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ABSTRACT: Marine functional connectivity underpins biodiversity and ecosystem functions,
ensuring resilience in marine and land—sea interface ecosystems. Research on this topic has
advanced rapidly in recent decades, as reflected in the growing body of primary literature and the
increasing number of reviews covering a variety of topics and methodologies. Here, we systemati-
cally extracted and analysed information from 215 reviews across the entire field to synthesize the
current state of marine functional connectivity research, highlighting the main topics, methods,
taxa, geographic areas, and future research priorities. Word co-occurrence and network analyses
revealed imbalances in review topics, with certain habitats (e.g. coral reefs), taxa (e.g. fish), and
geographic areas (e.g. North Atlantic) receiving disproportionate attention. These disparities
likely arise from variations in funding, field site accessibility, public interest, and/or delays in
adopting new concepts and methodologies. Research priorities were broadly grouped into 2
themes: (1) ‘Methods', highlighting the need to integrate and advance sampling, modelling, and
analysis techniques, and (2) 'Ecology and Application', stressing the need to understand connectiv-
ity drivers, particularly the impacts of climate change, and to integrate connectivity knowledge
into marine conservation and management. There was also a third overarching theme emphasizing
the importance of expanding spatial and temporal coverage of connectivity knowledge and data by
embracing new technologies, growing collaborative networks and targeting understudied habitats,
areas, and taxa. Tackling the identified research priorities will further improve our ability to quan-
tify connectivity patterns and drivers, and facilitate efforts to actively apply this knowledge and
data in marine management and conservation.

KEY WORDS: Marine biodiversity - Dispersal - Movement - Umbrella review - Climate change -
Conservation - Resource and ecosystem management

1. INTRODUCTION

Over recent decades, the study of connectivity in
marine ecosystems has progressed from a relatively
niche topic, primarily focused on genetics and dis-
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persal ecology, to a vast research field at the heart of
national and international agendas for biodiversity
conservation (e.g. Aichi target, UN Sustainable De-
velopment Goals, EU Nature Restoration law, Kun-
ming Montreal Global Biodiversity Framework). Mar-
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ine functional connectivity refers to all spatial trans-
fers of individuals, genes, nutrients, matter, and en-
ergy resulting from the movements of organisms at
sea or across the land—sea interface (Cowen et al.
2000, 2006, Sale et al. 2005, Auffret et al. 2015, Beger
et al. 2022, Darnaude et al. 2022). These fluxes often
occur across jurisdictional units, requiring trans-
boundary coordination and collaboration, in terms of
both research and governance (Brondizio et al. 2009,
Popova et al. 2019, Keeley et al. 2022). Marine func-
tional connectivity is a critical component of healthy,
resilient ecosystems by supporting biodiversity and
ecosystem functions, such as habitat formation, bio-
geochemical processes, and nutrient and energy
transfer (Hillman et al. 2018).

Understanding the movements, interactions, and
adaptability of organisms is also fundamental for pre-
dicting how species and communities will respond to
rapid environmental change, forecasting species'
range shifts, and enhancing the effectiveness of differ-
ent management and restoration actions (Gilby et al.
2018, Beger et al. 2022). In terrestrial and freshwater
ecosystems, connectivity is regularly considered in
management and conservation efforts, in part due to
the conspicuous influence humans have had on mi-
gratory corridors (e.g. dams, roads) (Martensen et al.
2017, De Montis et al. 2018, Hilty et al. 2020). Con-
versely, in the marine realm, outdated assumptions of
openness and physical homogeneity, combined with
the challenges and costs associated with field access,
have historically hampered progress in and uptake of
marine connectivity research (e.g. Cowen et al. 2000,
20006, Pineda et al. 2007). Today, however, there is a
growing understanding of how environmental factors
(e.g. temperature, currents), species' biology (e.g. pe-
lagic larval duration), ecology (e.g. competition, pre-
dation), behaviour (e.g. migration), and demography
(e.g. density-dependence) shape marine connectivity
and organism survival (Treml et al. 2015). This growing
awareness is resulting in connectivity metrics being
increasingly incorporated into marine management
and conservation, particularly for designing marine
protected areas (MPAs) (Fernandes et al. 2005, Magris
et al. 2014, Endo et al. 2019, Chamberlain et al. 2022)
and improving fisheries stock assessments (Cadrin et
al. 2019, Goethel & Cadrin 2021).

Since the early 2000s, connectivity studies in the
marine realm and at the land—sea interface have
grown rapidly, in part due to increased research inter-
est and technological advancements (Hixon 2011,
Bryan-Brown et al. 2017). The term connectivity is now
used across a range of disciplines, topics, and method-
ological approaches, making it increasingly difficult to

perform a systematic review of the entire field. This is
illustrated by a simple search of the primary literature
yielding >12000 articles (Web of Science search per-
formed on 9 December 2024 using the search string
provided in Table S1 in the Supplement at www.int-
res.com/articles/suppl/m764p237_supp.pdf, without
paper type specified). Parallel to this growth, increas-
ing numbers of review articles have been published
over the last 20 yr, many focusing on particular
methods (e.g. Swearer et al. 2019, Gagnaire 2020), life
stages (e.g. Gillanders et al. 2003, Pineda et al. 2010),
geographic areas (e.g. Garcia-Machado et al. 2018,
Lett et al. 2024), taxa (e.g. Curley et al. 2013, Sequeira
et al. 2013), or ecozones (e.g. deep sea, Hilario et al.
2015). We chose to build on these synthesis efforts to
provide a broad overview of the current state of marine
functional connectivity research, by systematically re-
viewing and mapping existing reviews across the en-
tire field. Systematic mapping provides an efficient
mechanism to synthesize information from a wide
range of species and systems, and to identify key
knowledge gaps and areas showing promise for future
innovation (Torraco 2005). Furthermore, for identify-
ing research priorities, taking a review-of-reviews ap-
proach (otherwise termed an 'umbrella review') is par-
ticularly powerful, given that syntheses of knowledge
gaps and future directions tend to be far better repre-
sented in review articles than in the primary literature.
Such information is critical for improving data collec-
tion and quality, for effective decision-making and re-
source allocation, and for driving new research direc-
tions (Elsbach & van Knippenberg 2020).

Here, we performed a broad search and systemati-
cally extracted information from selected review
articles to identify the main topics, taxa, geographic
areas, and ecozones focused on, building on previous
efforts (e.g. Bryan-Brown et al. 2017). In addition, we
used bibliometric maps to describe the networks of
authors involved in these review efforts, and synthe-
sized identified research priorities. Ultimately, we
aimed to collate data across a broad range of species
and systems to guide future marine functional con-
nectivity research and support its broader application
into resource and ecosystem management.

2. MATERIALS AND METHODS
2.1. Literature search and selection criteria
We conducted a literature search of peer-reviewed

review publications in the Web of Science (WoS; Clar-
ivate Analytics, London; https://www.webofscience.
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com/) and Scopus (Elsevier, Amsterdam; https://www.
scopus.com/) databases on 4 September 2024. The
search strategy was designed to locate published re-
views focused on marine functional connectivity re-
search from the 2 databases without incorporating sys-
tematic bias in the search results. Narrative reviews,
systematic reviews, systematic reviews with meta-
analysis, opinion papers, and perspective papers were
all considered. Preliminary searches were performed
to finetune the search string that contained the follow-
ing terms relating to (1) the environment (marine OR
sea OR ocean* OR estuar* OR brackish OR coast*), (2)
the paper type (review* OR meta-analysis OR meta*
analy* OR metaanaly”), and (3) the subject area (con-
nectivity). Exact strings and wildcards (*) used in WoS
and Scopus are provided in Table S1. Throughout the
process, we adhered to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
protocol (Moher et al. 2015). We used the open-access
online tool CADIMA (https://www.cadima.info/) to
streamline and document our systematic review, and
to eliminate duplicate publications from the search

results (Kohl et al. 2018).

A first round of expert filtering was performed to in-
clude only publications meeting all the following crit-
eria: (1) is a peer-reviewed review or meta-analysis
written in English; (2) is in or connected to marine/
coastal/brackish ecosystems; and (3) addresses topics
related to functional, demographic, ecological, ge-
netic, trophic, or seascape connectivity. We explicitly
specified that reviews should focus on the movements
of organisms (living or dead, genes, biomass, or
energy), so, for example, this would include connec-
tivity of organism excrement, but not of physical pro-
cesses or non-organism-derived chemicals (e.g. wave
attenuation across the seascape or fluxes of dissolved
pollutants). Books, book chapters, and conference
proceedings were not included. To evaluate the con-
sistency of the inclusion/exclusion process among
coauthors, we carried out a kappa test in which 19
coauthors were individually assigned the same 50 ran-
domly selected publications from the search output.
Each coauthor independently reviewed the publica-
tions at the title, abstract, and/or full-text level to des-
ignate them as included or excluded. We then calcu-
lated Fleiss' kappa statistics (McHugh 2012) using the
‘irr' package (Gamer et al. 2012) in R v.4.4.1 (R Core
Team 2023) to assess the level of agreement among
coauthors. After this assessment, which showed a
good level of agreement among coauthors (k = 0.712,
p <0.001), the remaining publications were randomly
allocated to each coauthor to perform inclusion/ex-
clusion expert filtering.

2.2. Data extraction

Metadata of the included publications (title, author
key words, year of publication, author names and affil-
iations, and journal names) were retrieved from WoS
and Scopus. The second round of expert processing
consisted of manual extraction of a specific set of de-
scriptors from each publication by the coauthor to
which the publication was assigned. To ensure con-
sistency in the data extraction approach, as a group,
we discussed the process at length and developed
specific instructions and predefined levels (outlined in
Table S2). The data extraction fields included review
type and focus, method focus, geographic region(s),
direction of connectivity (e.g. horizontal, vertical),
ecozones, depths, and organism groups. For ecozones
and organism groups, coauthors selected up to 3
predefined levels, and if the review focused on more
than 3, they specified >3'. We also included fields al-
lowing free-text entries where coauthors described the
primary objective(s) of each review, the terms used to
describe connectivity, the data/knowledge gaps and
future research priorities identified, and the specific
geographic area(s) and taxa considered in the review
(when fewer than 4). For free-text fields, text passages
were copied directly to avoid misinterpretation.
Finally, we used checkboxes to highlight reviews that
had a particular focus on 5 'hot topics' in connectivity
research that were identified by the expert group of
coauthors: MPAs, bioinvasions, climate change, food
webs, and fisheries management.

2.3. Data analysis

The R package 'bibliometrix' v.4.1.3 (Aria & Cuccu-
rullo 2017) was used to perform bibliometric and
scientometric analyses of the included publications
and knowledge mapping (Nakagawa et al. 2019). The
metadata on the country affiliation of the coauthors
for each publication was extracted and used for the
country collaboration analysis (Batagelj & Cerinsek
2013). We generated a country network plot using the
Kamada—Kawai algorithm that positions nodes so
that the geometric (Euclidean) distance is as close as
possible to the graph-theoretic (path) distance be-
tween them. In other words, countries that are more
closely connected in the network are positioned
closer together in the resulting plot, while those with
fewer connections appear farther apart. We also per-
formed a co-occurrence analysis to map and cluster
terms extracted from key words in the included re-
views. We visualized the results with a network plot



240 Mar Ecol Prog Ser 764: 237—257, 2025

using the Fruchterman—Reingold algorithm and the
Louvain clustering method in which the thickness of
links corresponds to the level of co-occurrence (Aria
& Cuccurullo 2017). Data for word clouds were pre-
pared and visualized using the R packages 'tm' v.0.7-
11 (Feinerer & Hornik 2023) and ‘'wordcloud' (Fellows
2018), respectively. For the co-occurrence network
and the word cloud, a synonym list was included and
terms used in the search string were excluded (i.e.
‘marine’, ‘connectivity’, 'review').

To identify recurring common topics within the
data/knowledge gaps and future priorities text
extracted from the reviewed publications, we classi-
fied each review into broad themes manually, and
then used ChatGPT-3.5 (OpenAl) to identify common
themes. Four queries using slightly different prompts
were performed to allow for variability in reading and
wording (see Table S3 for all prompts used). We
inspected the outcomes of the 4 queries for overlap
and replication among categories, compared them to
the manually identified themes, and then, in discus-
sion, regrouped them into 3 overarching themes con-
taining 6 subcategories of research priorities and
future needs. Finally, we manually assigned each re-
view to 1 or more themes and subcategories, based on
the extracted quotes on data/knowledge gaps and
research priorities. Resulting research priorities and
needs (themes and subcategories) were then linked to
the previously extracted fields (review type and
method) and visualized using Sankey diagrams and
stacked bar plots. We calculated statistics and visual-
ized the data using the R packages 'dplyr' v.1.0.10
(Wickham et al. 2023), 'ggplot2' v.3.4.3 (Wickham
2016), ‘tidyverse' v.1.3.2 (Wickham et al. 2019), and
‘ggsankey’ (Sjoberg 2023).

3. RESULTS AND DISCUSSION

From the initial 842 publications identified through
the literature searches, our expert group retained 215
reviews fitting our selection criteria for data extrac-
tion and further analysis (Fig. 1). Of the excluded
publications (n = 627), 56 were conference proceed-
ings, books, book chapters, additional duplicates, or
not written in English, and 571 did not meet one or
more of the established selection criteria. Of the 215
selected reviews (Table S4), the majority (62.3%) were
classified as narrative reviews (including narrative,
perspective, opinion, conceptual, and other), fol-
lowed by systematic reviews (25.1%) and systematic
reviews with meta-analysis (12.6%). As quantified in
more detail in Section 3.3, reviews covered a variety

of topics in marine connectivity research, including
new and existing methods (e.g. McMahon et al. 2013,
Riginos et al. 2016, Marandel et al. 2019, Jahnke &
Jonsson 2022), specific habitats, taxa, or life stages
(e.g. Pineda et al. 2010, Kendrick et al. 2017, Turner et
al. 2017, Sambrook et al. 2019), important conserva-
tion and management issues (e.g. von der Heyden et
al. 2014, Di Lorenzo et al. 2016, Munguia-Vega et al.
2018, Podda & Porporato 2023), as well as more theo-
retical and conceptual reviews (e.g. Pante et al. 2015,
Fang et al. 2018, Alzate & Onstein 2022, Swanborn et
al. 2022).

3.1. Publication year and venue

Selected reviews spanned from 2002 to August 2024,
presenting an increasing trend in the number of publi-
cations per year until 2018, followed by an apparent
plateau (Fig. 2). The majority of reviews published
within the first 4 yr of the time series (2002—20095)
were dominated by a small group of authors, mostly
tackling topics related to larval dispersal and spatial
management (Sale & Kritzer 2003, Sale et al. 2005) and
fish population structure using otolith chemistry (Els-
don & Gillanders 2003, Gillanders et al. 2003, Gil-
landers 2005). Overall, the 215 reviews were written by
over 1000 coauthors from 35 countries and published
in 104 different journals, illustrating the diverse,
global, and multidisciplinary nature of marine func-
tional connectivity research. Reviews were frequently
published (5 or more) in marine science-related jour-
nals (e.g. Marine Ecology Progress Series, Frontiers in
Marine Science, Oceanography and Marine Biology:
an Annual Review), multidisciplinary ecological jour-
nals (e.g. Biological Reviews, Global Change Biology),
taxa-specific journals (e.g. Reviews in Fish Biology
and Fisheries, Fish and Fisheries), and a journal
focused on the use of molecular markers (Molecular
Ecology) (Fig. S1). This is also reflected in the jour-
nals' 'research areas' identified in the WoS, which
were dominated by ‘Environmental Sciences & Eco-
logy', 'Marine & Freshwater Biology' and 'Oceano-
graphy' (assigned to 63% of the 104 journals) followed
by 'Fisheries', 'Biodiversity & Conservation' and 'Evo-
lutionary Biology'.

3.2. Author networks and geographic coverage
International collaboration is crucial in marine con-

nectivity research, given how vast the ocean is and the
multitude of connections that cross ecological and
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Y
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Articles not written in English (n=8)
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Articles assessed for eligibility at full-text
level (n=786)

A J

Conference proceedings (n=10)
Duplicate record (n=2)
Report (n=1)

Articles excluded (n=571)
Criterion 1 (n=69)
Criterion 2 (n=78)
Criterion 3 (n=307)

Studies included in the review (n=215)

Included

Criteria 1 & 2 (n=6)
Criteria 1 & 3 (n=20)
Criteria 2 & 3 (n=63)
Criteria 1, 2 & 3 (n=28)

Y

Fig. 1. PRISMA flow diagram detailing the inclusion/exclusion of review articles. At the screening stage (see blue boxes), inclu-

sion of review articles was based on the following 3 criteria: (1) a review or meta-analysis; (2) in or connected to a marine/

coastal/brackish ecosystem; (3) topic focused on functional, demographic, ecological, genetic, trophic, or seascape connec-
tivity. WoS: Web of Science

jurisdictional boundaries. Researchers based in the
USA, Australia, and the UK have authored most ma-
rine functional connectivity reviews based on the co-
author affiliation(s). Along with Canada and France,
these countries also showed the highest number of au-
thor links, suggesting that they act as international
‘research hubs' (Fig. 3), characterised by extensive
networks, international collaborators, research capac-
ity, and funding. While this concentration of resources
and collaboration promotes scientific exchange and
innovation, it also risks overshadowing less repre-

sented countries, potentially widening the global re-
search divide highlighted in other ecological literature
(Nufez et al. 2021). As seen in other studies, marine
functional connectivity research networks are often
led by countries with well-established scientific and
educational systems, while barriers such as differences
in language, funding availability, research infrastruc-
ture, and academic traditions can limit the extent and
depth of collaboration with other countries (Nufiez et
al. 2021). Some regions may be underrepresented be-
cause relevant research is published in languages
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Publication year
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Fig. 2. Number of review articles included in the study per
year over the studied period (2002—2024). In 2024 (light blue),
only reviews published before 4 September were considered

other than English. To foster a more inclusive global
research environment, policies should support inter-
national collaborations involving underrepresented
countries, foster capacity-building, and broaden fund-
ing mechanisms to promote a more equitable distribu-
tion of research opportunities and benefits, ensuring
balanced global scientific progress.

Regional collaborations among countries bordering
the same waterbody, driven by the need to address
common marine issues around habitat or species con-
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Saudi Arbia

Malaysia
Turkey
Argentina _
Peru - C. 1, Colombia
aU Arab Emirates
Panama Finland
Romania

Philippines

servation, fisheries management, and pollution con-
trol, are particularly important (Blaber et al. 2005,
Rochette et al. 2015, Mahon & Fanning 2019). For ex-
ample, European countries such as France, Spain, and
Italy maintain strong collaborative networks due to
their common interests in the Mediterranean Sea and
their membership in the European Union, providing a
structured framework for regional research partner-
ships and shared funding opportunities (Pascual et al.
2017, Pazzaglia et al. 2021, Di Stefano et al. 2023).
Similarly, authors from eastern African countries (e.g.
South Africa, Mozambique, Tanzania, Kenya) are
strongly linked through their common interest in
tackling connectivity-related issues in the Western
Indian Ocean (van de Geer et al. 2022, Lett et al. 2024).
The same can also be seen in the dense network of col-
laborations among North American countries (e.g.
USA, Cuba, Mexico), linked by connectivity research
focused on the North Atlantic Ocean and the Carib-
bean Sea (Claro et al. 2019, Diaz-Ferguson & Hunter
2019) as well as the Eastern Pacific (Munguia-Vega et
al. 2018, Ferrera-Rodriguez et al. 2024).

While 24 % of the reviews did not focus on a specific
geographic area, the remaining reviews either in-
cluded case studies from particular regions (36% fo-
cused on 1—3 regions, as shown in Fig. 4, and 21%
included >3 regions) or adopted a global perspective
(19%) (Fig. 4). Reviews with a global focus addressed
connectivity patterns of widely distributed taxa, con-

Austria
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e w.Zealand

a
Iran

~Japan
eland P

Indonesia

Switzerland
pzambique

Fig. 3. Collaborative network of countries based on coauthors' affiliations (n = 215 publications) showing the extent of inter-

national cooperation in marine connectivity research. In this network, the size of each circle corresponds to the number of

coauthored publications of a country, while the thickness of the lines connecting the circles illustrates the intensity of col-

laboration between countries. Links corresponding to a single publication are shown in grey, while those corresponding to
multiple publications are shown in red
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Fig. 4. Frequency of reviews that focused on particular geographic regions (n = 78, which excluded reviews that did not high-
light a specific region [e.g. conceptual reviews; n = 52|, those including >3 regions [n = 45], and those with a global focus [n =
40]). Note: the numbers on the scale bar denote occurrences, so a single review could be included 3 times if it included case
studies focused on 3 regions. Region boundaries are approximated and purely for visualisation purposes. Region codes are
AQO: Arctic Ocean; NEP: Northeast Pacific; GC: Gulf of Mexico and Carribean Sea; NWA: Northwest Atlantic; NEA: Northeast
Atlantic; NB: North and Baltic Seas; MB: Mediterranean and Black Seas; CJY: China, Japan, and Yellow Seas; NWP: Northwest
Pacific; SWP: Southwest Pacific; SEP: Southeast Pacific; SWA: Southwest Atlantic; SEA: Southeast Atlantic; WIO: West Indian
Ocean; EIO: East Indian Ocean; ANZ: Australia and New Zealand coastal waters; SO: Southern Ocean

sidering processes such as long-distance migration
(Sequeira et al. 2013, Kot et al. 2022, Zhang 2022) and
larval dispersal (Cerca et al. 2018). Reviews focusing
on several specific regions tended to be compilations
of case studies (e.g. Wolanski 2017, Signa et al. 2021,
van Woesik et al. 2022). The geographic areas most
frequently studied were regions around the USA and
Europe (i.e. the North Atlantic Ocean, Gulf of Mex-
ico, and Caribbean Seas), and Australia (local coastal
areas, and the east Indian and southwest Pacific
Oceans) (Fig. 4). Conversely, the areas with the
lowest coverage in terms of review papers (which we
assume correlates with lower numbers of empirical
studies) were the Arctic and Southern Oceans, the
South Atlantic, and the Northwest Pacific (Fig. 4).

3.3. Review focus
3.3.1. Title analysis

Not considering the terms included in the original
search string (‘marine’, ‘connectivity', and 'review’,
appearing 82, 61, and 34 times, respectively), the title
terms most frequently featured suggested a dispro-
portionate focus on 'fish' as the reviewed taxa, ‘pop-

ulation' as the main ecological organisational level,
and ‘dispersal’ as the main connectivity process
(Fig. 5A). The most popular habitat-related terms
(‘coastal' and ‘coral') highlighted the prevalence of
connectivity studies in shallow, nearshore environ-
ments. Other common title words demonstrated the
growing importance of connectivity in marine ‘spa-
tial' ‘'management’, 'conservation', and MPA design
(Fig. 5A). Finally, title words also often focused on the
methods used to estimate connectivity, such as
genetic(s), modelling, and genomics (Fig. 5B).

3.3.2. Key word analysis

Cluster analysis of the key word co-occurrence net-
work provided insights into both the general focal
topics in connectivity reviews, but also the broader
research landscape, with key words grouping into
5 distinct clusters (Fig. 5C). Cluster 1 (red) focused
on connectivity processes (‘dispersal’, 'movement’,
‘migration’, 'distribution') and how they related to cli-
mate change (‘climate change', 'global’, ‘warming’)
(e.g. Munday et al. 2009, Gerber et al. 2014, Crook et
al. 2015). Clusters 2 (green) and 3 (blue) focused on
‘conservation’, with the former focused more on 'bio-
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‘review’ were excluded given their direct inclusion in the search string. More details on the clusters are provided in Section 3.3.2

diversity' and threatened or vulnerable habitats, such
as ‘coral reefs' and ‘deep sea' (e.g. McCook et al.
2010, Levin et al. 2018, Perez et al. 2021), and the
latter more directed towards spatial planning and
MPAs (e.g. Eger & Baum 2020, Ceccarelli et al. 2021,
Goetze et al. 2021). Cluster 4 (orange), positioned
closely to Cluster 3 (blue) and strongly linked to
Cluster 1 (red), focused on biological aspects of con-
nectivity, such as 'gene flow' (e.g. Rocha et al. 2007,
Derycke et al. 2013, Dawson et al. 2014), 'life history’
traits (e.g. Friess et al. 2012, Bashevkin et al. 2020,
Moser et al. 2021), and 'recruitment’' (e.g. Wolanski
2017, Cadrin et al. 2019, Morgan 2022). Finally,
Cluster 5 (purple) showed links between habitat
types, with a particular focus on those in nearshore

ecosystems, estuarine habitats (e.g. 'seagrass’, ‘'man-
groves', ‘'saltmarsh’) (e.g. Gillis et al. 2014, Nagelker-
ken et al. 2015, Sambrook et al. 2019). A clear link
between the Cluster 5 key words describing different
nearshore habitats (i.e. 'estuary’, 'seagrass’, 'man-
grove', ‘coral reef') and the key word ‘fish' in Cluster
1 (red) evidenced the importance of these habitats as
fish nursery areas (e.g. Martinho et al. 2012, Nagel-
kerken et al. 2015, Whitfield 2020). This key word co-
occurrence network also highlighted areas within
connectivity research that have received less atten-
tion, such as shelf and polar habitats, methods other
than genetics and dispersal modelling for estimating
connectivity, and physical and biological barriers to
connectivity in the marine realm.
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3.3.3. 'Hot topics' in marine connectivity research

Among the review focus categories included in this
analysis, the majority of reviews focused on 'biology
and ecology' (58%), 'conservation and management'
(23%), 'methods' (11%), and ‘conceptual’ or theoreti-
cal aspects of connectivity (8%). Besides the broad
review focus, we also collated information on how
frequently reviews focused on what we considered to
be 5 current 'hot topics' in marine functional connec-
tivity research, with 25% of reviews focusing on MPA
design, 23% on fisheries management, 17% on climate
change, 7% on food webs, and 7% on bioinvasions.

The focus on MPA design in marine functional con-
nectivity reviews reflects a growing global interest
in developing the science and policies necessary to
achieve interconnected MPA networks, and to move
towards transnational ecosystem-based management
(Hull et al. 2019). Indeed, several global and regional
initiatives (e.g. Kunming-Montreal Global Biodiver-
sity Framework, EU Biodiversity Strategy for 2030,
EU Marine Strategy Framework Directive) have prior-
itized the establishment and management of MPA
networks. In this context, several reviews highlighted
the largely positive influence of connectivity on re-
serve performance and conservation outcomes (Olds
et al. 2016, Goetze et al. 2021, Ferreira et al. 2022).
Other reviews pointed out key knowledge gaps in this
sphere, emphasizing the need for more targeted
research to support integration of connectivity data
to area-based management (Balbar & Metaxas 2019,
Kot et al. 2023) and to understand how long-distance
connectivity can be incorporated into MPA planning
to maximise conservation benefits (Manel et al. 2019).

The reviews focusing on fisheries management
were primarily aimed at understanding the impor-
tance of stock spatial structure and connectivity on
population dynamics (Stephenson et al. 2009, Ulrich
et al. 2013). Accurately accounting for population
structure and movement dynamics in stock assess-
ment models can greatly improve the reliability of
predictions of recruitment and year class strength,
which are essential components of sustainable fish-
eries management (Cadrin et al. 2019, Goethel & Cad-
rin 2021). However, operational application of spatial
stock assessment models often remains limited due to
lack of ecological knowledge and challenges in incor-
porating knowledge into stock assessment, which in
part may be improved in the future by technological
advancements in areas such as genomics and tele-
metry (Nordeide et al. 2011, Ozgiil et al. 2024).

Reviews exploring the impacts (measured and po-
tential) of climate change on marine functional con-

nectivity were also common. Incorporation of con-
nectivity data and climate change into conservation
planning (e.g. MPA design, placement, and spacing
in networks) was at the core of several reviews
(Gerber et al. 2014, Green et al. 2014, Magris et al.
2014, Goetze et al. 2021). Many of these reviews fo-
cused on the impacts of climate change on the devel-
opment, survival, and dispersal patterns of early life
stages (Munday et al. 2009, Wilson et al. 2016), while
others focused on changes in ecosystem resilience
and individual adaptation capacity in the face of
rapidly changing environmental conditions (Bern-
hardt & Leslie 2013, Xuereb et al. 2021).

Relatively few reviews focused on the role of marine
functional connectivity in marine food webs and bio-
invasions. Studies linking connectivity with food
webs primarily focused on specific marine systems
that contain complex habitat mosaics (e.g. tropical
seascape, Berkstrom et al. 2012; deep sea, Woodstock
& Zhang 2022). In contrast, studies on bioinvasions
showed how methodological and conceptual ad-
vances like evolutionary genomics can provide in-
sights into invasion patterns and processes (Sherman
et al. 2016), and how artificial structures (e.g. oil and
gas platforms; wind farms) can facilitate or alter the
spread of invasive species (McLean et al. 2022).

3.3.4. Methods investigated in
marine connectivity reviews

A wide variety of methodological approaches were
used to estimate marine connectivity, and many were
explicitly discussed in the selected reviews, with 69 %
of papers discussing or addressing one or more meth-
odological approaches to estimate connectivity. Of
these, most reviewed a single method (52 %), of which
genetics was the most frequently represented (21 % of
reviews), followed by abundance/presence—absence
data (13%) and modelling (12%), the latter covering
dispersal modelling, network analysis, and species
distribution modelling. Other methods such as chem-
ical markers (3%) and artificial tags (3%), were repre-
sented to a lesser extent, and only 1 study (Tully &
Nolan 2002) used parasites to assess connectivity pat-
terns. These results clearly underscore the impor-
tance and widespread use of genetic approaches to
estimate marine connectivity patterns (e.g. Hellberg
2007, Dawson et al. 2014, Cooke et al. 2016, Gagnaire
2020, Perez et al. 2021). Furthermore, genetics was
also included in most of the reviews that included
more than one methodology (e.g. Miyake et al. 2017,
Puerta et al. 2020, Lett et al. 2024).
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3.3.5. Focus organism groups, depth, and ecozones

In 36 of the reviews, focus taxa were not identified,
as these papers were mostly related to specific
methods and theory (e.g. McMahon et al. 2013, van
Sebille et al. 2018, Gagnaire 2020) and/or conceptual
approaches (e.g. Heino et al. 2015, Buckner et al.
2018). A considerable number of the selected publica-
tions (58) reviewed connectivity-related information
for multiple taxa (here 'multiple’ being defined as >3)
(e.g. Hori 2008, Allen et al. 2018, Levin et al. 2018).
Among the reviews focusing on specific taxonomic
groups, teleost fishes were the most commonly ex-
amined (e.g. Able 2005, Flitcroft et al. 2019, Pickens et
al. 2021), followed by hard corals (e.g. van Oppen &
Gates 2006, Turner et al. 2017, Alvarado-Ceron et al.
2023) and large crustaceans (excluding zooplankton)
(e.g. Giménez 2003, Cruz et al. 2021, Farhadi et al.
2024) (Fig. 6A). Commercially important species dom-
inated the literature, with many reviews focusing on
resource management and spatial planning (e.g. Cur-
ley et al. 2013, Smialek et al. 2021, Farhadi et al. 2024).
Teleost fishes, which are largely studied in marine bio-
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logical sciences given their high economic, cultural,
and conservation values, and their pivotal position in
marine food webs, display diverse life histories and
habitat preferences, and high dispersal potential at
different life history stages, which makes them highly
relevant for investigating connectivity within and
among ecosystems (e.g. Berkstrom et al. 2012, Vas-
concelos et al. 2015, Whitfield 2017, 2020). Hard
corals form the foundation of tropical and cold-water
reef habitats, whose complex, 3-dimensional struc-
tures support a diversity of marine life by providing
shelter and food (Harvey et al. 2018). Tropical coral
reef degradation due to ongoing climate change and
anthropogenic impacts motivated a variety of research
to evaluate the role of connectivity in the resilience of
marine benthic ecosystems, and our ability to quantify
and forecast it (e.g. van Oppen & Gates 2006, Schleyer
et al. 2018, van Woesik et al. 2022). Other taxonomic
groups were less frequently reviewed (Fig. 6A). Yet,
expanding our knowledge on these groups, particu-
larly endangered, threatened, and/or protected taxa,
such as mammals and reptiles, will improve our ability
to put effective conservation measures in place.
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Fig. 6. Frequency of reviews that focused on particular (A) taxa (n = 94 excluded as either 'not specified' [n = 36] or '>3' [n =
58]), (B) depth strata (n = 87 excluded as 'not specified'), and (C) ecozones (n = 107 excluded as either 'not specified' [n = 54]
or >3' [n = 53]). Note that these numbers represent occurrences, and thus a single review could include multiple categories
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Out of the 128 reviews that focused on a particular
depth stratum, the shallowest habitats between 0 and
200 m strongly dominated (Fig. 6B). The dispropor-
tionate focus on the epipelagic zone (0—200 m) likely
relates to the higher abundance of shallow-water spe-
cies and the technological constraints associated with
sampling in deep environments. However, as global
demersal fisheries have progressively shifted from
shallow- to deep-water species in recent decades (Mo-
rato et al. 2006), understanding population and life-
cycle connectivity is crucial for the sustainable man-
agement of deep-water fisheries (e.g. Clark et al. 2010,
Woodstock & Zhang 2022). Target species in these
ecosystems are generally less resilient to exploitation
due to slower population growth rates, delayed matu-
ration, and lower productivity compared to shallow-
water species (reviewed by Norse et al. 2012).

Inthereviewswhere fewer than 4 ecozoneswereiden-
tified (162 studies), pelagic, coral reef, and benthic envi-
ronments were the most frequently discussed (Fig. 6C).
Conversely, seagrasses, mangroves, saltmarshes, rocky
reefs/tidepools, macroalgae/kelp forests, deep sea
vents, and lagoons were each represented in fewer than
15reviews (Fig. 6C). Therarest ecozonesfeatured in the
selected reviews were seamounts, sand/mudflats, and
freshwater environments (diadromous fishes only). The
frequent focus on pelagic environments was mainly
linked to (1) studiesreviewing migratory
connectivity in teleosts (e.g. Pope et al.
2010, Graves & McDowell 2015, Ashford
et al. 2017), elasmobranchs (e.g. Seque-
iraetal. 2013, Jourdainetal. 2019, Zhang
2022), marine mammals (Liu et al. 2023,
Palacios & Cantor2023), and mixed-taxa
migratory megafauna (e.g. Allan et al.
2021, Mclvor et al. 2022); and (2) studies
on larval dispersal (e.g. Pineda et al.
2010, Kaplan et al. 2017, Costantini et
al. 2018, Bashevkin et al. 2020). While
the extensive literature amassed in coral
reef environments has been pivotal for
incorporating connectivity data into
MPA design (Green et al. 2015, Olds et
al. 2016, Goetze et al. 2021), the extent
to which these data can be generalised
or extrapolated to other ecosystems is
unclear, given that these iconic habitats
are restricted to a narrow range of
depths, temperatures, and geographic
regions (Indian, Western Atlantic and
Pacific Oceans, Oceania, Caribbean).
Among the ecozones most frequently
overlooked, seamounts deserve par-
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ticular attention given the growing interest in deep-
sea mining and fisheries, but information on the
species and processes that these habitats support re-
mains scarce (Clark et al. 2010). Also, while mudflats
are one of the most common marine habitats globally
and at the centre of current Blue Carbon discussions
(Chen & Lee 2022), they are poorly represented in the
connectivity literature (Fig. 6C). Understanding the
connectivity patterns of mudflat-associated species
and their role in carbon sequestration should be a high
priority in the future.

3.3.6. Connectivity terminology

The top terms used to describe marine connectivity
in the selected reviews were ‘dispersal’, '‘population
connectivity', ‘'migration’, and ‘connectivity’, all ex-
hibiting more than 40 occurrences (Fig. 7). A second
group comprised terms with at least 20 occurrences,
and included ‘genetic connectivity’, 'movement’,
‘gene flow', 'habitat connectivity', and 'larval dis-
persal'. The less common connectivity terms (<20
occurrences) tended to be represented by termino-
logy featuring spatial (‘seascape -', 'landscape -', and
‘geographic connectivity') and organismal (‘'ecologi-
cal -', 'demographic -', ‘functional -', and 'biological
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Fig. 7. Top 20 terms used to describe connectivity in the reviewed literature.
The numbers represent term occurrences across all included reviews, and a
single review may contain multiple terms. Note that the terms are presented as

they appeared in the original sources
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connectivity') concepts (Fig. 7). This wide variety of
terms highlights the diverse nature of the field and its
users and can potentially introduce confusion and
misinterpretation. To improve clarity and foster cohe-
sive research efforts, we recommend that all publica-
tions include clear definitions for the terms used, but
more broadly for the community to work collabora-
tively to unify terminology and establish clear defini-
tions for connectivity-related concepts across studies.

3.4. Future research directions and priorities

The future directions and research priorities for the
field of marine functional connectivity identified in
the reviews were grouped into 2 major themes: (1)
‘Methods' and (2) 'Ecology and Application', inter-
connected by a third overarching theme 'Spatial and
Temporal Scales and Coverage' (Fig. 8). The future
avenues for the 'Methods' theme were primarily re-
lated to (1) 'Multiple/Integrated approaches' (advanc-
ing multidisciplinary approaches and data integra-
tion), (2) 'Modelling and data analysis' (progressing
connectivity modelling and analysis methods), and (3)

w7
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SPATIAL AND TEMPORAL SCALES AND COVERAGE ®

ECOLOGY AND APPLICATION

7

Conservation and
management
Using connectivity data to
inform conservation,
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Climate Change

Linking connectivity,
adaptation, resilience &
climate change

'Sampling and analytical techniques' (advancing re-
search methodologies, technology and data collec-
tion). In contrast, the future research priorities within
the 'Ecology and Application' theme were focused on
(1) 'Connectivity drivers' (understanding the biotic
and abiotic drivers of connectivity), (2) ‘Conservation
and management' (using connectivity data to inform
conservation, restoration and management), (3) 'Cli-
mate Change' (linking connectivity, adaptation, resili-
ence and climate change) (Fig. 8). Notably, while the
importance of incorporating connectivity data into
marine spatial management (e.g. MPA design and
fisheries stock assessment) is widely recognized, a sig-
nificant operational gap still remains, with these data
rarely being integrated (Balbar & Metaxas 2019).

About half of the reviews highlighted future re-
search avenues belonging to 2 or 3 major themes
(Fig. 8), while the other half typically only focused on
‘Methods' or 'Ecology and Application'. The themes
identified were not linked to review type; however,
narrative and systematic reviews were roughly split
between single and multi-themed reviews, and sys-
tematic reviews with meta-analysis were mainly
focused on a single theme (Fig. 9).

Among the reviews highlighting re-
search priorities in 'Methods' and 'Ecol-
ogy and Application’, most focused on
one subcategory only, with ‘Sampling
and analytical techniques’, ‘Conserva-
tion and management', and '‘Connec-
tivity drivers' dominating (Fig. 9).
Reviews addressing data collection
and conservation and management
were generally focused on specific
taxa (e.g. Nordeide et al. 2011, Parsons
et al. 2014, Docker et al. 2021, Farhadi
et al. 2024), geographic areas (e.g.
McCook et al. 2010, Calo et al. 2013,
Torres-Pulliza et al. 2013, Garcia-Mac-
hado et al. 2018) or ecozones (e.g. coral
reefs, mangroves, van Oppen & Gates
2006, Berkstrom et al. 2012, Buelow &
Sheaves 2015, Van der Stocken et al.
2019). Reviews highlighting 'Connec-
tivity drivers' as a future research pri-
ority tended to be more focused on
passive fluxes, such as larval dispersal
(Kaplan et al. 2017, Alzate & Onstein
./ 2022), nutrient subsidies (Zuercher &

Galloway 2019), and carbon transfer

Fig. 8. The main research priorities identified by the 215 reviews were broadly
categorized into 2 main themes: ‘Methods' (green) and 'Ecology and Applica-
tion' (blue), with 'Scales and Coverage' sitting at the intersection between the
2 main themes. The 2 main themes were each represented by 3 subcategories

(Hyndes et al. 2014).
A large number of reviews high-
lighted the importance of increasing
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Fig. 9. Sankey diagram linking review types (column 1) with the research priority themes (column 2) and their various subcate-
gories (column 3), as outlined in Fig. 8. Note that ‘Scales/Coverage' was an overarching concept referred to by many reviews
and was thus included at both theme and subcategory level

'Scales and Coverage' for improved data collection
and multi-method approaches, and/or improving our
understanding of connectivity drivers and the use of
connectivity data in marine conservation and manage-
ment. Reviews focused on ‘Sampling and analytical
techniques' that highlighted Scale and Coverage were
often method-specific (Elsdon et al. 2008, Vrijenhoek
2010) while those focused on ‘Connectivity drivers'
were often investigating land—sea connectivity (Able
2005, Meynecke et al. 2007, Fang et al. 2018, Flitcroft
et al. 2019) or genetic structure (Dawson et al. 2014,
Riginos et al. 2016, Costantini et al. 2018).

Future directions and research priorities in model-
ling reviews were mainly linked to the themes of ‘Eco-
logy and Application' and ‘Scales and Coverage'
(Fig. 10). The 'Methods' theme and, in particular,
'Sampling and analytical techniques' were an impor-
tant focus of future directions in reviews using multi-
method approaches and chemical tracers, as well as for

genetics (Fig. 10). Aspects related to spatiotemporal
'Scales and Coverage' were mentioned in reviews
using all the different methodological approaches,
albeit with varying degrees of importance (Fig. 10).
Overall, the identified research priorities spanned a
range of themes, emphasizing the need to leverage
methodological and technological advancements to
improve data collection and integration, and advance
multidisciplinary approaches and modelling capabil-
ities. At the intersection between 'Methods' and
'Scales and Coverage', several reviews discussed how
technological innovations and diverse collaborations
are enabling increased sample sizes and geographic
coverage, and diversifying the taxa and life stages
being studied (Starrs et al. 2016, Jourdain et al. 2019,
Pickens et al. 2021, Alvarado-Ceron et al. 2023, Lett et
al. 2024). Expanding sampling coverage across both
time and space enhances our understanding of con-
nectivity patterns at various management-relevant



250 Mar Ecol Prog Ser 764: 237—257, 2025

35% Multiple/Integrated approaches
Modelling & data analysis

® Sampling & analytical techniques

30%| = Scales/Coverage

= Connectivity drivers
Conservation/Management

25% Climate change

20%

15%

0%

. . I
5%

capacities (Cowen & Sponaugle 2009,
Sutton 2013, van Sebille et al. 2018).
Under the 'Ecology and Applica-
tion' theme, the most prominent and
recurring research priority was to
increase the application of connectiv-
ity data to marine conservation and
management. This integration still
needs to catch up in practice, partly
due to the lack of access to tools and
operational frameworks that facilitate
collaboration between scientists and
managers and promote incorporation
of connectivity in marine spatial plan-
ning (Balbar & Metaxas 2019). In par-
ticular, many reviews highlighted the

Artificial tags ~ Chemical Modelling ~ Abundance/

tracers P/A data

Fig. 10. Subcategories of research priorities suggested in reviews grouped by

the different methods used to estimate connectivity and focused on in the re-

views (P/A = presence/absence). Note that conceptual reviews and reviews
with no information regarding methods (n = 62) are excluded

scales. It is equally important to maintain existing
time-series to capture temporal variability and long-
term trends, as well as to address geographic biases by
strategically shifting attention to less-studied areas.
Together, these approaches allow us to understand
the factors driving connectivity patterns and assess
their implications for population and community re-
silience. Methodological improvements, particularly
in genetics, were frequently highlighted as research
priorities (Dawson et al. 2014, Riesgo et al. 2015, Diaz-
Ferguson & Hunter 2019, Pazzaglia et al. 2021), along
with calls to develop new methods (Bostrom et al.
2011, Jahnke & Jonsson 2022, Tamaki 2023), improve
and validate existing methods (Elsdon et al. 2008,
Pickens et al. 2021), and improve and standardize
sampling approaches (Clark et al. 2010, Lotterhos
2012, Edmunds et al. 2018). Many reviews also empha-
sized the need to embrace multidisciplinary (Sale &
Kritzer 2003, Pope et al. 2010, von der Heyden et al.
2014, Crook et al. 2015, Starrs et al. 2016, Ostman et al.
2017, Edmunds et al. 2018, Manel et al. 2019) and col-
laborative approaches (Costantini et al. 2018, Kot et
al. 2023). Indeed, multidisciplinary approaches are
key to achieving a comprehensive understanding of
marine connectivity by integrating information across
multiple spatiotemporal scales and compensating for
limitations within the individual approaches (e.g.
Reis-Santos et al. 2018, Brophy et al. 2020). Techno-
logical advances were mentioned for improving con-
nectivity modelling and prediction accuracy, for ex-
ample by enhancing computing and data analysis

Multimethod

Genetics importance of connectivity in marine

spatial planning, MPA design and
effectiveness (Green et al. 2014, Umar
et al. 2019, Wilson et al. 2020), habitat
restoration (Maschinski & Wright
2006, Gilby et al. 2018, Smialek et al.
2021), and monitoring efforts (Jeffery et al. 2022,
Swanborn et al. 2022, Liu et al. 2023). Several of these
more conservation-focused reviews also emphasized
the need for a better understanding of how connectiv-
ity influences the survival and capacity of species to
adapt to global change (Magris et al. 2014, Bashevkin
et al. 2020, Podda & Porporato 2023). This under-
standing is crucial for predicting the distribution and
viability of marine populations, identifying critical
habitats, and better understanding the links between
connectivity and ecological resilience. Finally, many
of the reviews grouped under 'Ecology and Applica-
tion' highlighted the need to better understand the
factors shaping (Miyake et al. 2017, Alzate & Onstein
2022, Ferrera-Rodriguez et al. 2024) and/or disrupt-
ing (Procaccini et al. 2007, Lotze et al. 2019) connec-
tivity pathways, and their influence on subsidy dyna-
mics (Hyndes et al. 2014, Zuercher & Galloway 2019).

In summary, spanning the 3 themes was an overall
endorsement for building a more integrated research
community and developing international networks
that foster interdisciplinary collaboration, combine
multiple lines of evidence, and harness new techno-
logical innovations. Building such a framework will
boost our understanding of connectivity patterns and
drivers and will also increase our ability to apply this
knowledge and data outputs in management and con-
servation. Ultimately, synthesizing information from
various sources is essential to understand and predict
connectivity patterns across taxa, ecozones, and
regions.
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4. CONCLUSIONS

The systematic mapping performed in this paper
highlighted large asymmetries in different aspects of
marine connectivity research, with author networks
dominated by the USA, Australia, and the UK, and a
disproportionate interest in certain geographic areas
(North Atlantic Ocean and areas around Australia),
on iconic ecozones such as coral reefs, and on com-
mercially valuable fishes and ecosystem engineers
such as hard corals. Reviews also often focused on a
particular method, despite many articles highlighting
the importance of embracing multidisciplinary and
integrated approaches to estimate connectivity at
different spatiotemporal scales (e.g. ontogenetic vs.
transgenerational).

Overall, marine connectivity represents a dynamic
and rapidly evolving field, requiring transnational
cooperation and innovative technologies to meet
the growing demand for more accurate connectivity
assessments, and more rigorous and holistic man-
agement and conservation plans for the ocean and
its resources. Indeed, while many reviews high-
lighted the need to use connectivity data in marine
spatial planning, there remains a significant gap
between the science and the application in practice
(Balbar & Metaxas 2019, Beger et al. 2022). To close
this operational gap, there needs to be increased
collaboration between scientists and managers, and
for so-called 'boundary spanners' (Safford et al.
2017) to facilitate the translation of theoretical
knowledge into practical conservation and policy
actions. Based on the information synthesized
across this review, we compiled 4 key recommenda-
tions:

(1) Advance and integrate the methods used to esti-
mate connectivity. This will require increased capac-
ity building—Dboth across countries and research
disciplines — as well as harnessing new technological
innovations.

(2) Strengthen transnational and transboundary
collaboration, particularly at a regional level (e.g. for
countries sharing coastlines and marine resources).
This will be key to achieving effective management
and conservation plans at appropriate spatial scales.

(3) Increase the coverage, scale, and resolution of
connectivity studies. This will be key to understand-
ing trends in connectivity and forecasting future im-
pacts of climate change on understudied areas, eco-
zones, and taxa, such as the South Atlantic and polar
regions, in deep sea environments and mudflats, and
in important keystone species that are not of commer-
cial interest.

(4) Increase the application of connectivity data
into marine management and conservation. With cur-
rent unprecedented rates of global change, managers
need to make informed decisions, particularly around
habitat protection and fisheries management. As a
community, we need to better support this decision-
making process through adopting a unified suite of
terms and definitions that support science transla-
tion, and developing simpler and more transparent
frameworks, software, and tools.
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