must be chosen in the context of spatial equifinality (e.g., Garambois et al., 2020; Pujol et al., 2024),
where different parameter spatializations can lead to similar fits to WSE data. The application of VDA to a river
network‐scale hydraulic model, informed by a hydrological model for flow consistency, would enable maxi-
mizing information extraction from available flow observations and estimating physically meaningful
parameters.

This study ultimately addresses the following two connected objectives.

• Closing the hydraulic ill‐posed inverse problem of inferring river discharge from WS measurements alone.
The method builds on the HiVDI algorithm (Larnier et al., 2020; Larnier & Monnier, 2023) but aims to close
the ill‐posed inverse problem through a (sequential) coupling with a hydrological model over a complete
network.

• Improving integrated hydrological‐hydraulic (H&H) models of river networks by leveraging the new SWOT
data that provide hydraulic visibility for worldwide rivers at unprecedented spatial coverage and resolution.

Water Resources Research 10.1029/2024WR038455

LARNIER ET AL. 3 of 35



However, local measurement errors can be significant in some cases. This is complemented by altimetry and
imagery from other state‐of‐the‐art satellites to build the prior model geometry.

The developed approach is built on a proposed automatic pre‐processing chain and the hydrodynamic solver and
dedicated VDA algorithm developed in Larnier and Monnier (2023); Larnier et al. (2020), applied to a complete
network. This approach is based on the following ingredients, all applicable to open source data and other basins
worldwide:

• A pre‐processing algorithm for extracting water surface width (WSW) from optical and radar images, and
WSE from ICESat2 altimetry, both used to build the a priori river model geometry.

• A fine analysis and filtering of 1D L2 SWOT river products, using a wavelet‐based processing algorithm
based on (Montazem et al., 2019) with some upgrades.

• The Saint‐Venant hydraulic model posed on a network (open‐source computational software DassFlow1D
DassFlow (2023)) fed with the discharge values obtained from the pre‐calibrated MGB hydrological model
(Collischon et al., 2007; Pontes et al., 2017).

• The VDA formulation developed in (DassFlow, 2023; Larnier et al., 2020; Larnier & Monnier, 2023) for the
HiVDI algorithm, here applied to the complete network, enables assimilation of multi‐source heterogenous
data and to estimate high‐dimensional spatio‐temporal parameters, here the bathymetry, spatially distributed
frictions and the inflow hydrographs of the hydraulic model.

The sequential coupling of Hydrology and Hydraulics (H&H) provides a sufficiently accurate initial flow esti-
mate, which is then refined through the VDA process to obtain an (unbiased) accurate space‐time variations of the
uncertain/unknown fields Q(x, t),b(x),K(x).

After the DA process are obtained: (a) a coherent state‐flow modeling over river network at basin scale, (b)
sufficiently complex hydraulic modeling to fit high resolution observations of rivers surface deformations.

The remainder of this article is as follows: Section 2 presents the modeling approach and the inverse algorithm,
Section 3 presents the studied case and data and processing chain, results and discussions are detailed in Section 4,
conclusions and perspectives are given in Section 5.

2. Model and Data Assimilation Algorithm
This section first presents the forward river network model composed of the “differentiable” 1D Saint‐Venant
hydraulic network model (DassFlow1D) fed with discharges from the semi‐distributed hydrological model
MGB. It then describes the VDA algorithm, which utilizes cost gradients computed with the adjoint of the hy-
draulic model. The forward‐inverse approach is schematized in Figure 1.

2.1. Hydrological‐Hydraulic River Network Model

We consider a 2D river basin domain Ωrr where a spatialized hydrologic modelMrr is applied. This model is here
semi‐distributed and operates on a mesh composed of topographical sub‐basins. Within Ωrr , there is a river
network sub‐domain Ωhy, composed of connected segments s = 1..Nseg between upstream points and successive
confluences, where a 1D Saint‐Venant Mhy hydraulic model is applied, with inflows being provided by the
hydrological model as follows. Subscripts “rr” and “hy” denote rainfall‐runoff and hydraulic components
respectively.

First, the 1D Saint‐Venant hydraulic model for a given river network segment s ∈ Ωhy is expressed using the
curvilinear abscissa x within segment s and time t > 0 as follows:

Mhy :

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

W
∂Z
∂t
+

∂Q
∂x

= ql

∂Q
∂t
+

∂
∂x
(
Q2

A
) = − gA(

∂Z
∂x
− Sf )

(3)

where A(x, t) is the cross‐sectional area of the flow, Q(x, t) is the volumetric flow rate, ql(x, t) is the lateral inflow
per unit length, g is the acceleration due to gravity, Z(x, t) = h(x, t) + b(x, t) is theWS elevation with water depth
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h and bed elevation b, Sf (x, t) =
|Q|Q

K2A2R4/ 3h
is the Manning‐Strickler friction slope with Rh the hydraulic radius and

K(x,h) = α(x)hβ(x) the friction law that is richer than a constant and well‐suited for effective 1D modeling of
complex flows (e.g., Garambois et al. (2017, 2020)).

This hydraulic model is fed by the hydrologic modelMrr through discharge time series at Nin inflow points, with
Nup upstream and Nlat lateral inflow points of the coupling interface Γin = Γup ⋃Γlat, determined by pre-
processing as explained later.

Discharge time series simulated by the hydrological model are imposed at upstream boundaries and as lateral
mass source terms in the dynamic hydraulic model. This constitutes a weakly coupled hydrological‐hydraulic
model, denoted asM = Mhy (., ., .;Mrr(.)) , with:

Mhy : (K(s; x),b(s; x),Zdown(t); (Qin,Qlat)(t))↦ (Z,A,Q)(s; x, t) (4)

Mrr : (I,D)↦ (Qin,Qlat)(t) (5)

where K(s,x) and b(s,x) respectively denote the spatially distributed hydraulic friction coefficient and bathym-
etry, Zdown(t) is the water level time series imposed by satellite altimetry as downstream boundary condition (BC).
Additionally, Qin(t) = Qin,1..Nup

(t) and Qlat(t) = Qlat,1..Nlat
(t) represent the Nin = Nup + Nlat inflow hydrographs

used as upstream BC and lateral source term, respectively, in the hydraulic modelMhy (Equation 3) and predicted
by the hydrological model Mrr taking as inputs I and D which are atmospheric forcings and basin physical
descriptors (cf. Section 3.2.1). The classical numerical resolution of the hydraulic network model is explained in
Appendix A. The subsequent focus will be on the estimation of its parameters.

Figure 1. Diagram of the adjoint‐based variational data assimilation algorithm (inspired from principle in Monnier (2021)) applied here to the network scale hydraulic
modelMhy which inflows are provided by the basin scale hydrological modelMrr .
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2.2. Variational Data Assimilation Algorithm

The estimation of spatially and temporally distributed controls (bathymetry, friction, inflow discharges) of the
river network hydraulic model is performed fromWS observables using the VDA algorithm developed in the so‐
called HiVDI algorithm, see Larnier and Monnier (2023); Larnier et al. (2020) and to Appendix C. The core
principle of this inverse method is to minimize the discrepancy between simulation and observations of river
network state dynamics by adjusting the parameter vector θ of the hydrodynamic model (Section 2.1) starting of a
background (first guess) estimate θ(0). This method is very efficient for optimizing a large and heterogeneous set
of hydrodynamic model parameters across an entire river network.

2.2.1. The Sought Unknown Parameter θ

The sought parameter is a large dimensional vector composed of spatially distributed parameters of the hydraulic
network model: the friction and bathymetry coefficients over the river network and inflow hydrographs at inflow
points. It is defined as:

θ = [(Q0
in,u,… ,QTu

in,u)u=1..NBC
; (b1,s,… ,bNb(s),s)s=1..Nseg

; (αs,βs)s=1..Nseg
]

T
(6)

where Qt=1..Tu
in,u is the upstream discharge hydrograph imposed at NBC main inflow points (upstream BCs) with Tu

discharge values in time (evenly or unevenly discrete hydrograph). The spatialized bathymetry‐friction over the
river network is as follows: b□ (resp. α□ and β□) is the channel bottom elevation (resp. coefficient and exponent
of the friction law) with Nb(s) (resp. NK(s)) being the number of bathymetry points (resp. friction patches).

Note that for this study, with the above definition, friction is assumed to be spatially uniform within each segment
of the river network. This assumption implies a lower spatial density of friction control compared to bathymetry
ones. This is a reasonnable assumption because (a) the friction parameter in the 1D Manning‐Strickler param-
eterization has a rather large meaningful scale, and (b) radar altimetry data used for calibration are heterogeneous
and sparser than model resolution (cf. bathymetry‐friction spatial patches in Garambois et al. (2020) and large
scale applications of the algorithm with lateral inflows from MGB hydrologic model Pujol et al. (2020); Malou
et al. (2021)).

The same hypothesis will be used for a parameter estimation experiment with the denser SWOT data in space and
time.

2.2.2. Cost Function and Optimization Algorithm

The principle of the VDA algorithm Asch et al. (2016); Larnier et al. (2020); Monnier (2021) is to estimate
(discrete) controls of the river network model that minimize the discrepancy between the simulated flow and the
available observations. The cost function to be minimized writes:

j(θ) = jobs(θ) + γjreg(θ) (7)

In this study, flow observations consist in multi‐mission altimetric data Z∗ heterogeneous in space and time (cf.
Appendix B), and the term jobs measures the discrepancy between modeled and observed WS elevations over the
hydraulic domain Ωhy:

jobs(θ) =
1
2
‖Z(θ) − Z∗‖2O (8)

The weighted Euclidean norm is defined as ‖x‖2O = xTOx, with O an a‐priori observation covariance operator,
here classically a diagonal matrix of constant variance σo. (For more details on the introduced covariance op-
erators, we refer to Larnier and Monnier (2023); Larnier et al. (2020)).

Note that j(θ) depends on the control parameter θ through Z therefore the response of the hydraulic modelMhy

(Equation 3) inflowed by the hydrological model Mrr , therefore the (sequentially) coupled hydrological‐
hydraulic modelM (see Equation 4).
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The VDA method consists to solve the optimization problem:

θ̂ = argmin
θ

j(θ) (9)

This optimization problem is high‐dimensional, say O(104) . It is solved numerically with the iterative L‐BFGS
algorithm Bonnans et al. (2006) called in DassFlow (2023)‐hence without bounds for parameter search. In
DassFlow (2023), the gradient ∇θ j(θ) is computed using the adjoint model which is derived by Automatic
Differentiation (AD) of the forward code using the AD tool Tapenade Hascoet and Pascual (2013). For further
details on the know‐hows here implemented, we refer to Monnier (2021); Larnier et al. (2020) and for example,
Pujol et al. (2022) for H&H models.

The resulting iterative algorithm is schematized in Figure 1. The first guess value (background value) θ(0) is
defined by inverting the hydraulic model in steady state assuming a geometry shape and friction value, given
inflows provided by a pre‐calibrated hydrological model. More details are provided the numerical experiments
section.

3. Data Processing Chain, Studied Case and Numerical Experiment Design
This sections summarizes the automatic processing algorithms for extracting WSE and WSW from satellite data
including both drifting (ICESat‐2) and non drifting (Sentinel 3), as well as water masks (either optical or radar)
and SWOT filtering. These algorithms are used in conjunction with a preprocessor for hydraulic model meshing
and coupling to a precalibrated hydrological model, which is presented next. Finally, the DA experiment plan is
outlined.

This study focuses on theMaroni River basin (MRB), in French Guiana, which experiences a tropical climate with
distinct rainy and dryer seasons. The study utilizes a diverse and rich data set (Figure 2) processed with new
dedicated algorithms before feeding the different components of the forward hydrological‐hydraulic model and
the VDA algorithm as follows:

• Hydrological modeling (MGB) inputs: physical basin descriptors for semi‐distributed mesh of the basin and a
priori parameters constrains and hydrometeorological data from worldwide open databases for model setup,
discharge at in situ gauges for its calibration (seedetail in Section 3.2.2).

• Hydraulic modeling (DassFlow1D) inputs: A priori river network database and multi‐satellite data set of WSE
(ICESat2) and WSW (Sentinel) profiles for model geometry construction, inflow discharge from the hy-
drological model for a priori bathymetry estimation (see Section 3.2).

• Variational Data Assimilation (VDA) inputs: WSE data from Multi‐satellites, Sentinel 3 and ICESat2 for
spatial density with in situ georeferenced gauges WSE time series for temporal density, or SWOT alone and.

3.1. Water Surface Elevation and Width Processing From Altimetry and Radar Images

WSE data are derived from processed Sentinel 3 data at virtual station (VS) and drifting ICESat‐2 ATL13 data
using a proposed processing chain. This chain utilizes an a priori water mask and aims to provide hydraulically
consistent WSE on XS lines over the river network shapefile (Figure 3, Appendix D).

WSW data are extracted from dynamic water masks using the ExtractEO tool from ICube‐SERTIT applied to
derive relatively high resolution water masks from Sentinel‐1 radar images (cf. Appendix E). These widths (cf.
statistics in Figure 4) are used for XS parameterization later. Sentinel data, relatively accurate, is chosen forWSW
to enhance information extraction from SWOT WSE data that will be used alone in assimilation.

SWOT data offers remarkable hydraulic visibility but contains measurement errors. We use the SWOT L2
RiverSP product for WSE along river centerlines at a 200 m resolution, applying a wavelet‐based filtering and
segmentation algorithm following Montazem et al. (2019) (Appendix F). The filtering of SWOT 1‐day orbit data
is presented in Figure 5, efficiently removes main outliers while depicting multiscale hydraulic information.

The WSE data, whether from altimetry or in situ measurements, are in the sameWGS84 vertical reference frame.
The observation data set Y∗,(0), for determining the prior mesh XS geometry of the hydraulic model, consists of
IceSat2 WSE Z∗ and Sentinel width W∗ on the 2020 years. Three independent assimilation subsets Y∗, covering
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distinct time periods in 2019 or 2023, are composed of altimetry dataWSE Z∗ from Sentinel and in situ heights, or
SWOT data only (Appendix A).

3.2. Maroni H&H Model Construction

3.2.1. Hydrological Model Setup

The hydrological model Mrr used is the MGB semi‐distributed model applicable to large tropical bassins
(Collischon et al. (2007); Paiva et al. (2013)). Classical preprocessing was applied to obtain flow directions and
accumulations based on MERIT‐Hydro DEM (Yamazaki et al. (2019)), following the steps outlined in Pontes
et al. (2017). Spatial hydrological response unit descriptors on soil and vegetation were derived from FAOHWSD
(Nachtergaele et al. (2023)) and ESA WorldCover (Zanaga et al. (2021)), respectively, and converted into 12
HRUs with distinct flow‐generation potential. Hydro‐meteorological forcings, including climate and rainfall data,
were obtained from ECMWF ERA5 data set and GSMAP‐RT real‐time product (Kubota et al. (2020)). The MGB

Figure 2. The Maroni River basin in French Guiana with (top) multi‐satellite and in situ flow observability over the river network for model building and data
assimilation, (bottom) an example of water surface profiles geometry over the Maroni main stream, including elevation data from drifting nadir altimetry (ICESat‐2) and
width from images (Sentinel 1).

Water Resources Research 10.1029/2024WR038455

LARNIER ET AL. 8 of 35



model is manually calibrated using in situ discharge data with low parameters spatialization. The MRB is divided
into 10 sub‐basins corresponding to the main tributaries: the Litani, Tampok, Grand Inini, Lawa, Gonini, Upper
Tapanahoni, Palumeu, Tapanahoni, Abounami and Maroni. Calibration is performed using observed discharge
data from SCHAPI's https://www.hydro.eaufrance.fr/ (accessed on 2024‐05‐25) at 5 gauging stations: Lawa at
Taluen, Tampok at Degrad‐Roche, Lawa at Maripasoula, Maroni at Grand‐Santi andMaroni at Langa‐Tabiki (see
Figure 2). The calibration period spans from 2016 to 2023. Calibration is simply performed sequentially from
upstream to downstream, considering uniform parameters for each large calibration basin. Ungauged basins are
calibrated using the nearest downstream gauge. The discharge simulated, at a daily time step, by the semi‐
distributed hydrological model are used to feed the hydraulic model at its upstream and lateral inflow bound-
aries defined below.

Figure 3. Flowchart of the processing chain for water masks derived from satellite images and ICESat2 altimetry data Z∗, including 1D hydraulic model meshing using
cross‐sections computed with W∗ interpolated on the Z∗ timeline.

Figure 4. Width variability. (left) Cumulative distributions of relative width variability computed using the 95th and 5th
centiles (in order to filter potential noisy extremums), over the whole hydraulic network Ωhy and 2021‐01 to 202305 period of
temporal water masks, for each cross‐section width data are previously filtered to ensure a monotonic increasing relationW(H).
95% of the sections exhibit temporal relative variability lower than 3%. (right) An example from the Papaichton gauging station
illustrates the variability of W and H. The timeseries of H and W show no evident correlation (r2 = − 0.15, p = 0.06),
suggesting that the variability in width measurements stems from uncertainties in the computation derived from water masks.
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3.2.2. Hydraulic Mesh and Coupling With Hydrology

An automatic pre‐processing algorithm designed to build coupled hydrological‐hydraulic model setup for MGB
and DassFlow1D is fed by the multi‐satellite data preprocessing chain presented in Section 3.1.

The hydraulic domain Ωhy is determined using the river centerlines from SWORD database Altenau et al. (2021).
The downstream boundary is set at Apatou, at a point disconnected from tidal influence because of a sharp river
channel bottom variation. Upstream limits are set for rivers draining more than 1500 km2, based on drainage area
obtained from DEM processing. Thus, the hydraulic model covers a long portion of the Maroni main course and
many of its tributaries.

Once the hydraulic river network domain Ωhy is determined, the upstream inflow points can be readily identified.
In this case, there are NBC = 12 such points, where the discharge from the hydrological model serves as BCs for
the 1D hydraulic model resolution. Additionally, lateral inflow points are determined, with Nlat = 181 points
identified. Upstream and lateral inflows represent 36% and 50% of the hydrological drainage area respectively.
The remaining 14% of mainstream subcatchments were omitted to simplify the coupling process, as their impact
is minor compared to other uncertainties in data and modeling within this relatively large, ungauged basin.
However, the coupling algorithm should be upgraded to explicitly incorporate inflows from these subcatchments.
Additionally, the VDA algorithm and regularization methods will need to be adapted to infer numerous small
lateral inflows alongside the spatialized bathymetry, friction, and inflows addressed here. This extension will be
the focus of future studies. The hydraulic mesh and coupling points are depicted in Figure 6.

The hydraulic network model Mhy is driven by inflow discharge hydrographs, provided by the pre‐calibrated

hydrological model Mhy. These hydrographs, used as background in DA after, are and denoted Q(0)
in,i=1..NBC

(t)

for upstream inflows and q(0)lat,i=1..Nlat
(t)) for lateral inflows.

3.2.3. Hydraulic Model Geometry

The a priori geometry of the hydraulic model accross the river network is automatically determined from a multi‐
satellite data set not used in DA experiments: a median water maskW∗,50 (Sentinel 1 processed with ExtractEO)
and a median flow line Z∗,50 (ICESat2 WSE profiles, cf. Section 3.1), over the period 2019–2021.

In this work, the XS geometry shape of the hydraulic model is defined as rectangular using the median water mask
W∗,50, which is a reasonable assumption, given the relatively limited extent temporal variations observed across

Figure 5. Hydraulic filtering of SWOT L2‐RiverSP products at node scale on the main stem for cycle 569 using the pyrscwt
algorithm (Python River Segmentation with Continuous Wavelet Transform). The main plot focuses on the first upstream
segment of the main stem, displaying the filtered profile as a solid blue line. The inset plot presents the complete main stream,
with a dashed green rectangle indicating the zoom area of the main plot, and vertical gray lines marking the segment
boundaries, which correspond to main confluences.
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Figure 6. Hydrological‐hydraulic mesh with inflow points, percentage of hydrological drainage area given in parenthesis (top). Simulated flow line profile on theMaroni
main stream after assimilation of SWOT 1 day data (variational data assimilation experiment “SWOT only”), calibrated bathymetry, and friction profiles b̂(s,x) and

K̂( s,x,h) = α̂hβ̂
(s,x) (gray Strickler axis for α values, note the different unit) for successive connected segments s = (1,3,5,9,12,16,18, 22,23) (delimited by main

confluences with given abscissas) with h(s,x) the average flow line on the studied SWOT time window (bottom).
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the entire river network, as shown in Figure 4, and considering the uncertainty in water masks. Furthermore, this
rectangular XS shape hypothesis has been sucessfully applied to the “nearby” anastomosed Negro River in our
previous studies (Malou et al., 2021; Pujol et al., 2020). It is important to note that the width of this rectangular XS
is spatially variable, thereby defining prismatic channels. This variability, combined with the optimized spatially
distributed bottom elevation and friction parameters, allows the simulation of complex hydraulic controls (HCs)
and their associated nonlinear signatures on the WS profile as shown after. This ultimately results in a good fit to
altimetry data and satisfactory discharge inference.

Following the strategy developed in Larnier et al. (2020) (HiVDI algorithm for a single river portion), the
background (first guess value) river bed elevation b(0)x,s is obtained by inverting a system based on the Low Froude
flow model (Equation 2) at river network scale using: constant friction K(0) = 30 m1/3.s− 1 (an arbitrary “mild”
value for large rivers), a median flow line Z∗,50 from ICESat2 WSE, and the discharge Q and WS slope S from a
steady state forward run of the hydraulic network model fed by median hydrographs (on the corresponding
period) of the hydrological model at upstream and lateral inflow points.

This relatively straightforward method enables the determination of a non‐trivial bathymetry background b(0)(x, s)
with realistic spatial variability accross a river network, using WS observations. This approach is applicable
where altimetry data are available, such as spatially dense cross‐sections from ICESat‐2 here. Figure 6 illustrates
this on the main stream of the Maroni River, displaying the mesh granularity, XS width, and bottom elevation
variations, including a succession of marked riffles and jumps corresponding to hard rock outcrops. This is one of
the river portions over which 1‐day orbit SWOT data will be integrated.

Using this background on bathymetry‐friction‐inflow discharge

θ(0) = (Q(0),t=1..Tu
in,u=1..NBC

, b(0)x,s, α(0)s ≔ 30, β(0)s ≔ 0) (10)

Which is physically meaningfull since it respects the Low‐Froude model, the VDA algorithm will seek optimal
parameter sets θ̂ of the dynamic hydraulic model, according to the cost function used.

Note that our modeling chain supports the use of more complex geometries, including, a rectangle for wet ba-
thymetry and a superimposition of trapeziums from dynamic water masks (cf. Larnier et al. (2020)). Our algo-
rithm facilitates this complexity, and future research will explore this capability further, with wet bathymetry
parameterizations from S. L. Dingman (2007); S. L. Dingman and Afshari (2018) as applied at reach scale in
Andreadis et al. (2020).

3.3. Numerical Experiments Design

The Multi‐satellite DA experiments utilize the VDA algorithm applied to the coupled hydrological‐hydraulic
model M (see Section 2). The numerical experiments aim to demonstrate the potential for simultaneously
estimating inflow discharges, bathymetry and friction parameters of the hydraulic model at river network scale
from WSE data of varying spatio‐temporal density, depending on the scenarios defined later, which presents a
significant challenge.

Validation of all experiments considers two key aspects:

• Fit Improvement: The enhancement in fit to WSE compared to the assimilated data set in each case.
• Discharge Time Series: Analysis of discharge time series simulated at internal gauges, which are never
assimilated, nor are stage‐discharge laws which are implicitly optimized at network scale in the assimilation
process via bathymetry and friction fields.

The sought parameter vector θ of the hydraulic modelMhy is composed of Qt=1..Tu
in,u=1..NBC

hydrographs at NBC = 12
inflows, bathymetry b at Nb = 2572 points and friction coefficients α and β at NK = 24 friction patches (i.e.,
spatially uniform segments). For each DA experiment, the same median WS width W∗ is used to define XS
geometry over the river network. However, the first guess on bathymetry b(0) varies, as it is computed for different
periods using different median inflow discharges and median altimetric flow lines Z∗,50, following the previously
explained method.
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The numerical experiment plan, which involves assimilating various combinations of WS altimetry data to infer
the previously defined hydraulic parameter vector θ, is as follows:

1. “N4l.2019”: Nadir altimetry, drifting IceSat2 and fixed S3 VS, plus 4 in situ WS elevation time series at
Maripasoula, Papaichton, Grand Santi and Apatou gauges (with a WGS84 vertical reference in coherence with
altimetry, although measurement error sources differ between altimetry and in situ data), over the period 2019/
01/01–2019/03/31; (hence b is optimized at those in situ gauges locations); Tu = 90 and prior bathymetry
is b(0)N4l.2019.

2. “N4l.CalVal”: Nadir altimetry, drifting IceSat2 and fixed S3 VS, plus 4 in situ WS elevation time series at
Maripasoula, Papaichton, Grand Santi and Apatou gauges (with a WGS84 vertical reference in coherence with
altimetry), over the period 2023/05/15 to 2023/07/10; (hence b is optimized at those in situ gauges locations);
Tu = 100 and prior bathymetry is b(0)N4l.

3. “SWOT.CalVal”: 1‐day SWOT orbit data only assimilated over the period 2023/05/15 to 2023/07/10. They
cover a large part of the modeled Maroni river network as shown in Figure 2, enabling an evaluation of
SWOT's potential for correcting a river network model. Tu = 100 and prior bathymetry is b(0)N4l.

Note that using in situ WSE time series in “N4l” configurations provides temporally dense information, sup-
plementing the sparser IceSat‐2 and Sentinel‐3 data. However, it does not provide explicit information on the
stage‐discharge relationship, which is implicitly sought for the whole river network during assimilation.

The pair of experiments N4l.CalVal and SWOT.Cal/Val can be directly compared, as they both cover the 2023
CalVal period during the peak and recession of a major flood event, offering valuable insight into the inferability
of spatio‐temporal controls with denser SWOT data. The time period for the first experiment, conducted in 2019
before the SWOT era, was chosen to represent a weaker discharge and a less dynamic hydrological scenario.
Therefore, a model spinup strategy will be employed for the second and third experiments. This strategy involves
running the forward hydrological‐hydraulic model before assimilation to ensure more realistic flow propagation
dynamics in the river network, starting the VDA just at the end of a rising limb.

These VDA experiments, initiated from the prior θ(0) = (Q(0),t=1..Tu
in,u=1..NBC

, b(0)x,s, α(0)s ≔ 30, β(0)s ≔ 0) with inflows
derived from the MGB hydrological model, aim to investigate the constraining power of classical nadir or wide
swath SWOT altimetry. The goal is to constrain a hydraulic model of a poorly gauged basin built from remote
sensing data. Particular attention will be given to the potential for estimating spatialized channel parameters and
inflow hydrographs.

Note that all these inference scenarios correspond to a quasi‐ungauged setup for the inversions over the hydraulic
network. This means that in situ discharge information within the studied hydraulic domain Ωhy is not considered
in assimilation, except indirectly at its boundaries via the inflow discharge from the hydrological model. Spe-
cifically, discharge data at in situ gauges were used only for the pre‐calibration of the hydrological model. This
model provides a priori hydrographs at inflow BCs, and the median discharge in time is used to determine a priori
hydraulic bathymetry. In situ discharge time series, which are not assimilated, will be used for analyzing per-
formance after assimilation of WS elevations.The performance will be quantified using the following metrics:

• NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

n

i=1
(yi − ŷi)

2

n

√

ȳ
• KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2 + (α − 1)2 + (β − 1)2
√

• Δtpeak = argmaxt ŷ − argmaxt y

where y are the observations, ŷ the model response, r is the Pearson correlation coefficient, α =
σ ŷ
σy
and β =

ŷ
ȳ.

For every experiment, the parameters of the background error covariance matrix B, used in the VDA algorithm
and influencing the optimal solution θ̂, are set a priori from physical considerations as investigated in Garambois
et al. (2020); Larnier et al. (2020); Pujol et al. (2020). The parameters LQ and Lb act as correlation length in space
and time, respectively, while the σ□ may be viewed as variances. Given the typical low Froude number of the
flows at the observation scale and hydrological frequencies for this large basin, adequate values for these pa-
rameters are:

(σQin,i
= 0.01Q̄(0)

in,i)i=1,NBC
, LQ = 10 days, σb = 0.1 m, Lb = 200 m, σα = 0.5 m1/3.s− 1 and σβ = 0.01.
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The solvability of the inverse problem (9) obviously depends on the available data, their nature, and their space‐
time density versus the nature and dimension of the inferred parameter θ. On the concept of identifiability in the
present hydraulics context, we refer to Brisset et al. (2018), which highlights key concepts for assessing the
solvability of the treated inverse problem or not and the inferrable hydrograph frequencies. In the present multi‐
physics network configuration, we have decided to first focus on the identifiability of the upstream inflows of the
hydraulic network model, without considering the lateral ones (the latter being given by the hydrological model).
Pujol et al. (2020) shows that the simultaneous inferrence of lateral inflows and channel parameters can be done,
however it was on a single (long) reach. Adding the lateral inflows to the uncertain parameters (in the vector θ)
using the considered data set and the present H&H model in addition to the bathymetry and friction parameters
over a river network, should be investigated in a future study.

4. Results and Discussions
The overall performances, both in terms of fit to the WSE data used in calibration (either nadir altimetry and in
situ WSE for N4l, or SWOT data alone) and the reproduction of discharge at gauging stations within hydraulic
domain Ωhy (not used in assimilation), is very satisfactory for the three VDA experiments (Figure 7). Notably,
there is a very significant improvement in the fit to observed WSE over the spatio‐temporal domain, with errors
reduced to below 0.5 m. This improvement of the simulated WSE profiles, in terms of relative cost improvement

Figure 7. (left) Convergence curves of cost J (Equation 7) and evolution of its gradients ∇□ with respect to the sought spatio‐temporal parameters. (right) cumulative

distribution function of absolute misfit of simulated water surface elevation (WSE) to altimetry data which are assimilated in meters for “prior” (background) θ̂(0) and
calibrated parameters θ̂□.Model misfit values are as follows: (top) “N4l.2019” (8,928 space time points from nadir altimetry and in situWSE) 88% in (− 0.5, 0.5)m, 69% in
(− 0.25, 0.25)m, the 5 − th and 95 − th percentiles of errors are ϵQ5 = − 0.6 m, (resp. ϵQ95 = 0.53 m), respectively; (bottom) “NAl.CalVal” (5,467 space time points
from nadir altimetry and in situ WSE), 87% in (− 0.5, 0.5)m, 68% in (− 0.25, 0.25)m, the 5 − th and 95 − th percentiles of errors are ϵQ5 = − 0.9 m and ϵQ95 = 0.45 m,
respectively; and “SWOT.CalVal” (179,192 space time points from SWOT only), 88% in (− 0.5, 0.5)m, 68% in (− 0.25, 0.25)m, the 5 − th and 95 − th percentiles of
errors are ϵQ5 = − 0.6 m and ϵQ95 = 0.52 m, respectively.
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[J(θ (0)
□ ) − J( θ̂□)]/J(θ (0)

□ ) is of 95% for “N4l.2019,” 93% for “N4l.CalVal” and of 86% for “SWOT.CalVal,”
which has a much denser data set.

The performance in terms of simulated discharges at validation gauges (discharge is not assimilated, only WSE in
N4l configuration) within the river network is also very satisfactory with significant improvements from prior θ (0)

□

to inferred θ̂□ model parameters. The NRMSE improvements from the prior range from:

• 32%–76% for “N4l.2019” (with values in 0.09–0.23).
• 29%–71% for “N4l.CalVal” (with values from 0.06 to 0.22) and from 18% to 71% for “SWOT.CalVal” (with
values from 0.05 to 0.18).

These improvements, both in fitting the assimilatedWSE and in predicting unseen discharge timeseries at internal
gauges for two distinct time periods with different hydrological responses, validate the method. This is achieved
by simultaneously optimizing bathymetry, friction across the entire river network, and upstream inflow hydro-
graphs from WSE only. Notably, WSE time series at gauges are not assimilated in “SWOT.CalVal” which is
compared to “N4l.CalVal.” A detailed analysis of the results from the three DA experiments is provided after. The
analysis covers the fit to the assimilated WSE observations, validation against in situ discharge timeseries at
gauges, and correction of the hydraulic parameters.

4.1. Multimission Nadir Altimetry and In Situ WSE Assimilation 2019 (N4l.2019)

This analysis focuses on the assimilation experiment “N4l.2019,” which integrates S3 and ICESat2 nadir
altimetry data along with in situ WSE at the four in situ gauges.

Figure 7 presents the minimization of the cost function and its gradients to the sought spatialized parameters,
along with the fit to WSE data of the model before M(θ(0)N4l) and after M( θ̂) calibration. The fit of WSE is
significantly improved from the background prior parameters θ(0)N4l to the control θ̂ estimated by VDA of WSE.
The simulation error on WSE is within (− 0.5, 0.5)m for 88% of the data points, and within (− 0.25, 0.25)m for
69% of the data points. The 5 − th and 95 − th percentiles of the errors are ϵQ5 = − 0.6 m and ϵQ95 = 0.53 m,
respectively.

This represents a significant improvement in the fit to the spatio‐temporally heterogeneous WSE data used in
calibration. Interestingly, this also results in a significant improvement in the simulated discharge at the gauging
stations within the hydraulic domain Ωhy, as evidenced by Figure 8 and Table 1 (final NRMSE between 0.08 and
0.19). It is important to note that discharge data were not used in this calibration; only WSE data from four out of
five gauges were used, with gauge section bathymetry and friction inferred.

The data assimilated in “N4l.2019” consist in relatively sparse WSE over the spatio‐temporal domain (284
satellite altimetry points over the network) with some temporal density provided by WSE at the four gauges
(2,161WSE values per gauge, totaling 8,644). This is compared to the size of the sought spatio‐temporal controls.
Internal discharge prediction is improved after assimilation of WSE, compared to the prior hydraulic model, at all
gauges which are located along the Maroni main stream. This improvement results from the correction of hy-
draulic model controls which pertain to spatialized channel bathymetry‐friction and hydrographs at NBC = 12
upstream inflow points.

Those satellite‐based estimates of mass fluxes and river network bathymetry‐friction parameters θ̂N4l, at the
upstream boundaries Γup and over the river network hydraulic domain Ωhy are summarized in Figure 9. Sig-
nificant corrections of bathymetry‐friction are obtained for most segments of the river network. These corrections,
along with adjustments of upstream inflow corrections (see inferred inflows hydrographs and bathymetry profiles
in appendix Appendix G), improve the fit of the simulated flow line to local altimetry and in situ WSE data.
Several factors contribute to the complexity of the influence of these hydraulic parameters on the simulated flow
line trough the hydraulic model:

• Upstream to downstream propagation: the inflow discharge propagates and aggregates along the river
network. Only upstream BCs on Γup, representing 50% of basin area as shown by Figure 6, are corrected here.

• Local competition between bathymetry and friction: These parameters are embedded in the friction source
term Sf of the 1D Saint‐Venant (Equation 3).
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• Downstream controls: complex correlated influence of the sought HCs toward upstream on so called back-
water length under the fluvial regime studied (see Montazem et al. (2019); Samuels (1989)).

In essence, the inverse problem of estimating most flow controls (except lateral inflows) of the network Saint‐
Venant model is challenging due to local equifinality and spatial equifinality. A satisfying solution was ach-
ieved thanks to a realistic prior on the sought parameters and the regularizations introduced via covariances
matrices (cf. Section 2.2.2). A more detailed hydraulic analysis of the inferred local HCs, along with discussion on
the controllability of hydrological inflows, is made after.

Figure 8. Validation of the calibrated Saint‐Venant river network model on 2019 period: simulated discharge at internal gauges along the Maroni main stream following
the assimilation of nadir altimetry (Sentinel 3 and ICESat‐2) and in situ water surface elevation at (excluding Taluen) in the “N4l.2019” experiment. The nRMSE ranges
from 0.09 for the Taluen station to 0.23 for the Apatou (most downstream) station.
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Table 1
Performance Metrics at Gauges Stations for the N4l.2019 Experiment

Gauge

Prior MGB Inferred

NRMSE KGE Δtpeak NRMSE KGE Δtpeak NRMSE KGE Δtpeak

[‐] [‐] [days] [‐] [‐] [days] [‐] [‐] [days]

Taluen 0.37 0.45 − 2 0.57 0.43 − 3 0.09 0.94 − 1

Maripasoula 0.37 0.52 − 2 0.62 0.39 − 1 0.17 0.84 − 1

Papaichton 0.32 0.51 − 2 0.62 0.38 − 1 0.12 0.85 − 1

Grand‐Santi 0.29 0.56 − 1 0.56 0.44 − 1 0.12 0.88 0

Apatou 0.34 0.43 − 1 0.57 0.42 − 2 0.23 0.70 0

Figure 9. Relative correction of hydraulic model parameters after assimilation of nadir altimetry and in situ water surface elevation data in the experiment “N4l.2019.”
The figure shows inferred parameters θ̂ by variational data assimilation from the background θ(0)N4l, represented by river network segment “S00” to “S23.” (top) boxplots
of spatially distributed corrections of bathymetry b(s,x) at Nb = 2,572 hydraulic cross sections and of (second) inflow discharge hydrographs Qt=1..Tu

in,u=1..NBC
at NBC = 12

inflows,(third and fourth) friction parameters α̂ and β̂ across the 24 segments composing the simulated river network.
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4.2. SWOT CalVal 1‐Day Orbit (SWOT.CalVal and N4l.CalVal)

This analysis focuses on the assimilation experiment of “SWOT.CalVal,” which utilizes wide swath altimetry
data from track #007 during fast sampling (cal‐val) orbit. This data covers a large area of the Maroni basin,
including the main stream “along track” with a 1 day repeat cycle. The results of the “SWOT.CalVal” experiment
are compared with the “N4l.CalVal” experiment, which assimilates S3 and ICESat2 nadir altimetry data along
with in situ WSE data over the same time period.

The time period from 2023 to 05‐15 (start of consolidated SWOT measurements) to 2023‐07‐10, covered by
SWOT's 1 day orbit data, corresponds to the peak and declining limb of a relatively strong flood: the estimated
peak flow in May 2023 at Apatou downstream of the basin is above 4,500 m3/ s. Therefore, a warmp up period is
used to obtain a physically meaningfull initial state in the river network for starting assimilation (cf. details in
Section 3.3). Note that a wavelet‐based filtering algorithm is systematically applied to remove outliers in SWOT
data (cf. Figure 5) before VDA.

Figure 7 presents the minimization of the cost function and its gradients to the sought spatialized parameters,
along with the fit to SWOTWSE data of the model beforeM(θ(0)SWOT) and afterM( θ̂) calibration. The fit of WSE
is significantly improved from background prior parameters θ(0)SWOT or θ(0)N4l to the control θ̂ estimated by VDA of
WSE respectively for SWOT or nadir and in situ.

For “SWOT.CalVal,” the simulation error on WSE is within [− 0.5, 0.5]m for 88% of the data points, within
(− 0.25, 0.25)m for 68% of the data points. The errors for the 5 − th and 95 − th percentiles are ϵQ5 = − 0.6 m
and ϵQ95 = 0.522 m respectively. A comparable improvement in fit to nadir altimetry and in situ WSE is also
obtained in “N4l.CalVal” configuration, with a simulation error on WSE within (− 0.5, 0.5)m for 87% of the data
points and within (− 0.25, 0.25)m for 69% of the data points. The 5 − th and 95 − th errors percentiles are are
ϵQ5 = − 0.9 m and ϵQ95 = 0.46 m respectively.

This represents a significant improvement of the fit to SWOTWSE used in calibration, that are 600 times denser
in space and time than nadir altimetry and in situ data used in “N4l.CalVal” experiment (179,192 data points in
space and time with SWOT compared to 5,467 for nadir altimetry and in situWSE). The similar fit obtained in the
two configurations highlights the strength of our approach for integrating heterogeneous data of different sparsity.

Interestingly, over the shorter time window studied here and this assimilation of SWOT data only in “SWOT.
CalVal,” or of nadir altimetry and in situ WSE in “N4l.CalVal,” both result in an improvement of the discharge
(not assimilated, challenging to estimate) simulated at gauging stations within the hydraulic domain Ωhy (cf.
Figure 10 and Table 2). Both experiments lead to significant discharge improvements at internal gauges. The
NRMSE on discharge at those internal gauges ranges in [0.05; 0.18] for “SWOT.CalVal” and [0.06; 0.22] “N4l.
CalVal” while prior discharge nrmse is in [0.17; 0.34]. This further validates our approach, using WSE data from
different altimetry missions and in combination or not with in situ WSE.

This improvement in terms of internal discharge, but also of the fit to theWSE assimilated, represent a good result
for this challenging inference in the declining limbof a strong flood not reproduced by the hydrologicalmodel (gray
dashed hydrographs) hence providing unfavorable prior inflows for VDA (black dashed hydrographs simulated by
M(θ(0)SWOT) with both under and over estimations of real discharge which is a challenging case for VDA).

Moreover, for each gauge, comparable discharge improvements are obtained between the two experiments, in
part because they are started from similar discharge background (but different prior bathymetry). But above all
this outlines that sufficient information is contained in both altimetry data sets to constrain the sought parameters
of the hydraulic model over the river network.

The optimized parameter θ̂SWOT , including inflow discharge hydrographs, spatialized bathymetry and friction
over the river network hydraulic domain, are summarized in Figure 11 for the “SWOT.CalVal” experiment.
(Note: Controls for the “N4l.CalVal” experiment are detailed in the Appendix G). Again, for most segments of the
river network, substantial corrections of bathymetry and friction are obtained. Note that the calibrated friction
coefficient α generally ranges between 10 and 40 m1/3 ⋅ s− 1, although a few reaches exhibit higher or lower
values. These are effective parameters that work in conjunction with other optimized controls of the hydraulic
model‐ bathymetry and inflows. These adjustments enable an improved fit of simulated flow to altimetry and in
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situ WSE data. Recall that inferring these parameters fromWSE data‐ which pertains to all controls of a 1D Saint‐
Venant hydraulic model‐ involves dealing with local structural equifinality (due to parameters embedded into
friction term Sf and having a correlated influence on simulated WS) and spatial equifinality, as analyzed in
Garambois and Monnier (2015); Garambois et al. (2020); Larnier et al. (2020); Pujol et al. (2024). To address this
ill‐posed inverse problem, covariance matrices are used in the VDA algorithm (as for previous “N4l.2019”

Figure 10. Validation of the calibrated Saint‐Venant river network model on CalVal period in 2023: simulated discharge at internal gauges along theMaroni main stream
following the assimilation over the Maroni Network of SWOT 1 day altimetry or nadir altimetry and in situ water surface elevation data in N4l configuration. The
nRMSE ranges from 0.06 at the Grand‐Santi and Papaichton stations to 0.22 at the Taluen station for the N4l.CalVal experiment and from 0.05 at the Grand‐Santi station
to 0.18 at the Taluen station for the SWOT.CalVal experiment.
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experiment) to achieve a regularizing effect. This effect includes preconditioning and spatial or temporal regu-
larization, smoothing the estimated spatial or temporal quantities when they are denser than observations.

The inferred hydrographs and bathymetry‐friction profiles for each segment of the network are shown in appendix
Appendix G. Detailed spatial parameters variabilities can be inferred thanks to the spatial density of SWOT data,
which will be analyzed and compared to the inference with the nadir altimetry WSE data.

4.3. Detailed Analysis of Inferred Parameters

The inferences of spatio‐temporal parameters for the river network hydraulic model were performed from 2 data
sets with significantly different spatio‐temporal density, with the SWOT data set being much denser in space and
time. The bathymetry‐friction profiles inferred over the Maroni main stream, specifically fo the river network
segments s = (1,3, 5,9,12, 16,18,22,23) as shown in Figure 6, are compared in Figure 12. This comparison
includes inferences made using WSE data from nadir altimetry and gauges, as well as from SWOT data alone.

Both assimilation experiments “N4l.2019” and “SWOT.CalVal,” result in the inference of spatially distributed
bathymetry‐friction over the network, along with corrections to upstream inflows. It is important to recall that
those estimations are performed from different priors, either θ(0)N4l or θ(0)SWOT , based on the median discharge used to
infer prior bathymetry as explained before. Moreover, both experiments are performed with identical setup for
covariance matrices, for weights σ□ and correlation length L□.

The inferred parameters of the hydraulic model represent optimal solutions of the inverse problem (Equation 9)
given the WSE data considered. These parameters effectively describe the bathymetry, friction and inflows that
achieve the best fit to the WSE data used.

The calibrated hydraulic models obtained can be utilized to derive stage‐fall‐discharge laws for operational
discharge forecasting using SWOT WSE and WS slopes (cf. Malou et al. (2021)). Aditionnally, a network scale
hydrological‐hydraulic approach is relevant for upgrading SWOT discharge products, and will be used in future
research on HiVDI Larnier et al. (2020). These upgrades would benefit from better constraints on the double
regionalization problem, which involves estimating uncertain or unknown spatio‐temporal hydrological and
hydraulic parameters from sparse data.

All assimilation experiments, using the same channel width dataW∗, result in the inferrence of non‐trivial channel
HCs (cf. definition inMontazem et al. (2019)). These controls are depicted in Figure 12 and in the flow profiles by
segment in Appendix G. The inferred controls enable the production of more realistic WS signatures with respect
to the assimilated WSE data, in the sense of the observation cost function. Notably, More spatial variations are
obtained in the bathymetry inferred with the denser SWOT data.

Table 2
Performance Metrics at Gauges Stations for the N4l.CalVal and SWOT.CalVal Experiments

Exp. Gauge

Prior MGB Inferred

NRMSE KGE Δtpeak NRMSE KGE Δtpeak NRMSE KGE Δtpeak

[‐] [‐] [days] [‐] [‐] [days] [‐] [‐] [days]

N4l.CalVal Taluen 0.34 0.54 2 0.25 0.66 − 3 0.22 0.30 2

Maripasoula 0.27 0.52 2 0.21 0.56 − 2 0.13 0.74 0

Papaichton 0.21 0.52 2 0.22 0.54 − 2 0.06 0.84 0

Grand‐Santi 0.19 0.54 3 0.20 0.53 − 2 0.06 0.87 0

Apatou 0.17 0.44 − 2 0.18 0.54 5 0.12 0.76 2

SWOT.CalVal Taluen 0.34 0.54 2 0.25 0.66 − 3 0.18 0.49 1

Maripasoula 0.27 0.52 2 0.21 0.56 − 2 0.13 0.77 2

Papaichton 0.21 0.52 2 0.22 0.54 − 2 0.06 0.87 2

Grand‐Santi 0.19 0.54 3 0.20 0.53 − 2 0.05 0.92 2

Apatou 0.17 0.44 − 2 0.18 0.54 5 0.17 0.72 − 2
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Regarding inflow correction, this study only considered upstream inflows, which correspond to 36% of the basin
drainage area. The inference of the remaining numerous lateral inflows, which vary in magnitude depending on
their corresponding drainage area and forcing, is a challenging issue (cf. Pujol et al. (2020) for an analysis of
frequential identifiability of inflows, see also Brisset et al. (2018)). This aspect should be addressed in further
research.

The transposability of the hydraulic parameters obtained with the VDA approach would be feasible and coherent
if they were calibrated simultaneously with hydrological model parameters. This simultaneous calibration could
be used for temporal extrapolation. More generally, this pertains to the difficult issue of joint optimization of
spatio‐temporally distributed parameters of a H&H model.

Such an approach would be feasible with the present VDA method applied to a differentiable H&H solver as
proposed in Pujol et al. (2022). Additionally, these approaches would benefit from differentiable regionalization
schemes included into the forward model to map physical descriptors onto model parameters. This has been
demonstrated with a regionalization neural network in Huynh et al. (2023) or even with a learnable spatially
distributed hydrological model on top of a differentiable hydraulic model (Huynh et al., 2024). These elements are

Figure 11. Relative correction of hydraulic model parameters after assimilation of SWOT water surface elevation data in the experiment “SWOT.CalVal.” The figure
shows inferred parameters θ̂ by variational data assimilation from the background θ(0)SWOT , represented by segment of the river network “S00” to “S23”: boxplots of
spatially distributed corrections (top) of bathymetry b(s,x) at Nb = 2572 hydraulic cross sections and of (second) inflow discharge hydrographs Qt=1..Tu

in,u=1..NBC
at NBC = 12

inflows,(third and fourth) friction parameters α̂ and β̂ over the 24 segments composing the simulated river network.
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key components of a learnable, basin‐scale physical model that can effectively integrate satellite hydraulic
visibility.

5. Conclusion
This article presents a novel study on enhancing river network scale hydrological‐hydraulic (H&H) models, by
leveraging the unprecedented hydraulic visibility from the recently launched SWOT satellite. This is com-
plemented by altimetry and imagery from other state‐of‐the‐art satellites used to build the prior model geometry.
A processing chain is proposed for the construction of a consistent prior hydraulic model geometry using multi‐
satellite data, including accurate images for dynamic water extents and a hydrological model. This work presents,
for the first time to our best knowledge, a VDA process over a river network hydraulic model fed by a semi‐
distributed hydrological model, in a poorly gauged basin. Based on the obtained results and from the per-
formed analysis, the following conclusions can be drawn:

• The proposed variational approach represents a powerful optimization and diagnostic tool for differentiable
H&H models and spatio‐temporal parameters estimation problems using multi‐source data. The gradient
values ∇θ j(θ), enable to analyze spatially distributed sensitivity maps of simulated quantities (with respect to
some parameters present in the parameter vector θ). Moreover, such gradient maps can be used to estimate
Sobol total sensitivity indices following the derivative‐based sensitivity measure methodology introduced in
Sobol’ and Kucherenko (2009), and applied using numerical adjoint models for example, in lumped hydrology
in Chelil et al. (2022) or in 2D hydraulic modeling in Pujol et al. (2024).

• This study addresses the challenge of closing the ill‐posed inverse problem of inferring river discharge from
WS measurements alone, see Larnier et al. (2020). The method builds upon the HiVDI algorithm (Larnier
et al., 2020; Larnier & Monnier, 2023) focusing on single river portions, but achieves closure of the ill‐posed
problem through the physical enrichment provided by sequentially coupling a hydrological model with the
hydraulic model over a complete river network. This approach uses the same computational tools and

Figure 12. Longitudinal profiles along theMaronimain stream, segments s = (1,3,5,9,12,16, 18,22,23), of calibrated parameters after VDA: bathymetry b̂ and friction
coefficients α and β, along with channel width gradient ∂xW0 (gray line), for the “N4l.CalVal” experiment (blue) and “SWOT.CalVal” experiment (dashed green).
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ingredients but leverages richer physical information and data sets at basin scale, enabling the closure of the
problem.
This approach is applicable to other basins worldwide, utilizing open‐source remote sensing data, for instance.
This work opens up avenues for further research. Immediate to mid‐term work perspectives include the
following:

• Assimilation of SWOT science orbit data, which is sparser in time but provides nearly full spatial coverage at
basin scale, both alone and in combination with other data available. This approach aims to investigate their
informative power and address frequential inferrability issues in detail, also considering large number of
lateral inflows in function of available data.

• Application of the approach to gauged basins, utilizing massive data sets that include in situ measurements,
drone data, and satellite observations.

• Studying how to improve SWOT discharge product using integrated basin scale H&H network models.
• Advanced data‐model error accounting within Bayesian framework.
• Fully differentiable hydrological‐hydraulic models (Pujol et al., 2022), incorporating learnable parts (Huynh
et al., 2023), to enable simultaneous optimization of hydrological and hydraulic parameters from SWOT and
other data. Such approaches offer a offer a promising pathway to address the double H&H regionalization
problem, where data are typically sparser than model parameters and rarely fully informative or constraining.
For instance, even a lumped conceptual hydrological model faces equifinality issues when calibrated from a
discharge time series.

The computational software used in this work is open source DassFlow (2023) The computation kernel written in
Fortran is wrapped in Python. This architecture supports integration with various libraries for signal processing,
geographical treatments and machine learning, facilitating the development of hybrid deterministic‐ML methods
in its VDA framework (for large‐scale parameter identification or calibration).

Appendix A: H&H Model and Numerical Resolution
A semi‐distributed hydrological model Mrr provides spatio‐temporal discharges estimates
Qrr (xʹ , t), ∀ txʹ ∈ Ωrr , ∀ tt ∈ [0,T]. These estimates are used to inflow the hydraulic model at Nin inflow
points, including upstream BCs and lateral inflows, at the border of the hydraulic domain Ωhy.

The Saint‐Venant equations are solved on each segment of the river network, and the continuity of the flow
between segments is ensured by applying an equality constraint on water levels and mass conservation at the
confluence between two segments.

BCS are classically imposed (subcritical flows here) at boundary nodes (main hydrological inflows here) with
inflow discharges Qin,i=1..NBC

(t) at NBC upstream nodes and WSE Zavl(t) at the downstream node; lateral
hydrographs qlat,i=1..Nlat

(t) at Nlat lateral inflow nodes (such that Nin = NBC + Nlat). The initial condition is set as
the steady state backwater curve profile Z0 (x) = Z(Qin (t0),qlat,1..L (t0)) for hot‐start. This 1D Saint‐Venant
model is discretized using the classical implicit Preissmann scheme (see e.g., Cunge et al. (1980);
Roux (2004)) on a regular grid of spacing Δx using a double sweep method to handle flow regimes changes. An
hourly time step Δt is used. This model is implemented into the computational software DassFlow1D. For more
details see DassFlow documentation (https://dasshydro.github.io/doc/); accurate finite volume scheme are also
available; source code on GitHub (https://github.com/DassHydro/dassflow1d).

Appendix B: Observation Data Set
We denote by Y∗ the set of multi‐source observations of hydraulic responses over the river network domain Ωhy,
which we aim to integrate into the flow model. This set includes in altimetric WSE and flow top width, which are
unevenly spaced but cover the entire spatial domain densely. These observations come from various sources such
as imagery, drifting or wide swath altimetry, in addition to multi‐mission nadir altimetry.

In the general case, a multi‐satellite data set, composed ofWS elevation and width observations, can be written as:

Y∗ := {(Z∗ ( (s,x)vs=1..Nz
, tpz=1..Pz(oz));W∗ ( (s,x)ws=1..Nw

, tpw=1..Pw(ow))} (B1)

Water Resources Research 10.1029/2024WR038455

LARNIER ET AL. 23 of 35

https://dasshydro.github.io/doc/
https://github.com/DassHydro/dassflow1d


with (s,x)□ denoting the spatial location of WSE orWSWmeasurements sorted in ascending, and t□ representing
the observation times at these location. Nz and Nw represent the number of WSE and WSW observation points
accross the river network domain Ωhy, respectively. Noz and Now represent the number of observation times for
each WSE measurement location xoz=1..Nz

and WSW location xow=1..Nw
respectively. Similarly, t□ denotes

measurements times.

In the case of SWOT, Z and W measurements are synchronous in time and space, and the data set simplifies to:

Y∗ := (Z∗,W∗) (xo=1..No
, tp=1..p(o)) (B2)

In this work, SWOT data are not used for geometry parameterization but only in assimilation. WS width are
determined from dynamic water masks are extracted from Sentinel radar data. This enables the definition of XSs
geometries.

Appendix C: Regularization for the Variational Data Assimilation Algorithm
The VDA algorithm is those developed in the HiVDI algorithm, see DassFlow (2023); Larnier and Mon-
nier (2023); Larnier et al. (2020). The VDA formulation is based on covariance operators and the following
change of control variable (see e.g. Haben et al. (2011); Larnier et al. (2020)): k = B− 1/2 (θ − θ(0)) .

The background θ(0) (first guess, or prior in statistics) on the sought parameter from which optimization is started,
and the background error covariance matrix B, both depend on the information available and a priori physical
knowledge of the system and of the unknowns. With this change of control variable we are interested in the

minimization of the following cost function: j(k) = 1
2

⃦
⃦M(θ(0) + B1/2k) − Y∗⃦⃦2

O.

The choice of B is crucial for the optimization and influences the inferred solution.

Assuming uncorrelated unknowns, the matrix B is block diagonal: B = diag(BQ,Bb,BK) . each block B□ being
defined from the decreasing exponential kernels following Malou and Monnier (2022):

(BQ)i,j = (σQ)
2 exp(−

|tj − ti|
LQ

); and (Bb)i,j = (σb)
2 exp(−

|xj − xi|

Lb
); and BK = diag(σ2α,σ

2
β) (C1)

with LQ and Lb acting as correlation scales defined a priori from empirical physical knowledge. The scalar values
σ□ define the weighting effect in parameters optimization.

Appendix D: Processing Algorithm for ICESat‐2 ATL13 Data to Extract WSE
ATL13 data is positionned along 6 beams (organized by pairs gt1r/gt1l, gt2r/gt2l, gt3r/gt3l) and presented as a set
of beam‐points (referenced by their longitude and latitude) above inland water bodies such as rivers and lakes
only. Our goal is to aggregate this data to build WSE timeseries at VS over the Maroni river. For this purpose, we
need a set a line geometry representing the river network centerline and a polygon geometry delineating the a
priori watermask where ATL13 data will be extracted and processed.

D1. Delineating the Study Domain Watermask

The watermask is taken from the Pekel's global Surface Water Data set, considering water pixels with an
occurrence of at least 50%. This is an adequate hypothesis given the relatively low variability of top width found
on the Maroni. This was confirmed by analyzing Sentinel 1‐derived WSW of dynamic water masks obtained with
ExtractEO chain.

For the studied Maroni basin, we considered and applied the following steps:

1. Polygonize Pekel watermask,
2. Application of a buffer with distance 0.0003° (as Pekel mask resolution is of 0.00025°): buffer function ex-
tends the boundaries of a given geometry and rounds its egde by the input distance.
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3. Manual correction to fill missing river branches based on expert knowledge. Also, it was chosen to fully
include under the watermask braided zone without distinguishing the individual river branches.

4. Cascaded union to merge individual polygons that intersect together.
5. Small tributaries not represented by the Pekel product are added by building a polygon from a buffer around the
riverline of those small tributaries and merging them to the rest of the domain (for the Maroni domain only).

D2. WSE Data Extraction

ICESat‐2 products are organized by granule containing data below a full orbit, each orbit being divided in 6 beams
(gt1l/gt1r/gt2l/gt2r/gt3l/gt3r). A individual ICESat‐2 is a beam point caracterized by its coordinates (lon, lat) and
an elevation wse (above the WGS84 ellipsoid). ICESat‐2 have to be extracted and aggregated under virtual
stations to derive elevation timeseries and XSs for the effective hydraulic model.

For each granule, the following processing is applied:

1. Extraction of all beam points within the study domain polygon.
2. Each beam point is “projected” along the river centerline. From this linear referencing, a curvilinear abscissa xs
[m] (distance along the centerline from the upstream edge) and a distance‐to‐the‐river dr [m] (distance between
the original beam point and its projection) are associated to each beam point.

3. Then, each beam point is associated to the closest VS according to their xs. A distance ds (=xs,VS − xs) and an
angle (=arctan dr

ds
) are derived accordingly.

4. Once all beam points are extracted, potential outliers have to be detected and flagged out for further processing
(see Appendix D3).

5. For each VS, time‐aggregation is easily done by gathering beam points that comes from the same granule and
the same cycle.

6. subsequently, beam points gathered in the same time index are spatially‐aggregated into a single elevation
measurements (see Appendix D3).

D3. More Details on the Processing of ATL13 Data

D3.1. Outlier Detection

Each river segment is divided into sub‐segments of 5 km. Over each sub‐segment, monthly subset of beam points
which xs fall on this sub‐segment, are inspected. A linear regression of the elevation with respect to xs from the
ICESat‐2 beam points subset is estimated with the standard deviation σ of the gap between the measured elevation
and the corresponding (with respect to xs) elevation from the linear regression. All points that are above 3σ are
flagged out as outliers.

D3.2. Space Aggregation

D3.2.1. Version 1

Every beam point attributes (i.e. wse, lon, lat, xs, ds, dr, angle, dt as seconds from 1 January 2028) are simply
averaged with a classical mean.

D3.2.2. Version 2

Weighted averaged where each beam point weight w is defined by

w = 1. −
⃦
⃦
⃦
⃦

ds

dsmax

⃦
⃦
⃦
⃦.

D3.2.3. Draw XSs

For each segment and its associated subdomain polygon
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1. The domain polygon is split into voronoi regions centered around the virtual stations of the polygon. Each
region delineates any beam point which the closest VS is the region's associated VS.

2. The XSs is draw following the constraint below:
• The section is contained within the associated voronoi region
• The section contains the VS
• The section should cross the river with an angle close to normal to the river centerline
• The section have to cross any region boundaries that are common with the overall polygon exterior
boundaries

If one can not draw a XS that respects the constraints above, a section normal to the river centerline is drawn with
a width equal to the largest dr.

Appendix E: Processing of Watermasks Images to Extract River Width
River widths were extracted from a collection of 121 watermasks computed using the ExtractEO algorithm
(Maxant et al. (2022)) on available Sentinel 1 images for the period 2021‐01‐01–2022‐12‐31. The river widths
were computed using the dedicated BAS algorithm (https://github.com/CS‐SI/BAS). The methodology is fully
applicable on other zone of interest, even with watermask computed from other water classification algorithm
(provided as binary classification where water is 1 and land, etc., is 0).

These widths are usable for non rectangular XS parameterization but a simple rectangular XS is sufficient for this
study on the Maroni River. More complex XSs have been used on the Niger basin, leading to a model setupthat
enables good realism. However, this is not presented here and left for further research. Note that the vertical
referencing of these dynamic water extents over time can be performed with altimetric measurements around
image acquisition date while simultaneous WSE and WSW measurement are obtained with SWOT.

Appendix F: SWOT L2 Wavelet Based Filtering and Segmentation Algorithm
The wavelet‐based filtering and segmentation algorithm is designed to processWSE longitudinal profiles, such as
those provided by SWOT or by in situ GNSS, while preserving theWS signatures of HCs. This algorithm is based
on the approach and MATLAB codes of Montazem et al. (2019). The idea is to use wavelet processing to isolate
the signatures of local HCs, as hydraulic variability manifests at multiple spatial scales. Using a wavelet basis
allows for the decomposition of free surface spatial profiles with high accuracy while retaining localized fre-
quency information. A unique feature of this approach is the use of wavelets to both denoising and segmenting
(not used here) signals in a consistent, space‐frequency localized manner. This method introduces minial os-
cillations into the reconstructed filtered signal and is well suited for unsteady signals and detecting strong cur-
vature signals. This algorithm, called pyrscwt (Python River Segmentation with ContinuousWavelet Transform),
is based on a custom Python implementation of a continuous wavelet transform, enabling accurate 1D signal
projections and reconstructions.

The proposed algorithm aims to (a) efficiently denoise L2 SWOT‐type river node‐scale data (RiverObs product at
spatial resolution dx ∼ 200 m), (b) perform a segmentation of a river portion into reaches, at user defined scale,
that best preserves hydraulic signals and ultimately contributes to the quality of flow modeling and its coherence
with multi‐mission altimetry data. In the present article only denoising of SWOT RiverObs WSE Z(x) data is
performed with pyrscwt before their assimilation into the hydraulic model at local XS scale.

The proposed algorithm taking as input a spatial signal of WSE Z(x) signals, sampled at a constant spatial step,
consists in the following steps:

• Signal resampling and symetrization (prolongation of the signal on its spatial borders).
• Automated choice of the wavelet projection basis (7 mother wavelets and 10 orders for each) such that the
reconstruction error ϵ Ẑ is minimal.

• Filtering and segmentation of the original signal Z(x) obtained by a low‐pass filtering of wavelet coefficients
corresponding to spatial variations below a user defined cutoff length scale λc. An additional physical criterion
is used to filter wavelet coefficients: at the scale of measurements a counter slope in the WS is unphysical, that
is ∂xZ > 0. For a zone of length ld with a counter slope we consider a centered window of length 3ld, since we
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do not know whether this unphysical counterslope stems from over‐understimations upstream or downstream,
on which wavelet coefficients are iteratively filtered until ∂x Ẑ ≤ 0.

• HC sections (HCs) detection with the reconstructed signal Ẑ(x) that is “error free” via maximum of WS
curvature ∂2x Ẑ(x).

Appendix G: Detail on Inferred Parameters
Figure G1.

Figure G1. Inferred inflow hydrographs N4l.2019.
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Figure G2.

Figure G2. Inferred bathymetry N4l.2019.
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Figure G3.

Figure G3. Inferred inflow hydrographs N4l.CalVal.
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Figure G4.

Figure G4. Inferred bathymetry N4l.CalVal.
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Figure G5.

Figure G5. Inferred inflow hydrographs SWOT.CalVal.
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Figure G6.

Figure G6. Inferred bathymetry SWOT.CalVal.
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Figure G7.

Data Availability Statement
This article is based on open source data, data set is accessible here: https://doi.org/10.5281/zenodo.15673811.
DassFlow source code is open source and available at https://github.com/DassHydro/dassflow1d. MGB is also an
open source code and available at https://www.ufrgs.br/lsh/mgb/downloads/mgb‐4‐5‐new‐documentation/.
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