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Abstract

Despite their drastic impacts on coral reefs, outbreaks of
the coral-feeding seastar crown-of-thorns starfish
(COTS), Acanthaster, have remained a scientific enigma.
Significant efforts in coral reef conservation science have
been dedicated to identifying natural predators able to
exert demographic control on COTS and prevent
population outbreaks. These efforts are motivated by
empirical evidence showing that reefs within marine
protected areas are less prone to COTS outbreaks than
reefs open to fishing where potential COTS predators
have been reduced or removed functionally from food
webs. Research findings point towards COTS’ early life-
stages as a major demographic bottleneck for COTS
populations, with various reef fish and benthic organisms
identified as predators of the seastar. Yet, no species or
species groups have been clearly identified as exerting
enough top-down control to influence COTS population
increases or prevent outbreaks. We report the benthic
scavenging behavior of eagle rays (family Myliobatidae),
a large-bodied predator, feeding in coral rubble fields of
Kanaky New Caledonia, critical habitats where juvenile
COTS find refuge and food and accumulate to produce
population outbreaks. We argue that with their effective
substrate-sucking feeding behavior, similar to vacuums
of the sea, eagle rays may be a hitherto unidentified
predator able to exert significant control on COTS
populations. Eagle rays and other large benthic
scavengers were previously neglected in the search for
major COTS predators. Relatively little existing data

dee 18 (2025)

show that eagle ray populations in Kanaky New
Caledonia’s lagoon are more abundant inside than
outside marine protected areas, which concords with the
hypothesis that they could be responsible for the
mitigation of COTS outbreaks as reported within
reserves. We advocate for further investigations on the
role of eagle rays and other large benthic scavengers in
controlling COTS outbreaks, and the importance of
preserving the unique ecological function of sea vacuums
for coral reef conservation.

Keywords: Coral reef; Acanthaster; Seastar; Predator
outbreak; Eagle ray; Nature-based solution.

Unresolved mystery surrounding COTS outbreaks

Outbreaks of crown-of-thorns starfish (COTS,
Acanthaster spp.) cause mass coral mortality and are a
clear threat to coral reef conservation in an era of global
coral decline (Kayal et al. 2012, Pratchett et al. 2017,
Condie et al. 2021). There has been a long-running debate
about the mechanisms that control COTS outbreaks,
which, in part, remain a scientific enigma. Two
predominant hypotheses about the mechanisms exerting
demographic bottlenecks for COTS populations have
been proposed, both of which are supported by a
relatively large body of empirical evidence (Pratchett et
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al. 2014). The bottom-up “nutrient enrichment hyp-
othesis” emphasizes the importance of nutrient
availability for phytoplankton blooms upon which COTS
larvae feed and rely during their transition from pelagic
to benthic stages: with eutrophication of reef environ-
ments, COTS populations increase due to increased
recruitment and early life stage survivorship (Fabricius et
al. 2010, Wooldridge and Brodie 2015, Matthews et al.
2020). The top-down “predation release hypothesis”
emphasizes the role of species feeding upon the seastar
in regulating their populations, a mechanism altered
when reef fisheries reduce local abundances of COTS
predators (Cowan et al. 2017). Recently, Deaker et al.
(2020) discovered a third mechanism by showing that
COTS is able to remain in an “ecologically dormant”
state of herbivorous juvenile hiding in dead coral rubble,
enabling the build-up of cryptic outbreak populations
over years, before shifting to corallivory and full-grown
adults once preferred coral prey is available (Wilmes et
al. 2020a, Deaker and Byrne 2022, Neil et al. 2022).
Quantitative evidence indicates that COTS outbreaks are
more frequent and intense outside of marine protected
areas than in reef areas protected from fishing, thereby
supporting the predation release hypothesis (Dulvy et al.
2004, Sweatman 2008, McCook et al. 2010, Mellin et al.
2016, Vanhatalo et al. 2017, Westcott et al. 2020, Kroon
et al. 2021). Nevertheless, the evidence to support the

predation release hypothesis so far remains pre-
dominantly correlative and circumstantial, and there is
need for improved understanding of the mechanisms
through which protection from fishing benefits control of
COTS populations. Specifically, identifying species
exerting significant control on COTS populations can
help define targeted management actions that support
coral reef resilience.

Our hypothesis

We propose the hypothesis that foraging by eagle rays
(family Myliobatidae), large-bodied bottom scavengers
feeding in coral reef rubble fields, can exert significant
top-down control of COTS juvenile life-stages, thereby
playing a key role in regulating COTS outbreaks. Our
hypothesis is based on observations of active foraging of
the reef substrate in Kanaky New Caledonia by an eagle
ray, moving coral rubble around and sucking up potential
prey hidden in the substrate and around live corals
(Figure 1). Because coral rubble fields constitute
predominant habitats for COTS juvenile stages (Zann et
al. 1987, Wilmes et al. 2020b), we argue that such feeding
behavior, acting as a vacuum of the sea substrate, may
constitute a key ecological function regulating marine
benthic invertebrate populations, including COTS whose
outbreaks can devastate corals at large spatial scales.
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Figure 1. Photograph of an
eagle ray (family Mylio-
batidae) foraging the shallow
reef substrate in Kanaky New
Caledonia. The individual was
observed moving coral rubbles
and sucking up potential prey
from the reef substrate, a
suction  feeding  behavior
comparable to a vacuum of the
sea. We believe that this
ecological function may be
critical for regulating inverte-
brate populations hiding in the
substrate, such as juveniles of
the coral predator crown-of-
thorns starfish. See video at
Kayal (2024).
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Support for our hypothesis

Recent research efforts have focused on identifying
COTS predators in an endeavor to improve coral reef
management through the regulation of COTS outbreaks
exerted by their natural predators. More than 100 species
of reef fish and invertebrates have been identified as
preying upon the seastar at different life stages and health
conditions (Cowan et al. 2017). However, predation on
early COTS life stages remains largely under-
characterized, while seastar survival in the juvenile
stage—that is when the small, cryptic, and coralline
feeding seastars are hiding within coral rubble habitats—
is considered a major demographic bottleneck for COTS
populations (Wilmes et al. 2018, 2020b). In an extensive
review of the scientific literature, Cowan et al. (2017)
concluded that predation on newly settled starfish is
predominantly exerted by benthic invertebrates assoc-
iated with coral rubble fields, a hypothesis currently
under intensive investigation (Desbiens et al. 2023).
However, research on putative predators of juvenile
COTS have hitherto largely dismissed the importance of
large generalist reef predators that are able to effectively
forage through coral rubble over expansive reef areas,
like eagle rays. Eagle rays, like other large rays, are
intensive bottom-feeders that effectively “vacuum” up
invertebrate prey hidden in marine benthic substrate
(Thrush et al. 1991, Hines et al. 1997, Ajemian et al.
2018, Figure 1). A large body of research conducted in
the 1980's solidified how foraging by bat rays in
temperate latitude regions (Hulberg and Oliver 1980,
Van Blaricom 1982), and sting rays in tropical latitudes
(Thistle 1981), substantially influence soft-sediment
invertebrate assemblages, either directly through
predation or indirectly through physical disturbance (see
Lenihan and Micheli 2001 for a review). Our observation
of an eagle ray foraging in coral rubble suggests that they
may be a key predator able to control COTS juvenile
abundance and reduce outbreaks. Indeed, coral rubble
provides important recruitment substrate, refuge, and
coralline-algae food for juvenile COTS (Zann et al. 1987,
Wilmes et al. 2018, 2020a), and is where seastar density
can build up over years leading to outbreaks (Deaker et
al. 2020).

Juvenile COTS buried in coral rubble may not have
many large predators (Cowan et al. 2017). Species acting
as sea vacuums in rubble fields, like eagle rays, may play
a unique role in controlling COTS density build-ups and
the frequency and intensity of outbreaks, which typically
originate in habitats dominated by coral rubble (Zann et
al. 1987, Johnson et al. 1991, Kayal et al. 2012, Wilmes
et al. 2020b). Relatively healthy eagle ray populations
may explain the relatively constrained COTS outbreaks
observed in Kanaky New Caledonia’s lagoon, as
compared with the neighboring regions Australia and
Vanuatu, where higher fishing and shark-net impacts on
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rays and higher frequency and intensity of COTS
outbreaks are reported (Lynch et al. 2010, Schluessel et
al. 2010, Harry etal. 2011, Sumpton etal. 2011, Adjeroud
et al. 2018, Sporcic et al. 2018, Laran et al. 2024).
Although data limitations currently prevent quant-
itatively testing our hypothesis, recent investigation in
Kanaky New Caledonia indicates eagle ray populations
were three times more abundant inside than outside of
marine reserves (Heudier et al. 2023), supporting the
hypothesis that they could be responsible for the
mitigation of COTS outbreaks in protected areas, as
reported in other regions (Dulvy et al. 2004, Sweatman
2008, McCook et al. 2010, Mellin et al. 2016, Westcott
etal. 2020, Kroon et al. 2021). Other hitherto overlooked
benthic scavenger species potentially exerting significant
predatory control on juvenile COTS hidden in coral
rubble and with populations severely impacted by
fisheries include sea cucumbers (Holothuria; Anderson et
al. 2011, Purcell et al. 2013, Pierrat et al. 2022, Ahmed et
al. 2023), although this is beyond the scope of the present
study.

Conclusions and prospective research

Megafauna often play important roles in marine
ecosystems, although their ecological functions are not
always known or fully recognized, and their populations
are often significantly reduced by human activities
(McCauley et al. 2015, Pimiento et al. 2020). Our
observations shed light on the potentially unique
ecological function of eagle rays for safeguarding coral
reefs from COTS outbreaks. While we currently do not
possess the necessary information to test this hypothesis,
future investigations may include eagle ray behavior and
diet analyses to confirm or reject predation on juvenile
COTS (Ajemian et al. 2012, Leray et al. 2013), and joint
analysis of eagle ray and COTS populations to establish
predator-prey regulation and a potential mitigation of
outbreaks (Kayal et al. 2012). While diver operated
COTS control efforts are costly but often considered as
the best approach to reduce the impacts of their outbreaks
(Westcott et al. 2020, Condie et al. 2021, Castro-
Sanguino et al. 2023), coral reef resilience may
significantly benefit from an increased protection of
eagle ray populations and their important ecological
function as vacuums of the reef.
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Response to referee

We agree with Pratchett (2025) that dedicated studies are
necessary before confirming our hypothesis that eagle
rays exert regulatory pressure on juvenile populations of
the coral-eating seastar crown-of-thorns starfish (COTS).
As stated in our original manuscript, and indicated by the
journal name—Ideas in Ecology and Evolution—and
category of article we have proposed, our hypothesis
remains predominantly a new idea that requires further
investigation. The discussion platform provided by this
journal enables further debating the mechanisms
underlying our hypothesis with colleagues working on
the topic, and identifying ways to test them in future
research. There are predominantly two lines of evidence,
one mechanistic and the other correlative, pointing
towards the potential role of eagle rays in regulating
COTS juvenile abundance in coral reef rubble fields.
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Mechanistic line of evidence: eagle rays are large-
bodied generalist vacuum feeders able to suck up large
quantity of prey from coral reef rubble, which is the
predominant habitat in which juvenile COTS find refuge
to build up outbreaking populations.

We agree that studies on the feeding behavior of eagle
rays are necessary to confirm the commonness of our
observation that eagle rays regularly prey in coral reef
rubble fields, and that their feeding activity has indeed
regulatory effects on COTS populations. Until such
knowledge is available there is no reason to believe that
our observation is an exclusive behavior (i.e. a one-time
event, or that of a deviant individual), or that eagle rays’
vacuum feeding in coral reef rubble would spare juvenile
COTS. The eagle ray in our video is seen displacing a
relatively large piece of coral rubble before scrutinizing
the area and overturned rubble piece with its mouth,
seemingly sucking up uncovered small prey living in the
interstices (see Kayal 2024 video at 1:00-1:20). It seems
probable that such feeding behavior would exert strong
indiscriminate predation on meio- and macro-benthic
invertebrates within the size range of a millimeter to few
centimeters, including juvenile COTS (Hines et al. 1997,
Ajemian et al. 2012, Deaker et al. 2020, Wilmes et al.
2020a,b). We are not stipulating that eagle rays
specifically search for and actively target juvenile COTS
hidden in rubble fields in a way to fully suppress their
populations even at low densities, but rather that repeated
eagle ray vacuum feeding in rubble fields may result in
keeping COTS populations in check.

As highlighted by Pratchett (2025), few studies
have reported echinoderms in eagle ray diet (Capapé
1976, Gray et al. 1997, Schluessel et al. 2010, Ajemian et
al. 2012, Serrano-Flores et al. 2018), and to our
knowledge there is currently no evidence that eagle rays
do consume COTS juveniles. However, there is no
evidence that eagle rays avoid preying upon juvenile
COTS when vacuum feeding in coral reef rubble. Studies
describing stomach content of eagle rays and affiliates
report a diversified diet, with a large predominance of
mollusks and few echinoderms, sometimes including
seastars (Capapé 1976), in proportions predominantly
reflecting local prey composition (Gray et al. 1997,
Jardas et al. 2004, Yamaguchi et al. 2005, Schluessel et
al. 2010, Serrano-Flores et al. 2018, Cahill et al. 2023).
Given the described generalist predator behavior with a
flexible diet adapting to various environments, one can
anticipate that eagle rays’ indiscriminate vacuum feeding
in reef substrate infested with COTS juveniles would
result in high proportions in stomach contents. Among
regions where COTS is present and exhibits population
outbreaks, Schluessel et al. (2010) identified only small
amounts of ophiuroids (another class of echinoids) in
eagle ray stomachs collected in February 2007 from
Australia’s Heron Island, southern Great Barrier Reef,
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which may have not corresponded to a time and place
where high juvenile COTS densities were present in the
substrate. Furthermore, visual identification of juvenile
COTS in stomach contents may be challenging, as
individuals are small (a millimeter to few centimeters)
and lack hard structures that could facilitate identification
of their remains (Deaker et al. 2020, Wilmes et al.
2020a,b, Cahill et al. 2023). As reminded by Pratchett
(2025), molecular tools can complement the visual
identification of prey in eagle ray stomach.

As pointed out by the referees, future research on
the feeding behavior and efficiency of eagle rays may
help confirm predation on juvenile COTS, provided that
eagle rays and coral rubble hosting COTS juveniles are
at hand, which is logistically difficult. As large coastal
species inhabiting shallow lagoons and bays, eagle rays
and affiliates are particularly vulnerable to fisheries and
frequently caught by long- and drum-lines, nets, traps,
and trawlers (Gray et al. 1997, Jardas et al. 2004, Lynch
et al. 2010, Schluessel et al. 2010, Sumpton et al. 2011,
Serrano-Flores et al. 2018). Therefore working with
fishing communities can facilitate the acquisition of live
and dead specimen for stomach content analysis and

experiments. For example, patches of coral rubble
hosting juvenile COTS, as identified in situ by Wilmes et
al. (2020b) or cured in aquarium by Deaker et al. (2020),
can be exposed to eagle ray feeding to estimate the
species’ efficiency in regulating juvenile COTS
populations. Such enclosure-exclosure experiments can
be deployed in natural eagle ray feeding grounds as
identified in our video, or in aquarium (Hines et al. 1997,
Kayal et al. 2011, Ajemian et al. 2012, Flowers et al.
2021). The studies would also offer the opportunity to
explore the mechanisms through which eagle ray feeding
impacts the juvenile seastars at different development
stages through direct predation (swallowing individuals)
versus indirectly through injuries from suction and coral
rubble movement, or exposure to other predators
(Flowers et al. 2021). In our video, a dozen fish of various
sizes are seen circling around the eagle ray, seemingly to
benefit from prey exposed from the feeding activity,
particularly fish from the family Labridae (probably
Thalassoma jansenii, Thalassoma hardwicke, and/or
Hemigymnus fasciatus) which are commonly observed
with such behavior (Figure 2; Sabino et al. 2017, Bonham
and Silbiger 2024).
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Figure 2 Portions of the video
frames where fish following the
eagle ray can be seen, seemingly to
benefit from prey exposed by the
feeding activity. Thanks to their
movement, the fish are easier to spot
in the video, which can be watched
at slow motion and high quality at
Kayal (2024).
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Correlative line of evidence: eagle rays are more
abundant inside than outside marine protected areas,
which may explain why COTS outbreaks are less
preeminent in reef protected from fishing.

There is currently limited data available in our study
system of Kanaky New Caledonia to confirm that eagle
ray abundances are higher inside than outside protected
areas at a larger scale than that demonstrated by Heudier
et al. (2023), and to test to which degree ray abundances
may negatively correlate with COTS populations. What
is known from the literature is that, like other megafauna
inhabiting coastal waters, eagle rays are highly
vulnerable to human activities and declining, particularly
due to targeted and incidental catch and habitat
degradation (Dulvy et al. 2021, Glaus et al. 2024). Eagle
rays and affiliates are frequently caught by fishing
devices and shark-nets (Gray et al. 1997, Jardas et al.
2004, Serrano-Flores et al. 2018, Broadhurst and Cullis
2020), including in tropical coral reef systems such as the
Australian Great Barrier Reef (Lynch et al. 2010,
Schluessel et al. 2010, Harry et al. 2011, Sumpton et al.
2011, Sporcic et al. 2018). In absence of further
knowledge, it seems realistic to stipulate that eagle ray
populations in the Great Barrier Reef may exhibit similar
patterns than those observed in the Kanaky New
Caledonian lagoon where densities were significantly (3-
folds) higher inside than outside protected areas (Heudier
et al. 2023). This concords with the hypothesis that eagle
rays may exert some level of regulation on COTS
populations as found in reefs protected from fishing
(Dulvy et al. 2004, Sweatman 2008, McCook et al. 2010,
Mellin et al. 2016, Vanhatalo et al. 2017, Westcott et al.
2020, Kroon et al. 2021).

Correlative  studies  contribute  greatly to
characterizing predator-prey interactions and trophic
cascades that trickle down across ecosystem
compartments (Myers et al. 2007, Heithaus et al. 2008,
Kayal et al. 2012, Flowers et al. 2021). Where spatio-
temporal data on both eagle ray and COTS is available,
such analysis can help testing to which degree the
abundances of the two species are (negatively)
correlated. As eagle rays are hard to approach in nature
and constitute a diversified species group with potentially
various life histories to investigate, data acquisitions can
be accelerated using aerial and underwater imagery and
telemetry, citizen science, environmental-DNA, and
artificial intelligence (Tagliafico et al. 2019, Araujo et al.
2020, Desgarnier et al. 2022, Glaus et al. 2024).

Conclusion
While our understanding of coral reef ecosystem
functioning remains in its infancy, this is yet another

example of how preserving biodiversity could help
safeguard important ecological mechanisms supporting

dee 18 (2025)

ecosystem health and associated benefits to society. We
look forward to further studies on this topic, and advocate
for increased protection of eagle rays and affiliate
“ecological reef vacuums” as a potential nature based
solution for regulating COTS populations and supporting
coral reef management.
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