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Abstract 

Background  The high genetic diversity of Plasmodium falciparum parasites is one of the challenges for malaria 
control and elimination in endemic areas. A better knowledge of parasite genotypes circulating in different disease 
endemic areas could help to optimize local malaria interventions. This study aimed at determining P. falciparum 
genetic diversity from isolates collected in forest (Mfou) and humid savanna (Tibati) eco-epidemiological settings 
in Cameroon.

Methods  Dried blood spots collected from asymptomatic individuals in 2018 and 2019 were used to determine 
the Plasmodium infection status and distinguish the Plasmodium spp. by real-time PCR. Allelic polymorphism 
of the msp2 gene was assessed in the P. falciparum positive samples by nested PCR followed by capillary electropho‑
resis for revelation of the fragment allelic size. Multiplicity of infection (MOI) was defined as the number of coinfecting 
genotypes within an infection. General linear mixed models were fitted to evaluate the impact of study site, partici‑
pant age, gender and bed net ownership on genetic diversity.

Results  Malaria prevalence among the asymptomatic individuals reached 59.2% (876/1480) in Mfou and 63.4% 
(808/1274) in Tibati. A total of 36 and 42 different msp2 alleles were detected in Mfou and Tibati, respectively. No 
genetic differentiation was observed between the two study sites. The msp2 IC/3D7 family was the most polymorphic 
and the most prevalent in both areas. Overall, more than 60% of the isolates had multiclonal infections. The frequency 
of multiclonal infections and MOI was higher in Mfou (68.9%, MOI = 2.08) than in Tibati (57.29%, MOI = 1.80). In Mfou, 
a negative correlation was found between MOI and age. Similarly, a gender effect was observed in Mfou, with males 
having higher MOI than females.

Conclusion  This study reported high malaria prevalence and a high allelic diversity in the msp2 gene among asymp‑
tomatic carriers from two epidemiological settings of Cameroon. Despite results reflects high transmission intensity 
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Background
Malaria remains a major public health problem despite 
global efforts to fight against the disease. In malaria 
endemic countries, control interventions include preven-
tive measures such as insecticide-treated bed nets (ITNs), 
intermittent preventive treatment in infants and preg-
nant women (IPTi and IPTp), and, in areas where malaria 
is seasonal, seasonal malaria chemoprevention (SMC). 
Additionally, case management through early diagnosis 
and treatment plays a crucial role and is fundamental 
for accurate surveillance. Recently, the introduction of 
malaria vaccines into routine childhood immunization 
programs has provided a new intervention tool. The lat-
est World Health Organization (WHO) report pointed 
to 263 million cases, 11 million more cases compared to 
2022, and 597 000 deaths worldwide in 2023, with 94% of 
cases occurring in the WHO African region and almost 
99% of malaria cases due to Plasmodium falciparum [1].

Cameroon is among the highest burden countries, 
with a malaria prevalence of about 30% and almost 4 000 
malaria deaths reported each year [1]. According to the 
National Malaria Control Programme (NMCP) report, 
approximately 28% of hospital morbidity and 18.3% of 
deaths were due to malaria in 2019 [2]. The burden of the 
disease disproportionately affects children under 5 years 
of age and pregnant women, who account for over 70% 
of malaria cases [2]. Malaria endemicity is further influ-
ences by geographical and ecological variations across 
the country, which affect malaria vector distribution 
and transmission intensity [3–6]. In particular, the East, 
Central and South regions, with a perennial transmis-
sion, and Adamawa, where transmission is seasonal, are 
the most affected, classified as hyperendemic [7]. Four 
human Plasmodium species have been documented in 
Cameroon, including P. falciparum, Plasmodium ovale, 
Plasmodium malariae and Plasmodium vivax [3, 8]. 
However, P falciparum remains the most dominant spe-
cies, and this species is responsible for the most severe 
clinical forms of the disease and malaria associated 
deaths in children [3, 9, 10].

So far, in Cameroon, malaria control strategies were 
mainly based on vector control tools through the mas-
sive deployment of long-lasting insecticidal nets (LLINs), 
the IPTi and IPTp and the prompt treatment of clini-
cal malaria cases with artemisinin-based combination 
therapy (ACT) [3, 11]. Although these malaria control 

measures have been intensified, Cameroon has expe-
rienced a resurgence of malaria cases over the last past 
years [2]. Even if this can be due in part to increased 
resistance to insecticides and drugs [11, 12], other factors 
such as global warming, population growth, urbanization 
or impairment of control programmes during the Covid-
19 pandemic may have lead to the current situation [13, 
14]. The RTS,S/AS01 malaria vaccine has been intro-
duced in Cameroon in January 2024 [15]. The vaccine is 
intended to complement the existing tools for malaria 
prevention and control [15] but no data on its effective 
implementation and impact in Cameroon have been pub-
lished so far.

The high genetic diversity of P. falciparum has been 
identified as a key mechanism enabling the parasite to 
evade host immune defenses [16, 17]. Additionally, the 
extensive polymorphism in Plasmodium proteins, par-
ticularly in merozoite surface proteins, has hindered 
the efficacy of anti-malarial drugs and the development 
of effective malaria vaccines [18, 19]. Molecular surveil-
lance will be crucial to evaluate changes in the parasite 
populations following vaccine deployment and identify 
genotypes that could potentially evade vaccine-induced 
protection [20, 21]. Monitoring the genetic diversity and 
transmission dynamics of parasites will also be essential 
to evaluate the impact of control measures and envi-
ronmental factors on the genetic structure of the para-
site populations [22–24]. Both the genetic diversity of 
P. falciparum and the number of co-infecting genotypes 
correlate with malaria infection intensity [22, 25]. In 
agreement with the high intensity of malaria transmis-
sion in Cameroon, P. falciparum presents a large genetic 
polymorphism [26, 27] and up to 15 genotypes have been 
recorded within a single infection [27]. As multiclonal 
infections are carrying mixture of anti-malarial drug 
resistance mutations, they may impact the spread of drug 
resistance and malaria epidemiology [28, 29].

Polymorphic molecular markers are widely used to dis-
tinguish parasite genotypes within multiclonal infections 
or to assess the impact of malaria control interventions. 
The most commonly used molecular markers for geno-
typing are the genes encoding for the merozoite surface 
proteins 1 and 2 (MSP1 and MSP2) and the glutamate-
rich protein (GLURP) of P. falciparum [30–34]. The msp2 
gene located on chromosome 2 codes for a glycoprotein 
expressed on the surface of merozoites and consists in 

in both areas, analysis indicated distinct epidemiological patterns in Mfou and Tibati. These findings will provide valu‑
able baseline information to monitor the impact of malaria control measures implemented in these areas.
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five blocks of which the central block, block 3, is the most 
polymorphic. Variations in length and sequence in the 
msp2 block 3 allow to distinguish two main allelic fami-
lies, IC/3D7 and FC27, and polymorphisms in the block 3 
are largely used to describe the genetic diversity of P. fal-
ciparum populations in malaria endemic areas [31, 35].

So far, very limited information on P. falciparum 
genetic diversity in different eco-epidemiological settings 
in Cameroon exists [26, 27, 36–38]. This study aimed to 
characterize the genetic diversity of the msp2 gene in P. 
falciparum field isolates collected from asymptomatic 
individuals in two distinct eco-epidemiological settings 
in Cameroon, forested and humid savannah areas. By 
analysing the msp2 polymorphism, this research seeks 
to enhance understanding of parasite antigenic diver-
sity in areas with different transmission patterns, which 
will provide critical insights for the implementation of 
malaria control strategies and surveillance in the region.

Methods
Ethical statement
The research protocol was reviewed and approved by 
the Cameroon National Ethics Committee for Research 
on Human Health under agreements 2018/05/1011/
CE/CNERSH/SP and 2019/05/1161/CE/CNERSH/SP. 

Volunteers were recruited through community informa-
tion meetings held in collaboration with local authorities. 
During these community sensitizations, the study objec-
tives, procedures, and participants’right to withdraw 
were clearly explained, with opportunities for questions. 
All participants provided signed informed consent; for 
minors, signed authorization was obtained from parents 
or legal guardians. Volunteers were monitored through-
out the study and those who were found parasite-positive 
received a free treatment with artesunate-amodiaquine 
(ASAQ) according to national guidelines.

Study site description
The study was conducted between June and July 2018 in 
Mfou (3°43′17.0’’N; 11°38′39.0’’E) and July–August 2019 
in Tibati (6°27′57.0’’N; 12°37′29.0’’E), two localities in 
Cameroon with different eco-epidemiological settings 
(Fig. 1).

Mfou is a semi-urban area located in the Central 
region of Cameroon. It is characterized by a dense veg-
etation and an equatorial climate with two dry seasons 
(November–February and June–July) and two rainy sea-
sons (August–October and March–May). Malaria trans-
mission is perennial with a higher prevalence during 
the rainy seasons. The hydrographic network comprises 

Fig. 1  Map of the study sites in Cameroon. The figure displays the ecoregions and the two study sites
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several rivers and the most important are Nsoh, Meben, 
Olo’o, Etoa, Osomvele and Mefou rivers. The Mfou dis-
trict covers a surface area of 3338 km2 and has an esti-
mated population of 42,000. Economic activities in the 
region are mainly agriculture and fishing. Mfou is a great 
health district with 12 health facilities available. Previous 
studies in the Mfou district indicated a malaria preva-
lence around 70% among asymptomatic individuals [39, 
40], and the 2022 Cameroon Malaria Indicator Survey 
reports an overall 49% prevalence among children less 
than 5  years of age in the Centre region [7]. The 2019 
annual report of the NMCP indicates an incidence of 120 
cases per 1000 habitants and a mortality rate of 9 deaths 
per 100,000 population [2]. Annual transmission was 
estimated at 129 infective bite/person/year and each per-
son receives about 20 mosquito bites per night [41].

Tibati, located in the Adamawa region, is character-
ized by a humid savannah climate, with one rainy season 
lasting over 6 months, from March to October. Malaria 
transmission is seasonal in the locality. Tibati is crossed 
with several lakes, ponds, agricultural sites and swamps 
favorable to the reproduction of the malaria vectors. 
Tibati is around 8000 km2, with an estimated population 
of 108,502. Human activities are mainly agriculture and 
fishing in the site. Tibati district also has 12 health facili-
ties. According to the 2019 annual report of the NMCP, 
malaria prevalence in the Adamawa region was 34%, with 
an estimated incidence of 141 cases per 1000 habitants 
and a mortality rate of 36 deaths per 100,000 population 
[2]. However, local heterogeneity exists, as a 61% preva-
lence was documented in Tibati among asymptomatic 
individuals [9]. Human biting rate has been estimated 
at 30 bites/person/night, with an average entomological 
inoculation rate (EIR) of 77 infective bite/person/year 
[42].

In both areas, P. falciparum is responsible for more 
than 90% of malaria infections, and Anopheles gambiae 
and Anopheles funestus are the main malaria vectors [3].

Study population
A random survey was carried out in each site and study 
participants were recruited among asymptomatic indi-
viduals in the communities. A total of 23 villages were 
screened, 14 in Mfou and 9 in Tibati. Volunteers who met 
inclusion criteria: aged at least one year, no fever (axil-
lary temperature ≤ 37.5 °C) within the previous 48 h, 
no ongoing antimalarial treatment, and who signed an 
informed consent form were enrolled in the study. Signs 
and symptoms of severe malaria, use of an anti-malarial 
within the last two weeks, pregnancy were exclusion cri-
teria. A questionnaire was used to collect demographic 
and clinical information from all volunteers.

The sample size was calculated using the formula N = 
Z2 P (1−P)/d2, where N is the sample size, Z the stand-
ard normal variate (1.96 at 95% confidence interval), P 
the expected prevalence and d the margin of error (5%) 
[43]. The expected malaria prevalence, P, was estimated 
according to data provided by the NMCP in its 2019 
report, Mfou (47%) and Tibati (32%) [2]. This provided an 
estimated sample size of 383 individuals in Mfou and 334 
in Tibati.

Sample collection
Finger-prick blood samples were collected for malaria 
diagnosis upon microscopical examination of Giemsa-
stained thick blood smears. Blood films were air-dried, 
stained with 10% Giemsa for 20 min, and examined 
under a light microscope (Leica DM750; Leica Microsys-
tems GmbH, Wetzlar, Germany) at 100 × magnification 
for the detection of asexual stages. Thick blood smears 
were screened across 200 fields under oil immersion. 
Simultaneously, blood samples were spotted on a What-
man® grade17 filter paper (Whatman® Grade 17 Cellu-
lose Chromatography Paper, GE Healthcare, Chicago, 
USA) and air-dried. Dried blood spots (DBS) were con-
served individually in paper bags containing silica gel and 
stored at −20 °C until molecular analyses. DBS samples 
from Mfou were processed 2 months after collection and 
those from Tibati 8 months after collection.

DNA extraction and molecular identification 
of Plasmodium species
Genomic DNAs from dried blood spots were extracted 
using the chelex-100 method as previously described 
[44]. After extraction, DNA concentration and purity 
were estimated for each sample using the Nano Drop 
spectrophotometer (Thermo Scientific NanoDrop™ 
2000) and stored at −20 °C until molecular analyses. Plas-
modium spp were detected and identified by real-time 
PCR according to Mangold et al. [45]. The PCR assay dif-
ferentiates the four plasmodial species (P. falciparum, P. 
vivax, P. ovale and P. malariae) based on melting curve 
analysis, using species-specific melting temperature (Tm) 
and amplicon sizes. PCR amplification and analysis were 
performed on a Light Cycler® 96 instrument (Roche 
Molecular Systems, Indianapolis, USA) with SYBR Green 
fluorescence detection.

Genotyping of Plasmodium falciparum parasites
Only samples identified as P. falciparum-positive by real-
time PCR were considered for msp2 genotyping analysis. 
The repetitive polymorphic regions in the block 3 of the 
msp2 gene were amplified by nested PCR as previously 
described [33]. Amplified products from the secondary 
PCR were submitted to capillary electrophoresis to reveal 
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the different alleles of the two allelic families (FC27 and 
IC/3D7). PCR reactions were processed with minor mod-
ifications; the initial denaturation was set at 94 °C instead 
of 95 °C and the final extension lasted 5  min at 72 °C 
instead of 2 min. Briefly, the primary reaction was carried 
out in a final volume of 15 µL containing 1 × PCR buffer, 
2  mM MgCl2, 125 μM dNTP, 0.02 units/μl of Eurogen-
tecTaq® DNA polymerase, 250 nM of each primer (Euro-
gentec, Belgium) and 2  μl of DNA template. The cycle 
conditions were as follows: an initial denaturation at 94 
°C for 2 min followed by 25 cycles of denaturation at 94 
°C for 1 min, annealing at 58 °C for 2 min, extension at 
72 °C for 2 min, and a final extension at 72 °C for 5 min. 
For the secondary PCR, a 15 μl PCR mixture was used 
containing: 2 μl of the primary reaction product as tem-
plate, 1 × PCR buffer, 1 mM MgCl2, 125 μM dNTP, 0.02 
units/μl of EurogentecTaq® DNA polymerase and either 
125 nM of each primer for the FC27 family or 300 nM for 
the IC/3D7 family. Secondary PCRs for the two different 
allelic families were performed in separate reactions. The 
cycle conditions were as follows: an initial denaturation 
at 94 °C for 5 min followed by 30 cycles of denaturation 
at 94 °C for 30 s, annealing at 58 °C for 1  min, exten-
sion at 72 °C for 1 min, and a final extension at 72 °C for 
5 min. The 5′-end of the forward primers was tailed with 
a 7-bp tail to avoid genotyping errors, according to Lil-
jander et al. [46]. The reverse primers were labeled with 
different fluorophores at the 5′-end: FC27 with 6-FAM™ 
(blue) and IC/3D7 with VIC® (green) (Additional file  1: 
Table S1).

Allele-specific positive (DNA from 3D7 and HB3 cul-
tures) and negative (sterile water) controls were included 
in each set of reactions. The nested msp2 PCR products 
were separated by gel electrophoresis on a 2% agarose gel 
containing ethidium bromide and the gel was observed 
on a transilluminator under UV light. Positive samples 
were subsequently prepared for capillary electrophoresis 
analysis.

Fragment allelic analysis by capillary electrophoresis
The fragment analysis was carried out on a 3500xL DNA 
sequencer (Applied Biosystems), using POP-7™ polymer 
(Applied Biosystems). 1 μl product of each nested PCR of 
the msp2 allelic type (FC27 and IC/3D7) were pooled and 
diluted 1:50 in sterile water to achieve peaks < 8000 rfu. 
1 µl of the pooled product was added to 13.9 μl of Hi-Di 
formamide and 0.1 μl size standard (GeneScan™ 1200 
LIZ®, Applied Biosystems) per well on 96-well plates. 
The separation was run at 19.5 kV for 25 min. Fragment 
sizes were determined by comparison to the GeneScan™ 
1200 LIZ size standard and analyzed using GeneMapper® 
Software v4.0 (Applied Biosystems). A cut-off value of 
300 relative fluorescent units (rfu) was applied for allele 

calling. Binsets were predefined for each allele family 
based on fragment sizes of controls and previously char-
acterized samples to enable automatic scoring. To ensure 
accuracy, electropherograms were manually inspected to 
distinguish artifact and stutter peaks, that could exceed 
300 rfu, and fragments that felt outside the binset ranges. 
Alleles were then identified by both fragment size and 
fluorescent dye, FC27 with 6-FAM™ (blue) and IC/3D7 
with VIC® (green). Because of the 7-bp tail on the for-
ward primers, the estimated sizes include an extra 8 bp 
segment (7 bp tail + A) [46].

Data analysis
Multiplicity of infection (MOI) was defined as the num-
ber of distinct parasite alleles present in a given infection. 
The frequency of FC27 and IC/3D7 allelic families was 
calculated as the proportion of the given allele out of the 
total of alleles detected.

Statistical analyses were performed using R version 
4.4.2 [47]. Generalized Linear Mixed Models (GLMMs) 
were fitted using the glmmTMB package [48] to assess 
the effects of study site (categorical, two levels: Mfou and 
Tibati), gender (categorical, two levels: male and female), 
age (numeric), and bed net ownership (categorical, two 
levels: yes or no), along with their interactions, on three 
outcomes: (i) malaria prevalence, (ii) multiclonality, both 
modeled using a binomial distribution, and (iii) MOI, 
modelled using a zero-truncated Poisson distribution, 
as MOI values are strictly positive integers and cannot 
equal zero. The effect of site, gender, age and interactions 
on bed net owenership was analysed using a binomial 
GLMM. In each model, village was included as a random 
effect to account for clustering (i.e. 14 villages in Mfou 
and 9 in Tibati). The statistical significance of fixed effects 
was evaluated using the Type II Wald chi-square test, 
implemented via the Anova function in the car package 
[49]. Diversity indexes were calculated to characterize 
the allelic diversity for each allelic family in the two study 
sites using the Vegan package [50]. Expected heterozygo-
sity was calculated using the formula He = [n/(n − 1)][1 
− ∑pi

2], where n is the number of genotyped samples and 
pi the frequency of the i allele at a given locus [51]. Dif-
ferentiation measures between study sites and allele dis-
tribution were calculated using the SpadeR package [52]. 
The level of statistical significance was set at P ≤ 0.05.

Results
Characteristics of malaria infections
Malaria prevalence was not significantly different 
between the two studied areas, 59.2% (876/1480) in 
Mfou vs 63.4% (808/1274) in Tibati, (LRT X2

1 = 1.5, 
P = 0.214; Additional file 1: Table S2). Plasmodium fal-
ciparum was the predominant Plasmodium species in 
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both sites, present in > 95% of total infections, 95.8% 
(839/876) in Mfou and 98% (791/808) in Tibati. Plas-
modium malariae infections were present only in 
Mfou, in 4.2% (37/876) samples and 54% (20/37) were 
mixed P. falciparum/P. malariae infections. In contrast, 
P. ovale was only identified in Tibati, in 2% (17/791) 
samples and 29.4% (5/17) were mixed P. falciparum/P. 
ovale infections.

ITN ownership was higher in Mfou as compared 
to Tibati (58.4% vs 37.5%, LRT X2

1 = 9.7, P = 0.002) 
(Table 1). Females were owning an ITN more frequently 
than males, 51.7% (737/1425) vs 45.6% (601/1317) 
(LRT X2

1 = 8.4, P = 0.004). Participants who reported 
owning an ITN were less likely to be infected, 58.4% 
(782/1338) vs 63.9% (900/1414) for those that had no 
ITN (LRT X2

1 = 6.4, P = 0.01) (Additional file 1: Fig. S1 
A, Tables S2 and S3), albeit the ITN effect on malaria 
prevalence was only significant in Mfou (LRT X2

1 = 
4.1, P = 0.04). In particular, owning an ITN was associ-
ated with a 20% reduction in the odds of malaria infec-
tion (OR = 0.801, 95% CI [0.680–0.943]). Males had an 
overall higher prevalence of malaria, 64% (843/1317) vs 
58.6% (835/1425) for females (LRT X2

1 = 4.4, P = 0.035) 
(Additional file  1: Fig. S1B). However, the association 
was only significant in Mfou (63.7% for males vs 54.8% 
for females; LRT X2

1 = 6.4, P = 0.012) (Additional file 1: 
Fig. S1B). Prevalence significantly decreased with age 
(LRT X2

1 = 154, P < 0.001) (Additional file 1: Table S3), 
with a more pronounced decline in Mfou compared 

to Tibati (significant age-by-site interaction: LRT 
X2₁ = 10.4, P = 0.001) (Additional file  1: Fig. S1 C and 
Table S3).

Frequency of the allelic families of Plasmodium falciparum 
msp2 gene
A total of 611 and 377 isolates from Mfou and Tibati, 
respectively, were successfully genotyped for msp2 
(Table 2). The genotyping success rate was lower for sam-
ples from Tibati (377/791; 48%) compared to those from 
Mfou (611/839; 73%), and this might be due to differ-
ences in storage conditions. Specifically, DBS specimens 
from Tibati experienced prolonged transport to Yaoundé 
and were kept at ambient temperature in silica gel for 
several days before final preservation at −20 °C in the lab-
oratory, which could have compromised DNA quality. In 
Mfou, the IC/3D7 and FC27 allelic families were detected 
in 527/611 (86.3%) and 454/611 (74.3%) of the samples, 
respectively. Among the samples from Tibati, 312 (82.8%) 
and 256 (67.9%) were carrying the IC/3D7 and FC27 type 
alleles, respectively. In both areas, the IC/3D7 type alleles 
were the most frequent ones (Mfou, X2 = 27, P < 0.001 
and Tibati, X2 = 22, P < 0.001). The frequency of FC27 
type alleles was significantly higher in Mfou as compared 
to Tibati (74.3% vs 67.9%; X2 = 4.4, P = 0.036). The iso-
lates that carried both IC/3D7-FC27 allelic families were 
found more frequently in Mfou 60.6% (370/611) than in 
Tibati 50.7% (191/377) (X2 = 8.9, P = 0.003).

Allelic diversity of Plasmodium falciparum msp2 gene
The different msp2 alleles were classified according to 
size (in base pairs) and family type for each study site 
and diversity indices were computed for each allelic fam-
ily (Fig.  2, Table  3). A total of 36 and 42 allelic variants 
of msp2 were detected in Mfou and Tibati, respectively. 
In the FC27 family, only 6 and 7 alleles were found in 
Mfou and Tibati, respectively, 5 being shared in both 
sites (Fig.  2A and C). 30 different IC/3D7 allelic frag-
ments were identified in Mfou, 35 in Tibati, and 26 alleles 
were shared between the two sites (Fig. 2B and D). The 
allelic diversity was higher in the IC/3D7 family than in 
the FC27 family in both sites, as revealed by the Shannon 
values (Table  3). The Pielou’s evenness indices indicate 
a balanced distribution of alleles in the IC/3D7 family 

Table 1  Characteristics of the study participants

Both sites Mfou Tibati

Own an ITN, n (%)

 Yes 1338 (48.6) 865 (58.4) 473 (37.5)

 No 1414 (51.4) 615 (42.6) 799 (62.8)

Sex, n (%)

 Female 1425 (52.0) 755 (51.1) 670 (53.1)

 Male 1317 (48.0) 725 (48.9) 592 (46.9)

Age

 Mean (± SD) 13.9 (± 14.1) 13.4 (± 13.4) 14.6 (± 14.7)

 Range 1–97 1–87 1–95

Table 2  Frequency of the msp2 allelic families IC/3D7 and FC27 in the two studied sites

The frequency of alleles for each family was compared between Mfou and Tibati using a Chi square test

N number of isolates analysed

msp2 families Both sites N = 988 Mfou N = 611 Tibati N = 377 P-value

IC/3D7, n (%) 839 (84.92) 527 (86.25) 312 (82.76) 0.162

FC27, n (%) 710 (71.86) 454 (74.30) 256 (67.90) 0.036

IC/3D7–FC27, n (%) 561 (56.78) 370 (60.56) 191 (50.66) 0.003
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(0.94 in Mfou and 0.95 in Tibati), while the smaller val-
ues in the FC27 family (0.75 in Mfou and 0.73 in Tibati) 
reflects the dominance of certain alleles. And indeed 
the 299 bp and 336 bp alleles of the FC27 family were 
the most prevalent in both areas, with proportions over 
30% (Additional file 1: Fig. S2). Expected heterozygosity 
was high at both IC/3D7 and FC7 loci (Table 3), reflect-
ing high genetic variability. Pairwise comparison of 

the allelic composition between the study areas did not 
detect genetic differentiation for both allelic families (Gst 
= 0.0014 ± 0.0007 for IC/3D7 and Gst = 0.0038 ± 0.0026 
for FC27; Table 3), which is suggestive of high gene flow 
between the study sites.

Diversity indices were calculated using the VEGAN 
package (version 2.5–7) [28] and the SpadeR package 
[29]. SD. estimates were obtained by 100 bootstrap rep-
lications. He was computed according to Nei [51].

Fig. 2  Diversity and distribution of the msp2 alleles in Mfou and Tibati. A FC27 allele family distribution. B IC/3D7 allele distribution. C and D 
Schematic representation of distinct and shared alleles in the FC27 and IC/3D7 families

Table 3  Diversity indices and differentiation between Mfou and Tibati for both IC/3D7 and FC27 allelic families

Allelic family IC/3D7 FC27

Study site Mfou Tibati Mfou Tibati

Shannon 3.153 3.344 1.344 1.347

Pielou’s evenness 0.937 0.949 0.749 0.733

Cumulated alleles 661 382 607 297

Allelic richness 30 35 6 7

Shared alleles 26 5

Heterozygosity He (SD) 0.94 (0.0021) 0.96 (0.0018) 0.69 (0.0074) 0.81 (0.0112)

Gst differentiation (SD) 0.0014 (0.0007) 0.0038 (0.0026)
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Multiplicity of P. falciparum infections
MOI was defined as the cumulated number of alleles 
identified at IC/3D7 and FC27 within each infection and 
multiclonal infections as samples with MOI > 1.

Overall, 64.47% (637/988) of P. falciparum isolates har-
bored two or more clones. The prevalence of multiclonal 
infections was higher among the isolates from Mfou as 
compared to those from Tibati, 68.9% (421/611) in Mfou 
and 57.3% (216/377) in Tibati (LRT X2

1 = 9.2, P = 0.002) 
(Fig. 3A, Table 4, Additional file 1: Table S4). Owning an 
ITN did not significantly influenced the prevalence of 
multiclonal infections (LRT X2

1 = 0.63, P = 0.43) (Fig. 3A, 
Table 4, Additional file 1: Table S4).

Males more frequently harboured multiclonal infec-
tions (69.9%, 355/510 for males vs 58.8%, 280/476 for 
females; LRT X2

1 = 11, P < 0.001), although the difference 
was significant only in Mfou (75.2%, 240/319 for males 
vs 62%, 181/292 for females; LRT X2

1 = 11, P < 0.001) 
(Fig. 3B, Table 4, Additional file 1: Table 4). Overall, prev-
alence of multiclonal infections decreased with age (LRT 
X2

1 = 4.7, P = 0.03) (Additional file 1: Table S4). However, 
this association was significant only in Mfou (significant 
age-by-site interaction: LRT X2

1 = 8.7, P = 0.003) (Fig. 3C, 
Additional file 1: Table S4).

The overall mean MOI was 1.97 (± 0.94). Notably, the 
mean MOI value was significantly higher in Mfou com-
pared to Tibati (2.08 ± 0.97 vs 1.80 ± 0.85; LRT X2

1 = 8.4, 
P = 0.004) (Fig. 4A, Table 4, Additional file 1: Table S5). 

The number of msp2 alleles per isolate (MOI) varied from 
1 to 6 in Mfou and 1 to 5 in Tibati. Owning a bed net did 
not influence MOI (LRT X2

1 = 0.14, P = 0.71) (Fig.  4A). 
Overall, males had higher MOI than females (LRT X2

1 = 
6.13, P = 0.013) (Table 4, Additional file 1: Table S5) but 
this was especially true for Mfou (2.2 ± 0.99 in males vs 

Fig. 3  Effects of ITN (insecticide-treated net), sex, and age on the prevalence of multiclonal infections (proportion of individuals harboring more 
than one P. falciparum clone) in Mfou and Tibati. A Prevalence of multiclonal infections by ITN in Mfou and Tibati. B Prevalence of multiclonal 
infections by sex in Mfou and Tibati. F Females, M Males. In A and B, error bars represent the 95% CI, and sample sizes are displayed at the base 
of the bars. C Relationship between age and the prevalence of multiclonal infections at the Mfou and Tibati sites. The regression line represents 
the fitted logistic model. The shaded region indicates the 95% CI for the model. Sample sizes for each site are indicated within bars for A and B 
and within the legend for C 

Table 4  Multiclonality and multiplicity of infection (MOI) in P. 
falciparum infections from Mfou and Tibati

N Number of parasite isolates for each site

Study site Both sites Mfou Tibati

Multiclonal infection, 
n (%)

637/988 (64.5) 421/611 (68.9) 216/377 (57.3)

Own an ITN

 Yes 296/463 (63.9) 226/333 (67.9) 70/130 (53.8)

 No 340/524 (64.9) 195/278 (70.1) 145/246 (58.9)

Sex

 Females 280/476 (58.8) 181/292 (62.0) 99/184 (53.8)

 Males 355/510 (69.6) 240/319 (75.2) 115/191 (60.2)

 MOI, mean (± sd) 1.97 (± 0.94) 2.08 (± 0.97) 1.80 (± 0.85)

Own an ITN

 Yes 1.98 (± 0.97) 2.05 (± 0.98) 1.79 (± 0.79)

 No 1.96 (± 0.90) 2.11 (± 0.97) 1.82 (± 0.94)

Sex

 Females 1.88 (± 0.93) 1.94 (± 0.95) 1.78 (± 0.88)

 Males 2.05 (± 0.94) 2.20 (± 0.99) 1.81 (± 0.81)
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1.94 ± 0.95, LRT X2
1 = 7.4, P = 0.007) (Fig.  4B, Table 4). 

Finally, there was a significant age-by-site interaction 
(LRT X2

1 = 5.1, P = 0.024) (Additional file  1: Table  S5) 
with MOI decreasing with age in Mfou but not in Tibati 
(Fig. 4C).

Discussion
Knowledge of the genetic diversity of malaria parasite 
populations in different endemic settings is essential to 
monitoring the effectiveness of malaria control inter-
ventions. Here, genetic diversity of  P. falciparum was 
assessed by genotyping the highly polymorphic msp2 
gene among asymptomatic infections from two eco-
logical settings with different variation of malaria trans-
mission, perennial transmission in Mfou and seasonal 
transmission in Tibati.

The prevalence of malaria infections among the asymp-
tomatic participants in the studied areas was 61.1% and 
the vast majority, > 95%, were due to P. falciparum, in 
line with previous works in the same localities [9, 39]. 
Plasmodium ovale was only found in Tibati in this study. 
However, its circulation has previously been reported 
in Mfou, at low level, and its presence may have been 
missed due to sample size and its low prevalence [39]. 
The absence of P. malariae in Tibati is more surpris-
ing, as it was reported with a prevalence of 23% among 
asymptomatic individuals screened in 2017 during a 
same period of malaria transmission (June – July, rainy 
season) [9]. This is likely linked to a different exposure 
of the sampled populations between the two studies as 

the prevalence of Plasmodium, including P. malariae, is 
influenced by several factors, including rainfall patterns, 
temperature, and human behaviour [13, 53].

Prevalence of malaria infections was higher among 
younger participants, reflecting the typical pattern 
observed in regions with high endemicity [54–56]. In 
such areas, acquired immunity in largely exposed adults 
allows to cure the infection while in younger children, 
who have had fewer malaria infections, immunity is 
still insufficient to control parasitaemia [57]. A sharper 
decline in malaria prevalence with age was observed in 
Mfou and it will be important to monitor the entomo-
logical inoculation rate (EIR) in both areas to determine 
whether varying levels of exposure to infectious mos-
quito bites could explain this age-by-site interaction. 
Indeed, previous studies have evidenced that heterogene-
ous EIR are major factors determining the prevalence of 
infection [58, 59]. Nevertheless, these findings point the 
importance to target school-aged children in malaria-
control programmes, as school-aged children repre-
sent the major contributors to the infectious reservoir 
[60, 61]. Plasmodium infections were more prevalent in 
males, although the gender difference was only signifi-
cant in Mfou. A male bias in malaria prevalence has often 
been reported and ascribed to behavioural differences by 
which males would be more exposed to mosquito bites 
[56, 62–65]. The higher malaria prevalence in males 
could also be due to biological sex-based differences as 
it has been reported that females cleared asymptomatic 
infections faster than males [62].

Fig. 4  Effects of ITN, sex, and age on the MOI (number of msp2 alleles) in Mfou and Tibati. A MOI by ITN (insecticide-treated net) ownership in Mfou 
and Tibati. Yes: own an ITN, No: no ITN. B MOI by sex in Mfou and Tibati. F females, M Males. C Relationship between age and the prevalence 
of multiclonal infections at the Mfou and Tibati sites. The regression line represents the fitted truncated Poisson model. The shaded region indicates 
the 95% CI for the model. Sample sizes for each site are indicated in parentheses
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ITN ownership differed between the two studied areas, 
a greater proportion of participants from Mfou owning 
an ITN. Multiple factors influence bed net ownership 
and use in endemic areas, including region of residence 
and education level [66–69]. Because of the close prox-
imity of Mfou to the capital city, Yaoundé, inhabitants 
from this area may have a better access to community 
interventions that promote ITN use and a better knowl-
edge of malaria burden. Owning an ITN provided sub-
stantial protection against malaria, ITN owners having 
a 20% reduction in the odds of being infected. However, 
community ITN coverage impacted the protection con-
ferred against malaria infection and the protective effect 
of ITN was only significant in Mfou (OR = 0.801, 95% CI 
[0.680–0.943]). ITNs are more effective with higher ITN 
coverage [70, 71] and these results indicate that efforts 
are needed to enhance malaria prevention strategies aim-
ing at increasing ITN ownership and usage.

A total of 611 and 377 isolates were successfully geno-
typed for msp2, from Mfou and Tibati respectively. The 
IC/3D7 family was more prevalent as compared to the 
FC27 family, in both sites (86.3% vs 74.3% in Mfou and 
82.8% vs 67.9% in Tibati), and over half of the isolates car-
ried both allelic families. These results are consistent with 
others studies carried out in Africa, including Cameroon 
[26, 72–74]. Several studies tried to correlate the preva-
lence of msp2 allelic families with malaria clinical status 
or disease severity [75–77]. Here, parasites isolates were 
collected from asymptomatic carriers and such asso-
ciations were not examined. This study revealed a high 
degree of genetic polymorphism in P. falciparum field 
isolates, that corresponds with the high level of malaria 
transmission in the studied areas. A total of 42 (IC/3D7: 
35; FC27: 7) and 36 (IC/3D7: 30; FC27: 6) different alleles 
in the msp2 gene were found among the asymptomatic 
cohorts in both sites, respectively. Genetic diversity here 
was higher than that reported in previous recent studies 
carried out in the South-West region of Cameroon, 27 
alleles (IC/3D7: 15; FC27: 12) [26] and in neighbouring 
Central African countries, such as Republic of Congo, 
27 alleles (IC/3D7: 13; FC27: 14) [78], Gabon, 27 alleles 
(IC/3D7: 16; FC27: 11) [74] or Nigeria, 15 alleles (IC/3D7: 
8; FC27: 7) [79]. The limited genetic diversity of P. falci-
parum observed in these earlier studies may stem from 
clinical status, as these studies focused on uncomplicated 
infections, which typically exhibit lower genetic diversity 
[27, 72]. Additionally, the genotyping method could influ-
ence diversity results. In the present study, the analysis 
of allelic fragments was carried out by capillary electro-
phoresis, which has a much higher resolving power than 
gel electrophoresis [46, 80, 81]. The IC/3D7 allelic fam-
ily was the most polymorphic in this study, in agreement 
with previous reports [26, 32, 73, 75, 81]. Conversely, 

other studies found similar diversity within the IC/3D7 
and FC27 allelic families or a predominance of the FC27 
alleles over the IC/3D7 ones [72, 78, 82, 83]. These dis-
crepancies could be related to geographical location, 
transmission intensity, or sampled populations [84]. No 
genetic differentiation was observed between the two 
studied areas, which suggests that the same populations 
of parasites circulate in Mfou and Tibati. While IC/3D7 
alleles were unevenly distributed in the studied areas, two 
alleles in the FC27 family (299 and 336 bp) were overrep-
resented, reaching frequencies above 40%. Even if a risk 
of homoplasy cannot be excluded, msp2 sequence con-
taining tandem repeats, a biased distribution of alleles 
has already been reported and it was suggested that the 
alleles may have a role in the acquisition of immunity 
[33]. Nonetheless, such high allele frequencies may lead 
to misclassification of drug failure as a new infection in 
drug efficacy studies, and it will be crucial to use multiple 
genetic markers to accurately distinguish recurrent infec-
tions during follow-up [33, 85].

A majority of parasite isolates was carrying multiple 
genotypes and multiclonal infections were more preva-
lent in Mfou as compared to Tibati (68.9% vs 57.3%, 
respectively; LRT X2

1 = 9.2, P = 0.002). The difference 
could reflect geographical heterogeneity and distinct 
epidemiological pattern between the two areas. Indeed, 
malaria is seasonal in Tibati, perennial in Mfou and sea-
sonal variations in infection complexity have previously 
been described [77, 84, 86]. The overall MOI was around 
2, 2.1 in Mfou and 1.8 in Tibati, and this corresponds to 
the MOI range reported in other areas of high malaria 
transmission using msp2 genotyping [31, 72, 73, 82, 
84]. Higher means of MOI have been associated with a 
reduced incidence of malaria episodes [30, 87] and this 
could explain the higher MOI found in Mfou where indi-
viduals are exposed to malaria parasites throughout the 
year and less subject to develop clinical malaria, as com-
pared to Tibati where malaria transmission is seasonal.

In Tibati, age was not correlated with MOI or mon-
oclonal infections while strong effects of age on the 
number of genotypes were found in Mfou. This site-
dependant effect suggests different epidemiological 
patterns between the two areas and the difference could 
be due to a different immunological status of the sam-
pled populations. In Mfou, with a perennial transmis-
sion, continuous exposure to parasites likely impact on 
the development and persistence of the anti-parasite 
immunity. In older individuals, host immune responses 
contribute to maintain infections at low density and 
this reduces the likelihood of detecting minority geno-
types in adults. Alternatively, in Tibati, human popu-
lations are more exposed to infectious mosquito bites 
during the rainy season regardless of age. Previous 
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studies indicated that MOI was decreasing with age 
and linked this association to the acquisition of antima-
larial immunity, which aids in clearing more efficiently 
infections in older individuals [37, 77, 84, 88]. However 
other studies reported no association between age and 
MOI [82, 83, 89] and ecological or behavioural factors 
may lead to distinct exposure to mosquito bites in dif-
ferent areas.

Similarly, the gender effect found in Mfou, where males 
had higher monoclonal infections and MOI levels as 
compared to females, may result from different exposure 
to parasites in this particular area. Although there are 
indications that sex may influence MOI, the results are 
not always consistent and depend heavily on the epide-
miological context, behavioural factors, and local condi-
tions [26, 77, 90].

This study provides recent data on the genetic diversity 
of P. falciparum in two different areas in Cameroon, how-
ever it has several limitations. Samples were collected 
over a short period at each study site (June–July 2018 in 
Mfou and July–August 2019 in Tibati), and longitudinal 
studies would be required to investigate malaria infec-
tion dynamics. MOI can vary with the transmission level 
and seasonal fluctuations in parasite densities may have 
influenced the genetic diversity in the study sites [90, 91]. 
Also, a limitation is that parasite densities in the infec-
tions were not recorded. Several studies reported a posi-
tive association between MOI and parasitaemia, which 
could be explained by the higher probability of detecting 
co-infecting genotypes at high parasite densities [30, 89, 
92]. Other studies found negative correlation between 
MOI and parasite density in symptomatic patients and 
it was suggested that the proliferation of a more viru-
lent genotype of parasites is favored during the onset of 
a clinical infection [76, 77]. In this study, msp2 genotyp-
ing was performed in samples from asymptomatic indi-
viduals, who typically carry low density parasites. The 
success rate of msp2 PCR was relatively low in samples 
from Tibati (377/791, 48%), possibly due to lower parasite 
densities in this area. However, it is possible that reduced 
efficiency was caused by DNA degradation. Another lim-
itation of this study is the use of a single genetic marker. 
The MOI level found in Mfou is lower than that previ-
ously found in the same area using different genotyp-
ing methods [27, 93] and the MOI values reported here 
are probably underestimated due to the genotyping 
method. In addition, msp2 can elicit immune responses 
against malaria in a strain-specific manner and this can 
introduce an immune selection bias [94, 95]. It will be of 
importance in future studies to use multiple markers and 
more sensitive methods such as amplicon deep sequenc-
ing in genotyping assays to detect minority genotypes in 
multiclonal infections [27, 80, 96, 97].

Conclusion
This study describes the genetic diversity of P. falcipa-
rum isolates from asymptomatic individuals in two dis-
tinct malaria transmission settings in Cameroon, Mfou 
and Tibati, and provides data on the genetic polymor-
phism at the msp2 gene. Despite Mfou and Tibati have 
a high malaria transmission profile, a different pattern 
of genetic diversity was highlighted in this study and 
this represents valuable information for guiding the 
decisions of policy-makers to improve anti-malarial 
strategies in these areas. Even though owning an ITN 
provides protection against malaria infection, these 
findings support the need to integrate additional tools 
into malaria prevention and control strategies. These 
interventions should be tailored to align with the spe-
cific epidemiological patterns of malaria in the consid-
ered regions.
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